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Abstract

In this paper a type of Heath, Jarrow and Morton (1992) (HJM) based affine

model is derived theoretically. This type of affine model is obtained by apply-

ing Linear Realization Theory to construct Finite Dimensional Realizations (FDRs)

of the Gaussian HJM model. The algorithms of constructing Standard Observ-

able Canonical Realization and Jordan Canonical Realization are introduced se-

quentially. And it is shown that the commonly adopted FDR is actually Jordan

Canonical Realization. The empirical results show that a two-factor model of

this type provides great fit to the term structure of interest rates data. The result-

ing state variables have clear economic interpretations. And it is found that the

short end of the term structure can be precisely considered as a “medium-run

factor” which uniformly shifts the yield curve. This finding has an important

implication for bond portfolios management, and also helps us better under-

stand the interactions between macro-economy and term structure dynamics.

Keywords: Affine Term Structure Model; HJM; Finite Dimensional Realization;

Linear Realization Theory; State Space Framework; Macro-economy

JEL classification: C61; E43; E44; G12
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1 Introduction

Heath, Jarrow and Morton (1992) (hereafter HJM) term structure of interest rate

framework has been proved to be one of the most general and flexible settings for

describing the interest rate dynamics, as it is able to generate a wide range of for-

ward rate dynamics and incorporate any prevailing market conditions with internal

consistency. Furthermore, under the HJM framework, as less as two ingredients, the

volatility function and the initial forward rate curve, are all needs to fully specify the

model. Therefore, it is desired that one could link the HJM model with the state space

framework (see, e.g., Lemke, 2005), under which models can be easily estimated.

There have been series of papers focus on the Markovian property and Finite Dimen-

sional Realizations (hereafter FDRs) of HJM, such as Carverhill (1994), Ritchken and

Sankarasubramanian (1995), Bliss et al. (1996), Bhar and Chiarella (1996), Björk and

Gombani (1999), Björk and Svensson (2001), Björk and Landén (2002), etc. Thanks to

the literature, one can analyze the HJM model under the state space framework.

In the literature, there are papers (see Bhar and Chiarella, 1996; Björk and Gom-

bani, 1999, etc.) deal with the hump shape volatility term structure which has been

widely observed in many empirical works (see, e.g., Brace and Musiela, 1994; Ritchken

and Chuang, 2000; Mercurio and Moraleda, 2001, 2000; Jarrow et al., 2007). HJM with

the following time invariant hump shape volatility function

σ (t, T) = σ (T − t) =
(

a0 + a1 (T − t) + a2 (T − t)2 + · · ·+ an (T − t)n
)

e−k(T−t) (1)

where T is the maturity date, t is the current time, and k > 0, is guaranteed to admit

an FDR, because (1) satisfies the sufficient condition for HJM to be represented in an

FDR (refer to Bhar and Chiarella, 1996, Proposition 1 or Björk and Gombani, 1999,

Proposition 3.1 for more details). This paper focuses on FDRs associated with the
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volatility function of (1). Since given (1) the HJM model is Gaussian, in an FDR the

forward rate is an affine function of state variables, in other words, the resulting

system of an FDR can be considered as an affine term structure model. As we’ll see

in Section 7, even with the volatility function as simple as (1), the resulting affine

models are able to well capture the dynamics of the term structure of interest rates.

In Björk and Gombani (1999) Linear System Theory was firstly introduced to

solve the FDR issues of the HJM model. Although Björk and Gombani (1999) ac-

tually construct a concrete FDR of HJM in an example, they talk much less on the

construction of FDRs than the existence of FDRs. While Bhar and Chiarella (1996) do

provide a more general discussion on how to actually construct an FDR of HJM with

(1) type of volatility function, they employ a totally different method and reach a dif-

ferent result in appearance. Therefore, one wonders given one HJM whether there

exist two or more different FDRs, and whether all these realizations are equivalent

under certain unifying theoretical framework. In order to answer these questions,

this paper provides a method, which further extends Björk and Gombani (1999), to

construct FDRs of HJM by applying Linear Realization Theory. And it is found that

there do exist non-unique FDRs that are equivalent to each other given one HJM

model, and the canonical forms (Standard Observable Canonical and Jordan Canon-

ical forms) can be easily achieved. Actually, the result in Bhar and Chiarella (1996,

Prop. 1) is the Jordan Canonical FDR which can be reached by applying the block

diagonalization algorithm to a system matrix of state variables.

In the empirical analysis, it is shown that, in terms of the latitude of pricing er-

rors, a two-factor model of this type with only 7 model parameters provides much

better fit to the term structure data than a traditional two-factor affine model with 13

model parameters does, and the fit is comparable to that of a traditional three-factor

affine model with 21 model parameters (see, e.g., De Jong, 2000). Although there
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is no clear economic interpretation for the second state variable1 of Jordan Canon-

ical Realization, the economic interpretations for the first and third state variables

of Jordan Canonical Realization, as well as the three state variables of Standard Ob-

servable Canonical Realization are apparent: a linear combination of the first and

third states of Jordan Canonical Realization, and the first state of Standard Observ-

able Canonical Realization are almost completely linked to the short end of the term

structure (3-month interest rate), and a linear combination of the second and third

states of Standard Observable Canonical Realization is highly related to the slope

(10-year interest rate minus 3-month interest rate) of the term structure. Generally

speaking, the traditional two-factor affine model is only able to capture the dynam-

ics of the slope and level (slope plus short end) of the term structure and barely able

to explain the curvature (two times the 1-year zero yield, minus the sum of the 3-

month and 10-year zero yields) dynamics. In contrast to this, the two-factor model

considered here can not only well capture the slope and level dynamics, but also

explain over 80% variation of the curvature.

And using Standard Observable Canonical Realization, it is found that the short

end of the term structure can be precisely regarded as a “medium-run factor” which

uniformly shifts the yield curve up to 10-year maturity. This finding is of the impor-

tant implication for the short- and medium-term bond portfolios management. And

we all know that the short end of the yield curve is highly sensitive to the macro-

economic environment, so this finding also helps us better understand the interac-

tions between the macro-economy and term structure of interest rates dynamics.

The structure of the paper is as follows. First of all, the HJM framework is sum-

marized in Section 2. The general Linear Realization Theory for HJM is briefly re-

1Although there are only two sources of randomness (stochastic factors), there are three or four
relevant state variables in the resulting affine model. This becomes clear as we move on to the suc-
ceeding sections
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viewed in Section 3; and two representation algorithms (Standard Observable Canon-

ical and Jordan Canonical) of constructing FDRs of the HJM model with (1) type

volatility function are introduced in Section 4. Bhar and Chiarella (1996)’s method

of constructing an FDR is presented in Section 5. Then it is shown in Section 6, via

a concrete example, that the FDR constructed in Bhar and Chiarella (1996) is actu-

ally the Jordan Canonical Realization. Based on the same concrete model, Section 7

discusses the empirical results. Finally, Section 8 concludes the paper.

2 The HJM Framework

For completeness, the general HJM model is presented first. Then, in the next section

the HJM with the time invariant hump shape volatility function is discussed.

The instantaneous forward rate at time t for all dates T > t, f (t, T), is defined

by f (t, T) = −∂ ln P (t, T) /∂T, which is the rate that can be contracted at time t for

instantaneous riskless borrowing or lending at time T. From the knowledge of the

instantaneous forward rates for all maturities between time t and time T, the price

at time t of a zero-coupon bond with maturity T can be obtained by

P (t, T) = exp

{
−
ˆ T

t
f (t, s) ds

}
,

and the corresponding zero yield is

y (t, T) = − ln P (t, T)
T − t

=

´ T
t f (t, s) ds

T − t
.

