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Abstract

This paper studies a new class of semiparametric dynamic panel data models, in which some

coefficients are allowed to depend on some informative variables and some regressors can be

endogenous. To estimate both parametric and nonparametric coefficients, a three-stage semi-

parametric estimation method is proposed. The nonparametric GMM is proposed to estimate

all coefficients firstly and the average method is used to obtain the root-N consistent estimator

of parametric coefficients. At the last stage, the estimator of varying coefficients is obtained by

plugging the parametric estimator into the model. The consistency and asymptotic normality of

both estimators are derived, and furthermore, the efficient estimation of parametric coefficients

is discussed. Monte Carlo simulations verify the theoretical results and demonstrate that our

estimators work well even in a finite sample.

Keywords: Dynamic Panel Data; Efficient Estimation; Semiparametric Models; Varying Coeffi-

cients;



1 Introduction

Dynamic panel data models have received a lot of attentions among both theoretical and empirical

economists since the seminal work of Balestra and Nerlove (1966). Based on the early work by

Anderson and Hsiao (1981, 1982), there is a rich literature on using the generalized method of

moments (GMM) to estimate the dynamic panel data model and discuss the efficiency of the

estimation. For example, Holtz-Eakin, Newey and Rosen (1988) considered the estimation of

vector autoregressions with the panel data model, Arellano and Bond (1991), Arellano and Bover

(1995), Ahn and Schmidt (1995), Hahn (1997, 1999) and among others discussed how to utilize

additional instruments to improve the efficiency of GMM estimation. Dynamic panel data models

have been widely applied to various empirical studies as well. For example, Baltagi and Levin

(1986) estimated the dynamic demand for addictive commodities, Islam (1995) used dynamic panel

data approach to study growth empirics, and Park, Sickles and Simar (2007) employed dynamic

panel data to analyze the demand between city pairs for some airlines. More references can be

found in Arellano (2003), Hsiao (2003) and Baltagi (2005).

It is well known, however, that the aforementioned parametric dynamic panel data models are

unable to accommodate sufficient flexibility to catch nonlinear structure and always suffer from the

model misspecification problem. To deal with this misspecification issue, various nonparametric

and semiparametric panel data models have been proposed. For example, Horowitz and Markatou

(1996), Li, Huang, Li and Fu (2002) and Su and Ullah (2006) studied semiparametric estimation of a

partially linear panel data model without endogenous regressors. Hoover, Rice, Wu and Yang (1998)

considered a smoothing spline and a local polynomial estimation for time-varying coefficient panel

data models. Lin and Ying (2001) and Lin and Carroll (2001, 2006) examined the semiparametric

estimation of a panel data model with random effects. Henderson, Carroll and Li (2008) considered

a partially linear panel data model with fixed effects and proposed a consistent estimator based on

iterative backfitting procedures and an initial estimator. Finally, Qian and Wang (2011) proposed

a marginal integration method to estimate the nonparametric part in a semiparametric panel data

with unobserved individual effects.

Recently, some studies have extended the semiparametric estimation from static to dynamic pan-
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els. For example, Li and Stengos (1996), Li and Ullah (1998) and Baltagi and Li (2002) considered

semiparametric estimation of partially linear dynamic panel data models using instrumental vari-

able methods. Park, Sickles and Simar (2007) focused on constructing a semiparametric efficient

estimator in a dynamic panel data model. They considered a linear dynamic panel data model

assuming that the error terms are generating from a normal distribution but specifying other para-

metric distributions nonparametrically. An efficient estimator was established based on stochastic

expansion. However, they ignored the endogenous problem in a dynamic panel data model by as-

suming all the error terms and the random effect are independent of regressors. Recently, Cai and

Li (2008) proposed a nonparametric GMM estimation of varying-coefficient dynamic panel data

models to deal with the potential endogeneity issue. Varying-coefficient models are well known in

the statistic literature and also have a lot of applications in economics and finance (Hastie and

Tibshirani, 1993; Cai, Fan and Yao, 2000; Cai, Das, Xiong and Wu, 2006; Cai and Hong, 2009;

Cai, Gu and Li, 2009; Cai, Chen and Fang, 2011; among others); see Cai (2010) for more details

in applications in economics and finance. One of the main advantages of the varying-coefficient

models is to allow the coefficients to depend on some informative variables and then balance the

dimension reduction and model flexibility.