The spot interest rate at time t, rt, is the instantaneous forward rate at time t for date

t, rt = f (t, t).

Following Heath et al. (1992), the dynamics of the term structure of interest rates
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are described by a family of stochastic processes representing forward rate move-

ments. In integral form, the dynamic of the forward rate is given by

f (t, T) = f (0, T) +
ˆ t

0
µ (s, T) ds +

ˆ t

0
σ (s, T) dws

or, in SDE form,

d f (t, T) = µ (t, T) dt + σ (t, T) dwt

where µ (t, T) is the instantaneous drift and σ (t, T)1×N is the instantaneous volatility

at time t of the forward rate with maturity date T, wN×1 is an N-dimensional P

measure Wiener process. The processes µ and σ are adapted processes inR andRN

such that the forward rate processes are well defined. Heath et al. (1992) show that

arbitrage-free instantaneous forward rate processes must verify a constraint on the

drift,

µ (t, T) = σ (t, T)

(ˆ T

t
σ (t, s) ds− λ (t)ᵀ

)ᵀ
,

where λ (t)N×1 is a vector of market prices of risks. Note that the volatility function

σ (t, T) and market price of risks vector λ (t) completely determine the drift of the

forward rate.

The dynamics of the spot rate and the zero-coupon bond price are given by

drt =
∂ f (t, T)

∂T

∣∣∣∣
T=t

dt + σ (t, t) dwt, (2)

dP (t, T) = P (t, T) [rt + Ω (t, T)] dt− P (t, T)

[ˆ T

t
σ (t, s) ds

]
dwt (3)
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where

Ω (t, T) ≡ −
ˆ T

t
µ (t, s) ds +

1
2

∥∥∥∥∥

ˆ T

t
σ (t, s) ds

∥∥∥∥∥

2

.

In general, neither the spot rate nor the bond price process is Markovian, because

the drift term in (2), ∂ f (t,T)
∂T

∣∣∣
T=t

, involves integration over the past. Consequently,

the general HJM model does not readily lend itself to practical implementations.

However, as shown below, if the volatility function is restricted to certain form, the

whole HJM framework can be transformed into a Markovian state space.

3 Linear System Theory and FDRs of HJM

Now the volatility function is restricted to the form of (1), then at least one FDR is

guaranteed to exist for HJM as discussed in Section 1. Here the main results given

in Björk and Gombani (1999) are briefly reviewed without dealing with too much

technical details. Readers could refer to original paper for more details.

First, rewrite the standard HJM drift condition in the Musiela parameterization

(see Brace and Musiela, 1994):

dr (t, x) = µr (t, x) dt + σ (x) dWt (4)

µr (t, x) =
∂

∂x
r (t, x)− σ (x)

(ˆ x

0
(λ (t)ᵀ − σ (s)) ds

)ᵀ

Wt = [[wi]
m
i=1]

ᵀ

σ (x) = [σi (x)]mi=1

λ (t) =
[
[λi (t)]

m
i=1
]ᵀ ,

where x > 0 is the time to maturity. Denote by F the linear operator ∂
∂x , using
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following property of F

[
eFtg

]
(x) = g (t + x) g ∈ C [0, ∞) ,

the solution of (4) can be obtained as

r (t, x) = δ (t, x) + r0 (t, x)

δ (t, x) = r (0, t + x)

+

ˆ t

0

[
σ (x + t− s)

(ˆ x+t−s

0
(σ (v)− λ (t)ᵀ) dv

)ᵀ]
ds

r0 (t, x) =

ˆ t

0
σ (x + t− s) dWs (5)

dr0 (t, x) = Fr0 (t, x) dt + σ (x) dWt, r0 (0, x) = 0 (6)

Following Björk and Gombani (1999), we have the definition of the FDR,

Definition 1 A triple {A, B, C(x)}, where A is an n× n-matrix , B is an n× m-matrix

and C (x) is an n-dimensional row-vector function, is called an n-dimensional realization of

the system r0 (t, x) if r0 (t, x) has the representation

r0 (t, x) = C (x) Zt (7)

dZt = AZtdt + BdWt. (8)

Then according to Lemma 3.1 and Corollary 3.1 in Björk and Gombani (1999), it is

known that, in order to make (7)-(8) a realization of (5), (7)-(8) and (5)-(6) must have

the same transfer function.

The transfer function H (s, x) of (7)-(8) is C (x) (sI−A)−1 B, and the transfer

function G (s, x) of (5)-(6), by Lemma 3.2 in Björk and Gombani (1999), is L [σ (x)] (s)

where L [·] is the Laplace transform operator. Then we need to determine A, B, and
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C (x) from the following equation

L [σ (x)] (s) = C (x) (sI−A)−1 B.

Lemma 3.3 in Björk and Gombani (1999) tells us that it is enough to consider the

transfer function G (s, 0) = L [σ (x = 0)] (s), and then A, B, and C (x) can be deter-

mined from follows,

L [σ (x = 0)] (s) = C (sI−A)−1 B

C (x) = C× exp (Ax) .

Computing A, B, and C is no other than the realization construction problem which

will be detailedly discussed in the next section.

4 Realization Algorithms

The volatility function is rewritten as

[
σi (x) =

(
ai,0 + ai,1x + ai,2x2 + · · ·+ ai,ni x

ni
)

e−kix
]m

i=1
, (9)
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Then the transfer function G (s, 0) = L
[
[σi (x = 0)]mi=1

]
(s) is given by

[
ni

∑
j=0

j!aij (ki + s)−(j+1)

]m

i=1︸ ︷︷ ︸
1×m

(10)

=

[
1

ni! (ki + s)ni+1 ,
1

(ni − 1)! (ki + s)ni
, · · · ,

1
ki + s

]m

i=1︸ ︷︷ ︸
1×(m+∑m

i=1 ni)




a10 0 0
...

...

a1n1 0

0 a20
...

...
...

a2n2 0
... 0 am0

...
...

0 0 amnm




︸ ︷︷ ︸
(m+∑m

i=1 ni)×m

.

The realization algorithms are then applied to

[
1

ni! (ki + s)ni+1 ,
1

(ni − 1)! (ki + s)ni
, · · · ,

1
ki + s

]m

i=1

. (11)

As far as the realization algorithms are concerned, Standard Observable Canonical

Realization algorithm is a natural choice for the row vector transfer function (11).
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4.1 Standard Observable Canonical Realization

Details of Standard Observable Canonical Realization algorithm can be found in

Brockett (1970, page 107). First, expand (11) about |s| = ∞ to get

[
1

0! (ki + s)
,

1

1! (ki + s)2 ,
1

2! (ki + s)3 , · · · ,
1

ni! (ki + s)ni+1

]m

i=1

=
∞

∑
α=0

[Lα1, Lα2, · · · , Lαn] s−(α+1).

Lαi, i = 1, 2, . . . , n, α = 0, 1, . . ., can be easily computed for any specific examples by

applying the Taylor expansion.

Secondly, consider p (s) which is the monic least common multiple of all ni! (ki + s)ni+1

for i = 1, 2, . . . , m, we have

p (s) =
m

∏
i=1

ni! (ki + s)ni+1

= sn + pn−1sn−1 + · · ·+ p1s + p0

where n = m + ∑m
i=1 ni. As Lαi above, pk, k = 0, 2, . . . , n − 1, can also be easily

computed for any specific examples by expanding
m
∏
i=1

ni! (ki + s)ni+1.
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Then

A =




0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 1

−p0 −p1 −p2 · · · −pn−1




n×n

Ḃ =




L01 L02 · · · L0m

L11 L12 · · · L1m

· · · · · · · · · · · ·

Ln−2,1 Ln−2,2 · · · Ln−2,m

Ln−1,1 Ln−1,2 · · · Ln−1,m




n×n

B = Ḃn×n×Ωn×m

C (x) =
[

1 0 · · · 0

]

1×n
× exp (Ax) .

where

Ωn×m ≡




a10 0 0
...

...

a1n1 0

0 a20
...

...
...

a2n2 0
... 0 am0

...
...

0 0 amnm




n×m
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Thanks to the structure of the transfer function and Standard Observable Canon-

ical Realization algorithm, we have the following nice result:

Proposition 2 Given the volatility function as

[
σi (x) =

(
ai,0 + ai,1x + ai,2x2 + · · ·+ ai,ni x

ni
)

e−kix
]m

i=1
,

triple {A, B, C (x)} is a minimal realization.

Proof. The McMillan degree (see Chen, 1999) of the transfer function is given by

µ = dim
[
span

{[
e−kix, xe−kix, · · · xni e−kix

]m

i=1

}]
= m +

m

∑
i=1

ni = n,

and the dimension of A is n× n, then the result follows.

Finally, the Markovian state variables and r0 (t, x) are given by

r0 (t, x) = C (x) Zt

dZt = AZtdt + BdWt

where Wt =
[
[wi]

m
i=1
]ᵀ.

4.2 Jordan Canonical Realization

Given the Standard Observable Canonical Realization triple {A, B, C (x)}, Jordan

Canonical Realization can be constructed as follows:

First, apply the Jordan form algorithm (see, e.g., Chen, 1999) to matrix A to obtain
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a block-diagonal and triangular-form representation, i.e.

A = P−1ÃP

Ã =




Ã1 0 · · · 0

0 Ã2 · · · 0
. . .

0 · · · · · · Ãm




n×n

, Ãi =




−ki 0 · · · 0

1 −ki · · · 0
. . .

0 · · · ni −ki



(ni+1)×(ni+1)

where P is a unique nonsingular matrix, and Ã is a block-diagonal matrix.

Secondly, by the similarity transformation (see, e.g., Schutter, 2000), we obtain

the Jordan Canonical Realization triple
{

Ã, B̃, C̃ (x)
}

as

Ã = PAP−1

B̃ = PḂΩ

C̃ (x) = C̃ exp
(
Ãx
)

= CP−1 exp
(

PAP−1x
)

= C exp (Ax) P−1

= C (x) P−1

To see how matrix P could look like, a specific example is presented in the next

section. Note that the triple
{

Ã, B̃, C̃ (x)
}

is also a minimal realization. Therefore

Standard Observable Canonical Realization and Jordan Canonical Realization are

equivalent in terms of the controllability and observability (see Schutter, 2000).
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4.3 Example Illustration

Here two algorithms are demonstrated via a concrete example. Assume a two-factor

model with the volatility function as

σ (x) = [(a10 + a11x) exp (−k1x) , (a20 + a21x) exp (−k2x)]1×2 .

The transfer function G (s, 0) = L [(a10 + a11x) exp (−k1x) , (a20 + a21x) exp (−k2x)] (s)

is given by

[
a10

k1 + s
+

a11

(k1 + s)2 ,
a20

k2 + s
+

a21

(k2 + s)2

]

1×2

=

[
1

k1 + s
,

1

(k1 + s)2 ,
1

k2 + s
,

1

(k2 + s)2

]




a10 0

a11 0

0 a20

0 a21




,

the realization algorithms are applied to

[
1

k1 + s
,

1

(k1 + s)2 ,
1

k2 + s
,

1

(k2 + s)2

]
. (12)

• Standard Observable Canonical Realization

1. Expand (12) about |s| = ∞
[

1
k1 + s

,
1

(k1 + s)2 ,
1

k2 + s
,

1

(k2 + s)2

]

= [1, 0, 1, 0]
1
s
+ [−k1, 1,−k2, 1]

1
s2

+
[
k2

1,−2k1, k2
2,−2k2

] 1
s3 +

[
−k3

1, 3k2
1,−k3

2, 3k2
2

] 1
s4 + · · · ;
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2. The Monic least common multiple of the denominators is given by

p (s) = (k1 + s)2 (k2 + s)2

= k2
1k2

2 + 2
(

k2
1k2 + k1k2

2

)
s +

(
k2

1 + 4k1k2 + k2
2

)
s2 + 2 (k1 + k2) s3 + s4

≡ p0 + p1s + p2s2 + p3s3 + s4,

so n = 4;

3. A, B, and C (x) can be computed as

A =




0 1 0 0

0 0 1 0

0 0 0 1

−k2
1k2

2 −2
(
k2

1k2 + k1k2
2
)
−
(
k2

1 + 4k1k2 + k2
2
)
−2 (k1 + k2)




4×4

Ḃ =




1 0 1 0

−k1 1 −k2 1

k2
1 −2k1 k2

2 −2k2

−k3
1 3k2

1 −k3
2 3k2

2




4×4

B = ḂΩ4×2 =




a10 a20

a11 − k1a10 a21 − k2a20

k2
1a10 − 2k1a11 k2

2a20 − 2k2a21

k2
1 (3a11 − k1a10) k2

2 (3a21 − k2a20)




4×2

C (x) =

[
1 0 0 0

]

× exp







0 1 0 0

0 0 1 0

0 0 0 1

−k2
1k2

2 −2
(
k2

1k2 + k1k2
2
)
−
(
k2

1 + 4k1k2 + k2
2
)
−2 (k1 + k2)




x



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where

Ω =




a10 0

a11 0

0 a20

0 a21




.

• Jordan Canonical Realization

1. Applying the Jordan form algorithm to matrix A gives

P−1 =




0 1 0 1

1 −k1 1 −k2

−2k1 k2
1 −2k2 k2

2

3k2
1 −k3

1 3k2
2 −k3

2




2. By the similarity transformation, Ã, B̃, and C̃ (x) can be computed as

Ã = PAP−1 =




−k1 0 0 0

1 −k1 0 0

0 0 −k2 0

0 0 1 −k2



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B̃ = PḂΩ

=




0 1 0 1

1 −k1 1 −k2

−2k1 k2
1 −2k2 k2

2

3k2
1 −k3

1 3k2
2 −k3

2




−1 


1 0 1 0

−k1 1 −k2 1

k2
1 −2k1 k2

2 −2k2

−k3
1 3k2

1 −k3
2 3k2

2







a10 0

a11 0

0 a20

0 a21




=




a11 0

a10 0

0 a21

0 a20




C̃ (x) = CP−1 exp
(
Ãx
)

=

[
1 0 0 0

]




0 1 0 1

1 −k1 1 −k2

−2k1 k2
1 −2k2 k2

2

3k2
1 −k3

1 3k2
2 −k3

2




× exp







−k1 0 0 0

1 −k1 0 0

0 0 −k2 0

0 0 1 −k2




x




=

[
xe−xk1 e−xk1 xe−xk2 e−xk2

]
.
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5 The General Method for Constructing an FDR

For an m-dimensional HJM of which each volatility has the same functional form as

σi (t, T) =
(

ai,0 + ai,1 (T − t) + ai,2 (T − t)2 + · · ·+ ai,ni (T − t)ni
)

e−ki(T−t) (13)

i = 1, 2, . . . , m, the forward rate, under P measure, is given by

f (t, T) = f (0, T) + Θ (t, T) +
m

∑
i=1

ˆ t

0
σi (s, T) dwi (s) , (14)

where

Θ (t, x) =
ˆ t

0

(
m

∑
i=1

σi (s, x)
ˆ x

s
(σi (s, v)− λi (t)) dv

)
ds; (15)

and the log of bond price

B (t, T) = −
ˆ T

t
f (t, s) ds

= B (0, T)− B (0, t)−
ˆ T

t
Θ (t, s) ds−

ˆ T

t

(
m

∑
i=1

ˆ t

0
σi (s, v) dwi (s)

)
dv.