In this paper, we consider a new class of partially varying-coefficient dynamic models. It allows

for linearity in some regressors but for nonlinearity in other regressors. In other words, some

coefficients are constant but others are varying over some variables. The new class model is flexible

enough to include most existing models as special cases. By extending from Cai and Li (2008)

to a partially varying-coefficient model, we reduce the model dimension but without influencing

the degree of the model flexibility, and furthermore, root-N consistent estimation of parametric

coefficients can be achieved. We propose a three-stage estimation procedure to estimate the constant

and varying coefficients. At the first stage, all coefficients are treated as varying coefficients and

then the nonparametric GMM proposed by Cai and Li (2008) is adopted. At the second stage,

the constant coefficients are estimated by the average method and the root-N consistency and

asymptotic normality of the estimators are derived. Finally, the estimators at the second stage

are plugged into the original model and then the estimators of varying coefficients are obtained by
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employing the nonparametric GMM again. The partially varying-coefficient panel data model can

be applied to various empirical applications. For example, Lin, Huang and Weng (2006) and Zhou

and Li (2011) employed a special case of the partially varying-coefficient models to investigate the

so called Kuznet’s hypothesis which claims an inverted-U relation between inequality and economic

development.

Compared to the existing literature, our three-stage estimation has following merits. Firstly, in

the existing literature, it is common to adopt the Robinson’s (1988) framework to estimate a semi-

parametric panel data model with endogeneity. When endogenous variables appear in the model,

a two-stage estimation is required, where a high dimensional nonparametric estimation, in which

the dimension depends on the number of excluded instruments and included exogenous variables,

is usually employed at the first stage and then an instrumental variable regression is adopted using

first-stage nonparametric estimators as generated regressors. However, the nonparametric GMM

adopted in this paper only requires an one-step relatively low dimensional estimation. The dimen-

sion of the estimation depends on the number of smoothing variables rather than the included and

excluded exogenous variables. Since the nonparametric GMM is adopted at the first stage, some

popular semiparametric estimation methods, such as Robinson’s (1988) method and profile least

squares method, cannot be applied here to estimate the parametric part. Instead, we propose the

average method by taking average of all local estimates to obtain the root-N consistent estimation

of parametric coefficients, and furthermore, we also address the efficient issue in estimating the

parametric coefficients using the generalized weighted average method. Finally, varying coefficients

can be estimated by applying the low dimensional nonparametric GMM using the root-N consistent

estimators as generated regressors.

The rest of the paper is organized as follows. Section 2 introduces the model and estimation

method. We derive the asymptotic results of the proposed estimators in Section 3. Section 4

reports some Monte Carlo simulations to verify our theoretical results and demonstrates the finite

sample performance of our estimators. All technical proofs are relegated to Appendix.
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2 The Model and Estimation Procedures

This paper considers a new class of partially varying coefficient (dynamic) panel data as follows:

Yit =XXX ′
it,1γγγ +XXX ′

it,2βββ(Uit) + ϵit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (1)

where Yit is a scalar dependent variable, Uit is a scalar smoothing variable,1 XXXit,1 and XXXit,2 are

regressors with d1 × 1 and d2 × 1 dimensions respectively, γγγ denotes d1 × 1 constant coefficients

and βββ(·) denotes d2 × 1 varying coefficients, and the random error ϵit allows to be correlated over

periods t but independent over i. We consider a typical panel data model such that N is large but

T is relatively short. Moreover, let XXXit = (XXX ′
it,1,XXX

′
it,2)

′ with dimension d× 1 where d = d1+ d2. In

particular, in model (1)XXXit may contain lagged variables of Yit and endogenous variables correlated

with the error term so that the classical dynamic panel model can be regarded as a special case.