Note that ∑m
i=1
´ ·

0 σi (s, T) dwi (s) = r0 (·, T − ·) (see (5)).

The main idea of the general method for constructing an FDR introduced in Bhar

and Chiarella (1996) is summarized in the following proposition. This method has

been commonly adopted to construct FDRs of HJM in the literature.

Proposition 3 If the forward rate volatility function assumes the form

σi (t, T) =
(

ai,0 + ai,1 (T − t) + ai,2 (T − t)2 + · · ·+ ai,ni (T − t)ni
)

e−ki(T−t),

then the forward rate f (t, T) can be expressed as an affine function of Markovian state vari-
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ables, i.e.

f (t, T) = f (0, T) + Θ (t, T) + C̆ (T − t) Xt (16)

dXt = ĂXt + B̆dWt (17)

where

Xᵀt =

[[ˆ t

0
(t− s)j e−ki(t−s)dwi (s)

]ni

j=0

]m

i=1︸ ︷︷ ︸
1×n

,

C̆ (x) =



[

ni

∑
l=j

ail

(
l
j

)
xl−je−kix

]ni

j=0




m

i=1︸ ︷︷ ︸
1×n

, (18)

Ă =




Ă1 0 · · · 0

0 Ă2 · · · 0
. . .

0 · · · · · · Ăm




n×n

, Ăi =




−ki 0 · · · 0

1 −ki · · · 0
. . .

0 · · · ni −ki



(ni+1)×(ni+1)

B̆ =




B̆1

B̆2

...

B̆m




n×m

, B̆1 =




1 0 · · · 0

0 0 · · · 0

· · ·

0 · · · · · · 0



(n1+1)×m

, B̆2 =




0 1 · · · 0

0 0 · · · 0

· · ·

0 · · · · · · 0



(n2+1)×m

· · ·

Wt = [[wi]
m
i=1]

ᵀ
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Proof. Considering the last term in RHS of (14), for each i

ˆ t

0
σi (s, T) dwi (s)

=
ni

∑
j=0

ˆ t

0
ai,j (T − s)j e−ki(T−s)dwi (s)

= e−ki(T−t)
ni

∑
j=0

ˆ t

0

j

∑
l=0

(
j
l

)
(T − t)j−l ai,j (t− s)l e−ki(t−s)dwi (s)

= e−ki(T−t)
ni

∑
j=0

ˆ t

0

ni

∑
l=j

ai,l

(
l
j

)
(T − t)l−j (t− s)j e−ki(t−s)dwi (s)

=
ni

∑
j=0

[
e−ki(T−t)

ni

∑
l=j

ai,l

(
l
j

)
(T − t)l−j

]
Xi,j (t) ,

This completes the proof.

Remark 1 Let’s consider the situation of one factor and Q measure, i.e. m = 1 and λ =

0n×1. The result of Proposition 3 is more general than that introduced in Bhar and Chiarella

(1996). Setting T = t, (16) is reduced to the short rate

r (t) = f (t, t) = f (0, t) +
ˆ t

0

(
σ1 (s, t)

ˆ t

τ
(σ1 (s, v)) dv

)
ds +

n1

∑
j=0

a1jX1,j (t) .

And the log of bond price is

B (t, T) = −
ˆ T

t
f (t, s) ds.

Considering the SDE of
[
B (t, T) ; r (t) ; X1,0 (t) ; · · · ; X1,n1−1 (t)

]
(n1+2)×1, the result of

Bhar and Chiarella (1996, Proposition 1) follows immediately. Proposition 3 here, however,

can be more readily applied to the state space estimation.
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6 The Equivalence between the General FDR and Jor-

dan Canonical Realization

6.1 The General Observation

Note that C̆ (x) in Equ. (18) can be decomposed as

C̆ (x) =
[[

xni−je−kix
]ni

j=0

]m

i=1︸ ︷︷ ︸
1×n

× an×n = C̃ (x)× an×n

where

a =




a1 0 · · · 0

0 a2 · · · 0
. . .

0 · · · 0 am




n×n

, ai =




aini 0 · · · 0

ai,ni−1 ai,ni · · · 0
...

... . . . ...

ai0 ai1 · · · aini



(ni+1)×(ni+1)

.

Then define a new set of state variables Zt as

Zt = a×Xt,

and from (17), we have Zt’s dynamic as

dZt = a× dXt = a× ĂXt + a× B̆dWt.

Note that

a× Ă = Ă× a, a−1Ăa = Ă,
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hence

dZt = ĂZt + a× B̆dWt

= ÃZt + B̃dWt.

Finally, the system (16)-(17) can be rewritten as

f (t, T) = f (0, T) + Θ (t, T) + C̃ (T − t) Zt

dZt = ÃZt + B̃dWt

which is exactly the Jordan Canonical Realization discussed in Section 4.2. The next

subsection makes the equivalence more visualized by re-investigating the example

in Section 4.3.

6.2 A Specific Example

Following Section 4.3, let’s assume a two-factor model with the volatility function as

σ (T − t) = [(a10 + a11 (T − t)) exp (−k1 (T − t)) , (a20 + a21 (T − t)) exp (−k2 (T − t))]1×2 .
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Applying Proposition 3 to the volatility function gives us
{

Ă, B̆, C̆ (x)
}

Ă =




−k1 0 0 0

1 −k1 0 0

0 0 −k2 0

0 0 1 −k2




B̆ =




1 0

0 0

0 1

0 0




C̆ (x) =
[
(a10 + a11x) e−k1x, a11e−k1x, (a20 + a21x) e−k2x, a21e−k2x

]
;

then a is given by

a =




a11 0 0 0

a10 a11 0 0

0 0 a21 0

0 0 a20 a21




.

Finally,
{

Ă, B̆, C̆ (x)
}

and a lead us to the Jordan Canonical Realization
{

Ã, B̃, C̃ (x)
}

Ã = Ă

B̃ = aB̆ =




a11 0

a10 0

0 a21

0 a20




C̃ (x) = C̆ (x) a−1 =
[

xe−xk1 , e−xk1 , xe−xk2 , e−xk2
]

.
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7 Empirical Analysis

7.1 Data

The data used in this paper are the U.S. Treasury constant maturities yield curve

rates, downloaded from H.15. The dataset contains weekly (Friday) observations of

the yields with maturities of 3, 6-month, 1, 2, 3, 5, 7, and 10-year, and the sample

spans 28 years from 08-Jan-1982 to 16-Apr-2010. So totally, there are 1476× 8 data

points in the dataset. As the Treasury yield curve is considered as the par curve, the

par curves are converted to the zero curves for ease of estimating model parameters,

using MATLAB® built-in function pyld2zero.

Figure 1 depicts the data, and Table 1 reports the summary statistics on the zero

yields. The average interest rates exhibits an upward sloping term structure. The

standard deviation of interest rates shows a hump-shaped term structure that peaks

around two years. And the interest rates are right-skewed and show excess kurtosis

at all the maturities. We could also see, from 1980 to 2010, the level of the interest

rate drops down a lot (from around 16% in 1980 to 2% in 2010).

7.2 Estimation Method

Here the concrete model introduced in Section 4.3 is applied to the data. The model

is time-inhomogeneous, as the dynamics of the forward rate curve depend on δ (t, x)

(see (5)) which consists of initial term structure r (0, t + x) and volatility component

Θ (t, x) (see (15)). For the purpose of estimation, a constant vector of market prices of

risks is assumed, i.e. λ (t) ≡ λ, then the model is reduced to its time-homogeneous

counterpart. This can be interpreted as that the model has been evolving from the

distant past. Regarding r (0, t + x), a flat initial term structure is assumed (see,

e.g.,Trolle and Schwartz, 2009; De Jong and Santa-Clara, 1999), specifically, we set
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Figure 1: Dynamics of Zero Yields

This figure provides the dynamics of the zero yields with the maturities from 3-month to
10-year. Sample period spans Jan 1982 and Apr 2010.
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r (0, t + x) = ϕ > 0, and ϕ is estimated as part of the estimation procedure. Regard-

ing the time-inhomogeneous volatility component, Θ (t, x) is replaced by its limiting

counterpart2

Θ∗ (x) = lim
t→∞

Θ (t, x)

= lim
t→∞

2

∑
i=1

[ˆ t

0
σi (x + t− s)

(ˆ x+t−s

0
(σi (τ)− λi) dτ

)
ds
]

A preliminary estimation shows that estimates for a11 and ϕ are virtually zeros,3

2This setting is different from that of De Jong and Santa-Clara (1999) in which Θ (t, x) is regarded
as an additional state. However, in case of the linear HJM model, Θ (t, x) is completely deterministic
over time, adding an additional state into the state space is more of a hindrance than a help.

3In Standard Observable Canonical Realization, â11 = −4.973× 10−6, ϕ̂ = 1.476× 10−5 ; in Jordan
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Table 1: Summary Statistics of Interest Rates

Maturity Min 1stQ Medn 3rdQ Max Mean Std. Skew Kurt

3m 0.0002 0.0313 0.0512 0.0645 0.1496 0.0504 0.0279 0.3536 3.2159

6m 0.0014 0.0331 0.0530 0.0680 0.1559 0.0530 0.0292 0.4485 3.3583

1y 0.0027 0.0348 0.0546 0.0725 0.1539 0.0551 0.0297 0.5037 3.3221

2y 0.0071 0.0400 0.0575 0.0780 0.1538 0.0593 0.0303 0.5636 3.2322

3y 0.0096 0.0427 0.0588 0.0797 0.1532 0.0616 0.0298 0.6323 3.2216

5y 0.0137 0.0453 0.0613 0.0816 0.1518 0.0652 0.0286 0.7579 3.2381

7y 0.0176 0.0465 0.0633 0.0838 0.1518 0.0681 0.0279 0.8142 3.1857

10y 0.0224 0.0479 0.0638 0.0850 0.1505 0.0698 0.0268 0.8768 3.1629

This table provides the summary statistics of the zero yields for each maturity, which include
the minimum, 1st-quantile, median, 3rd-quantile, maximum, mean, standard deviation,
skewness, and kurtosis.

therefore the model is refined by dropping a11 and ϕ, and the number of resulting

state variables is three, the corresponding {A, B, C (x)} and
{

Ã, B̃, C̃ (x)
}

are pre-

sented in Appendix A. In order to employ the Kalman filter in conjunction with

QMLE technique to estimate the model, the whole model is rewritten in the state

space form, and the zero yield is used as the measurement. Specifically, Standard

Observable Canonical Realization has the following state space representation,

dZt = AZtdt + BdWt Transition Equation

Z0 = 03×1

yx
t = ϕ +

´ x
0 Θ∗ (s) ds

x
+

´ x
0 C (s) ds

x
Zt + εt Measurement Equation

Canonical Realization, â11 = −4.945× 10−6, ϕ̂ = 1.533× 10−5.
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or in discrete time form

Zt = exp (Ah) Zt−h + exp (Ah)
ˆ h

0
exp (−As)BdWs Transition Equation

Z0 = 03×1

yx
t = ϕ +

´ x
0 Θ∗ (s) ds

x
+

´ x
0 C (s) ds

x
Zt + εt Measurement Equation

where yx
t is the market observation of zero yield vector at time t which is of 8-

dimension,4 h is the time interval which is one week in this paper, and εt is the

time t measurement error vector which is assumed to be IID normally distributed,

i.e.,

εt ∼ IIDN (08×1, εEye8)

Eye8 is an 8-dimensional identity matrix, 0�×1 is a �-dimension vector of zeros, ε

is a positive free parameter. The state space representation for Jordan Canonical

Realization can be written down accordingly, and it is omitted for the sake of brevity.

Under the normal measurement error assumption, the distribution of yx
t condi-

tional on the information set Ft−h is an 8-dimensional normal distribution with the

mean yt|t−h and variance-covariance matrix Pyt . Thus, the transition density of yx
t

can be written as

pt−h (yx
t ) =

[
(2π)4

√∣∣Pyt

∣∣
]−1

exp
[
−1

2

(
yx

t − yt|t−h

)ᵀ
P−1

yt

(
yx

t − yt|t−h

)]
,

where yt|t−h and Pyt are outputs from the Kalman filter updating (the detailed pro-

cedure is presented in Appendix B). Then the log-likelihood function is given by

4There are 8 maturities of zero yields.
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lnL = l ∝ −
1476

∑
i=1

ln
∣∣Pyih

∣∣−
1476

∑
i=1

(
yx

ih − yih|(i−1)h

)ᵀ
P−1

yih

(
yx

ih − yih|(i−1)h

)
. (19)

The model parameters are estimated by maximizing above log-likelihood function.

7.3 Parameter Estimates and Fitting Performance

Table 2 reports the parameter estimates for Standard Observable Canonical Realiza-

tion (hereafter SOCR) and Jordan Canonical Realization (hereafter JCR). We can see

from the table that the two sets of parameter estimates are exactly consistent with

each other, this confirms the validity of the theoretical equivalence between SOCR

and JCR which has been derived in this paper. Although the standard errors for

the estimates of λ1 and λ2 are a little larger in JCR than in SOCR, those for k1 and

k2 are much smaller in JCR than in SOCR. This indicates that kis might be easier to

identify in JCR than in SOCR. And results not reported show the computation time

for JCR is much shorter than that for SOCR. This is natural since, as we can see in

Section 4.3, the parametrization of JCR is more concise than that of SOCR. And the

concise parametrization of JCR might also explain that kis are easier to identify in

JCR than in SOCR. Therefore, for a complex model specification, it might be more

efficient to employ JCR to estimate parameters.

Figure 2 presents the term structures of the two volatilities calculated based on

the parameter estimates in Table 2. We can see that the first volatility increases ex-

ponentially as the maturity decreases, this means that the first factor affects short

maturity forward rates more than it does long term rates and can be interpreted as a

spread between a “short” and “long term factor”; and the second volatility exhibits

a hump shape term structure which peaks around 5 years, so the second factor has
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Table 2: Estimation Results of two FDRs

FDRs ai0 ai1 ki λi
√

ε lnL

SOCR
i = 1 0.0106 0.1146 -0.4980 0.0015 68655

(0.0001) (0.0013) (0.0131) (0.0000)

i = 2 0.0019 -0.0057 0.2026 -0.1950
(0.0006) (0.0003) (0.0023) (0.0113)

JCR
i = 1 0.0106 0.1146 -0.4980 0.0015 68655

(0.0001) (0.0004) (0.0139) (0.0000)

i = 2 0.0019 -0.0057 0.2026 -0.1950
(0.0005) (0.0003) (0.0006) (0.0117)

This table reports the QML estimates and standard errors for parameters of the models in
SOCR and JCR. The table also reports the square root of measurement error variances

√
εs

and log-likelihood values lnLs.

a curvature effect on the forward rate curve. From Table 2, we find the estimates for

market price of risk parameters λ1 and λ2 are negative, this indicates that the means

of state variables under Q measure are higher than those under P measure, and the

risks of these two random factors are positively priced by the market.

Table 3 presents the summary statistics of the pricing errors, and Figure 3 de-

scribes the dynamics of the time series of pricing errors. Here the pricing error is

defined as the difference between the observed yield and the model implied yield

(former minus latter). The pricing errors are also exactly the same for SOCR and

JCR, again this confirms the theoretical equivalence between these two realizations.

And the statistics show negligible mean and median pricing errors. The average

mean pricing errors across different maturities is −0.4 basis point, and the aver-

age median is 0.21 basis point. The standard deviations of the pricing errors are

all within 20 basis points, and the mean absolute pricing errors are all within 15
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Figure 2: Volatilities Term Structure

This figure provides the term structure of the two volatilities computed based on parameter
estimates in Table 2. These two volatilities are |a10 exp (−k1x)| and |(a20 + a21x) exp (−k2x)|,
where x is the time to maturity. Plots here are for both SOCR and JCR, as the differences
between them are negligible.
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basis points. It is thus clear that, in terms of latitude of pricing error, the fitting per-

formance documented here is much better than that of the two-factor affine model

with 13 parameters, and comparable to that of the three-factor affine model with 21

parameters considered by De Jong (2000).5 The last column reports the percentage

explained variation, defined as one minus the ratio of the pricing error variance to

the variance of the original series, represented in percentage points. The explained

variation estimates are over 99.5% for all maturities. Hence, the model captures the

term structure of interest rates very well. However, it is also found that the autocor-

relations of the pricing errors are relatively high. Figure 3 confirms this observation.

This suggests that the model considered here does not perfectly fit the term structure

5In De Jong (2000) the average mean pricing errors is 12.64 basis points with average standard
deviation of 60.48 basis points for the two-factor, and the average mean pricing errors is -4.58 basis
points with average standard deviation of 59.63 basis points for the three-factor.
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data yet. And the high autocorrelations might imply that the pricing errors contain

the economic information which sheds light on whether the pricing errors are due

to the model mis-specification or market inefficiency (see, e.g., Sercu and Xueping,

1997; Turan et al., 2009). We leave this topic for future research.

Table 3: Summary Statistics of Pricing Errors

Maturity Mean(bp) Medn(bp) Std.(bp) MAE(bp) Auto Max(bp) Min(bp) VR(%)

3m -5.80 -4.54 20.50 15.40 0.93 31.82 -146.94 99.46

6m 5.37 5.36 7.78 7.29 0.79 59.81 -29.17 99.93

1y -0.59 -0.85 12.16 9.20 0.94 68.33 -31.50 99.83

2y 1.55 2.37 15.66 12.57 0.96 78.24 -41.67 99.73

3y -4.23 -4.46 12.29 10.59 0.94 36.19 -40.90 99.83

5y -3.34 -1.02 9.69 7.63 0.93 17.37 -44.85 99.89

7y 3.96 4.03 9.13 7.71 0.91 32.89 -45.41 99.89

10y -0.17 0.80 15.11 12.32 0.96 51.17 -43.71 99.68

Ave. -0.40 0.21 12.79 10.34 0.92 46.98 -53.02 99.78

This table reports the summary statistics (sample mean, median, standard deviation, mean
absolute error, first order autocorrelation, maximum, and minimum) of the pricing errors.
The pricing error is defined as the difference between the market observation and the
model implied value (former minus latter). The table also reports the variance ratio (VR) at
each maturity, which is defined as one minus the ratio of the pricing error variance to the
variance of the original series. The results here are for both SOCR and JCR, as there are no
distinguishable differences between them.

7.4 State Variables Interpretations

In this subsection, the economic interpretations of the three state variables in both

SOCR and JCR are explored.
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Figure 3: Time Series of Pricing Errors

This figure depicts the time series of the pricing errors at eight maturities. Plots here are for
both SOCR and JCR, as the differences between them are negligible.
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Table 4 reports the summary statistics of the three latent state variables, which are

filtered by the Kalman filter based on the model parameter estimates given in Table 2,

for both SOCR and JCR. For comparison, the theoretical covariance and correlation

matrices are also presented in the table. They can be calculated by inputting the
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parameter estimates to the following limitations,

CovSOCR (Zt) = lim
h→+∞

exp (Ah)

[ˆ h

0
exp (−As)BBᵀ exp (−As)ᵀ ds

]
exp (Ah)ᵀ

CovJCR (Zt) = lim
h→+∞

exp
(
Ãh
)
[ˆ h

0
exp

(
−Ãs

)
B̃B̃ᵀ exp

(
−Ãs

)ᵀ ds

]
exp

(
Ãh
)ᵀ .

Both the means and standard deviations of the first state variable in SOCR are close

to those in JCR. However, the second and third state variables are not that similar

in SOCR and JCR, although the signs of the means are consistent. In SOCR the first

state variable is most volatile, followed by the second and third states; in JCR the first

state is also most volatile, and followed by the third and second states. When looking

at the theoretical covariance and correlation matrices, in JCR the first state variable

is uncorrelated with the other two state variables in theoretical sense. However, as

shown in Table 4, the uncorrelation between states in JCR seems too restricted to

maintain in the empirical analysis, i.e., the empirical results for covariance and cor-

relation matrices are quite different from the theoretical results. In contrast, in SOCR

the three states are correlated with each other in a theoretical sense, then the empir-

ical results in SOCR for covariance and correlation matrices are much more consis-

tent with the theoretical results than the case in JCR. And let’s focus on the empirical

results of SOCR. It is found that in SOCR the first state variable has more indepen-

dency relative to the other two states, it is almost uncorrelated with the second state

variable, as the correlation between them is only 0.093; and it is mildly inversely re-

lated to the third state variable with the correlation of −0.353. However, the second

and third state variables are strongly negatively correlated with each other, as the

correlation between them is −0.964.

Figure 4 describes the dynamics of the three latent state variables for both SOCR

and JCR. And Figure 5 presents the factor loading term structures of these three

35



Table 4: Summary Statistics of Filtered State Variables

SOCR JCR

1st 2nd 3rd 1st 2nd 3rd

Mean -0.1074 0.0139 -0.0020 -0.0992 0.0008 -0.0082
Std. 0.0287 0.0084 0.0036 0.0320 0.0093 0.0150

CovMatrix 1st 0.8218 0.0222 -0.0364 1.0258 0.1054 -0.2149
(bp,empirical) 2nd 0.0222 0.0700 -0.0290 0.1054 0.0862 0.0119

3rd -0.0364 -0.0290 0.0130 -0.2149 0.0119 0.2259

CovMatrix 1st 1.3383 -0.0578 -0.0277 0.4891 0.0000 0.0000
(bp,theoretical) 2nd -0.0578 0.0518 -0.0191 0.0000 0.0795 0.1703

3rd -0.0277 -0.0191 0.0089 0.0000 0.1703 0.8492

CorMatrix 1st 1.0000 0.0925 -0.3531 1.0000 0.3546 -0.4465
(empirical) 2nd 0.0925 1.0000 -0.9637 0.3546 1.0000 0.0851

3rd -0.3531 -0.9637 1.0000 -0.4465 0.0851 1.0000

CorMatrix 1st 1.0000 -0.2194 -0.2541 1.0000 0.0000 0.0000
(theoretical) 2nd -0.2194 1.0000 -0.8869 0.0000 1.0000 0.6554

3rd -0.2541 -0.8869 1.0000 0.0000 0.6554 1.0000

This table reports the summary statistics (sample mean, standard deviation, sample covari-
ance matrix, and sample correlation coefficient matrix) of the filtered state variables for both
SOCR and JCR. The table also presents the theoretical covariance and correlation coefficient
matrices based on the parameter estimates given in Table 2.

states. Although the states’ dynamics look somewhat similar in SOCR and JCR as

shown in Figure 4, their impacts on term structure of interest rates are quite different

in the maturities range from 3-month to 10-year as shown in Figure 5. In SOCR, the

first state variable almost has a unity impact on the term structure of interest rates

from 3-month to 10-year, its factor loading only declines 7.4% over 10 years (from 1

at 3-month to 0.926 at 10-year). Therefore the first state variable clearly plays a role of

“medium-run factor” which uniformly shifts the yield curve up to 10-year maturity.
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The factor loading of the second state variable increases from 0.125 at 3-month to

3.445 at 10-year, exceeds that of the first state at 2-year, and declines after 18-year (not

shown in Figure 5); the factor loading of the third state variable increases from 0.010

at 3-month to 4.888 at 10-year, exceeds that of the first state at 3-year, and declines

after 20-year (not shown in Figure 5); they intersect at 2.21 around 5-year. And we

will see in a minute that the first state variable well represents the short end of the

term structure, and a linear combination of the second and third state variables can

well explain the variation of the yield curve slope. In JCR, the factor loadings of the

first and third state variables decline from 1 at 3-month to 0.595 and 0.429 at 10-year,

respectively. The factor loading of the second state variable increases from 0.121 at

3-month, exceeds those of the first and third state variables at about 0.8 around 3-

year, and reaches its peak at 1.473 around 7-year, then declines to 1.464 at 10-year.

Therefore, in general, the dynamics of the short end of term structure are mainly

controlled by the first and third state variables, the middle and long end of the term

structure are more affected by the second state variables than by the other two.

In order to interpret the state variables economically, let’s consider the relations

between state variables and three important characteristics of the term structure of

interest rates: a) curvature, b) slope, and c) short end. Following De Jong (2000),

“curvature” is defined as two times the 1-year zero yield, minus the sum of the 3-

month and 10-year zero yields; “slope” is the 10-year zero yield minus the 3-month

zero yield; and “short end” is the 3-month zero yield. Table 5 reports the factor

loadings of the three state variables for “curvature”, “slope”, and “short end” in both

SOCR and JCR. In SOCR, we could see that the three states have very similar factor

loadings with opposite signs for the curvature and slope, this is consistent with the

empirical fact that the curvature and slope of yield curve are significantly negatively

correlated. And for the short end, the factor loading of the first state well dominates
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Figure 4: Dynamics of State Variables

This figure depicts the dynamics of state variables for both SOCR and JCR.
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the other two. In JCR, we notice that the short end is almost completely determined

by the first and third states. Table 5 also reports the VRs for the curvature, slope,

and short end, they are 80.15%, 97.26%, and 99.46%, respectively. This shows that

the model considered here is able to not only well capture the slope and level (slope

plus short end) dynamics, but also explain a majority of the curvature variation. In

the literature, the curvature variation is only expected to be captured by three-factor

models (see, e.g., Litterman and Scheinkman, 1991; Dai and Singleton, 2000; De Jong,

2000). And the results documented here show that under our model specification a

two-factor model can also capture the curvature dynamics quite well. The dynamics

of the empirical and model implied curvature are presented in Figure 7(c).

Now we define two new variables: a) slpSOCR (short for the SOCR “slope” factor)

as

3.3197ZSOCR
t (2) + 4.8776ZSOCR

t (3) ;
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Figure 5: Factor Loadings of State Variables

This figure depicts the term structures of factor loadings of state variables for both SOCR
and JCR.
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and b) shdJCR(short for the JCR “short end” factor) as

0.9858ZJCR
t (1) + 0.9751ZJCR

t (3) ,

where ZSOCR
t (i) and ZJCR

t (i) are ith state variables of SOCR and JCR, respectively.

Figure 6 presents the state variables’ (as well as their linear combinations’) contribu-

tions to the variations of the short end and slope. We can see from Figure 6(a), the

first state variable in SOCR almost completely accounts for the short end variation,

as its variance contribution is as high as 99%; from Figure 6(b), slpSOCR, which is the

linear combination of the second and third states of SOCR, explains about 85% slope

variation; from Figure 6(c), shdJCR, which is the linear combination of the first and

third states of JCR, accounts for a great part (96%) of the short end variation. Panels

(a) and (b) in Figure 7 confirm these observations.
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Table 5: Factor Loadings for “Curvature”, “Slope”, and “Short End”

SOCR JCR VR(%)
1st 2nd 3rd 1st 2nd 3rd

Curvature 0.0739 -2.5762 -4.6049 0.3087 -0.7103 0.4068 80.15

Slope -0.0742 3.3197 4.8776 -0.3906 1.3432 -0.5466 97.26

Short End 1.0000 0.1249 0.0101 0.9858 0.1209 0.9751 99.46

This table reports the factor loadings of the three state variables for the “curvature”, “slope”,
and “short end” in both SOCR and JCR. And the variance ratios (VRs) are also presented.

7.5 Short End as a “Medium-run Factor”

As shown above, the short end of the yield curve (3-month interest rate) can be ex-

actly represented by the first state variable of SOCR. And if we look back at the

factor loadings of this state in the left panel of Figure 5, we find a very flat factor

loading term structure. Therefore the short end of the yield curve clearly plays a

role of “medium-run factor” which has uniform impacts on dynamics of the yield

curve up to 10-year maturity. This finding has an important implication for the short-

and medium-term bond portfolios management, in the sense that an important sys-

tematic risk now becomes tradable. Therefore, by utilizing our model, relevant risk

exposures of bond portfolios might be adjusted more precisely and quantitatively.

And this finding also helps us better understand the interactions between Macro-

economic policies and term structure of interest rates dynamics. As we all know, the

U.S. Federal Reserve use open market operations for implementing monetary policy

(Edwards, 1997). Specifically, these purchases and sales of U.S. Treasury and federal

agency securities largely determine the federal funds rate—the interest rate at which

depository institutions lend balances at the Federal Reserve to other depository in-
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stitutions overnight. The federal funds rate, in turn, affects monetary and finan-

cial conditions, therefore, directly influences the short-term interest rates. In other

words, the short end of the yield curve is highly sensitive to the macro-economic

environment and monetary policy. So if the short end of the yield curve plays as a

“medium-run factor” which uniformly shifts the yield curve, then the U.S. Federal

Reserve might safely assume her monetary policies would have effective impacts on

the U.S. economy as long as open market operations work.

8 Conclusion

Given the time-invariant hump shape volatility function as (1), the corresponding

HJM model is guaranteed to admit FDRs. In this paper, working with the HJM

model with volatility function of (1), a type of HJM based affine term structure

model is theoretically derived. Specifically, Linear Realization Theory is applied

to efficiently construct the FDRs via two canonical realization algorithms: Stan-

dard Observable Canonical Realization and Jordan Canonical Realization. And the

commonly adopted method of constructing an FDR, which is set forth in Bhar and

Chiarella (1996) for the first time, is generalized to an extent. It is shown, via a con-

crete example, that the resulting FDR is actually the Jordan Canonical Realization.

Three conclusions can be drawn from empirical analysis of the refined two-factor

model. First, the model introduced in this paper provides great fit to the term struc-

ture data. In this aspect, the two-factor model of this type is much better than the

traditional two-factor affine model, and comparable to the traditional three-factor

affine model. However, the pricing errors exhibit relatively high autocorrelations.

Exploring the economic information contained therein is an interesting topic for fu-

ture research.
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Second, the three state variables are closely linked to the short end and slope of

the yield curve, and are able to well capture the curvature variation. Particularly,

in SOCR, the first state variable almost completely represents the short end of the

yield curve, and a linear combination of the second and third state variables well

accounts for the slope of the yield curve; in JCR, a linear combination of the first

and third state variables is also precisely related to the short end. Under our model

specification, the curvature of the yield curve, which is only expected to be captured

by three-factor models, could also be well explained using a two-factor model.

Last but not least, using SOCR, it is found that the short end of the yield curve can

be regarded as a “medium-run factor” which uniformly shifts the yield curve. For

bond portfolios management practitioners, this finding means that a systematic risk

in bond market now becomes tradable. For macro-economic researchers, this finding

suggests a new quantitative perspective from which the interactions between Macro-

economic policies and term structure of interest rates dynamics can be understood

more clearly and deeply.

42



Figure 6: State Variables’ Contributions to “Short End” and “Slope”

This figure depicts the state variables’ (as well as their linear combinations’) contributions to
the variations of the short end and slope. Panel (a) shows the contribution of the first state
variable of SOCR to the short end variation; Panel (b) shows slpSOCR’s contribution to the
slope variation in SOCR; Panel (c) shows shdJCR’s contribution to the short end variation in
JCR. Here “Var” and “Cov” denote the variance and covariance operators, respectively.
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Figure 7: Dynamics of “Short End”, “Slope”, and “Curvature”

This figure depicts the dynamics of the short end, slope, and curvature of the term structure.
For comparison, the dynamics of the first state of SOCR, slpSOCR, shdJCR, and model implied
curvature are also presented in the panels. Panel (a) shows dynamics of the short end, 1st
state of SOCR, and shdJCR; Panel (b) shows dynamics of the slope and slpSOCR; Panel (c)
shows the dynamics of both empirical and model implied curvature.
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Appendices

A The Refined Model

In the refined model, following volatility function is assumed,

σ (x) = [a10 exp (−k1x) , (a20 + a21x) exp (−k2x)]1×2 .

The transfer function G (s, 0) = L [a10 exp (−k1x) , (a20 + a21x) exp (−k2x)] (s) is given

by

[
a10

k1 + s
,

a20

k2 + s
+

a21

(k2 + s)2

]

1×2

=

[
1

k1 + s
,

1
k2 + s

,
1

(k2 + s)2

]



a10 0

0 a20

0 a21




.

The realization algorithms are applied to

[
1

k1 + s
,

1
k2 + s

,
1

(k2 + s)2

]
. (A.1)

• Standard Observable Canonical Realization

1. Expand (A.1) about |s| = ∞
[

1
k1 + s

,
1

k2 + s
,

1

(k2 + s)2

]

= [1, 1, 0]
1
s
+ [−k1,−k2, 1]

1
s2 +

[
k2

1,−2k1, k2
2,−2k2

] 1
s3 + · · ·
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2. The Monic least common multiple of the denominators is given by

p (s) = (k1 + s) (k2 + s)2

= k1k2
2 +

(
k2

2 + 2k1k2

)
s + (2k2 + k1) s2 + s3

≡ p0 + p1s + p2s2 + s3,

so n = 3;

3. A, B, and C (x) can be computed as

A =




0 1 0

0 0 1

−k1k2
2 −

(
k2

2 + 2k1k2
)
− (k1 + 2k2)




3×3

B =




1 1 0

−k1 −k2 1

k2
1 k2

2 −2k2




3×3




a10 0

0 a20

0 a21




3×2

C (x) =

[
1 0 0

]

× exp







0 1 0

0 0 1

−k1k2
2 −

(
k2

2 + 2k1k2
)
− (k1 + 2k2)




x




.

• Jordan Canonical Realization
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Ã =




−k1 0 0

0 −k2 0

0 1 −k2




B̃ =




a10 0

0 a21

0 a20




C̃ (x) =

[
e−xk1 xe−xk2 e−xk2

]
.

B Kalman Filter

We start the KF by choosing the initial values of the state variables and their covari-

ance matrix as their steady state values6

Z0|0 =




0

0


 , PZ,0|0 = Cov (Zt) .

Given Zt−1|t−1 and PZ,t−1|t−1, the ex ante prediction of the states and its covariance

matrix are given by

Zt|t−1 = exp (Ah) Zt−1|t−1,

PZ,t|t−1 = exp (Ah) Pt−1|t−1 exp (Ah)ᵀ + Covh (Zt) ,

where

Covh (Zt) = exp (Ah)

[ˆ h

0
exp (−As)BBᵀ exp (−As)ᵀ ds

]
exp (Ah)ᵀ .

6With a slight abuse of notation, here A denotes both A and Ã, B denotes both B and B̃, and C (·)
denotes both C (·) and C̃ (·).
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Given Zt|t−1 and PZ,t|t−1, the ex ante predictions of the measurement and the associ-

ated covariance become

yt|t−1 = ϕ +

´ x
0 Θ∗ (s) ds

x
+

´ x
0 C (s) ds

x
Zt|t−1.

Pyt =

´ x
0 C (s) ds

x
PZ,t|t−1

[´ x
0 C (s) ds

x

]ᵀ
+ εEye8,

Finally, the ex post updates on the filtered states are given by

Zt|t = Zt|t−1 + Ξt

(
yx

t − yt|t−1

)
, PZ,t|t = PZ,t|t−1 − ΞtPyt Ξ

ᵀ
t ,

where Ξt = PZ,t|t−1

´ x
0 C(s)ds

x P−1
yt

is the Kalman gain.
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