Also, the above setup is quite flexible to capture complex dynamic structures in real applications

in economics. For example, Li and Stengos (1996), Li and Ullah (1999) and Baltagi and Li (2002)

considered a special case by assuming that XXXit,2 only contains a constant term. When Xit,2 is a

discrete value random variable, the above model reduces to Das (2005). Cai and Li (2008) studied a

varying-coefficient model by ignoring the parametric part. Many semiparametric varying coefficient

literature such as Fan and Huang (2005) and Li, et al. (2006) studied the above model without

dealing with the endogeneity issue.

In model (1), an ordinary least squares estimation cannot be applied since the orthogonality

condition fails, i.e., E[ϵit|(XXX it, Uit)] ̸= 0. Hence, we assume that there exists a q × 1 vector of

instruments WWW it that satisfies E[ϵit|(WWW it, Uit)] = 0.2 By choosing an appropriate vector function

Q(VVV it) where VVV it = (WWW ′
it, Uit)

′, we have the following conditional moment conditions,

E[Q(VVV it)ϵit|VVV it] = 0. (2)

1For simplicity, we only consider the univariate case for the smoothing variable. The estimation procedure and

asymptotic results still hold for the multivariate case with much complicated notation.
2Instruments should be highly correlated to the endogenous variables and uncorrelated to the structural errors.

Cai, Fang and Li (2011) and Cai, Fang and Su (2012) studied the instrumental variable estimation using weak

instruments in a panel data model. Berkowitz, Caner and Fang (2008, 2011) investigated the impact on estimation

and testing when instruments are slightly correlated with random errors.
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Instead of using a nonparametric projection of some endogenous components in XXXit on Q(VVV it),

we apply the nonparametric GMM (Cai and Li, 2008) to estimate all varying coefficients at the

first stage. We treat all coefficients to be varying so that γγγ = γγγ(Uit) and βββ = βββ(Uit). We assume

throughout that βββ(·) and γγγ(·) are twice continuously differentiable. We apply the local constant

approximations to γγγ(Uit) and βββ(Uit) (Lewbel, 2007; Fang, Ren and Yuan, 2011), then model (1) is

approximated by the following model:

Yit ≈XXX ′
itθθθ + ϵit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (3)

where θθθ = θθθ(u0) = (γγγ′(u0),βββ
′(u0))

′ is a d× 1 vector of parameters. Based on the locally weighted

moment conditions
N∑
i=1

T∑
t=1

QQQ(VVV it)(Yit−XXX ′
itθθθ)Kh1(UUU it−u0) = 0,3 the nonparametric GMM estimator

is given by

θ̂θθ = θ̂θθ(u0) = (ΩΩΩ′
NΩΩΩN )−1ΩΩΩ′

NΦΦΦN , (4)

where ΩΩΩN = 1
NT

N∑
i=1

T∑
t=1

QQQitXXX
′
itKh1(Uit − u0) and ΦΦΦN = 1

NT

N∑
i=1

T∑
t=1

QQQitKh1(Uit − u0)Yit. We simply

choose instruments QQQit to be VVV it. Note that we require q ≥ d to satisfy the identification condition,

and also that Kh1(·) = h−1
1 K(·/h1) and K(·) is a kernel function with the bandwidth h1 = h1N > 0

which controls the degree of smoothing used in the nonparametric GMM estimation.

At the second stage, in order to take advantage of the full sample information to estimate the

constant parameters γγγ, we employ the average method to achieve the root-N consistent estimator

of γγγ:

γ̂γγ =
1

NT

N∑
i=1

T∑
t=1

γ̂γγ(Uit). (5)

The γ̂γγ(Uit) is the first d1 components in θ̂θθ. In the next section, a more efficient estimator of γγγ is

given by using the generalized weighted average method.

The last step is to estimate the nonparametric part, the functional coefficients βββ(Uit), by plugging

the γ̂γγ into model (1). Define a partial residual Y ∗
it = Yit − XXX ′

it,1γ̂γγ. Hence, model (1) can be

approximated by

Y ∗
it ≈ PPP ′

itδδδ + ϵit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (6)

3To obtain a unique θθθ satisfying the above moment condition, we follow Cai and Li (2008) by pre-multiplying it

by ΩΩΩ′
N .
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where δδδ = δδδ(u0) = (βββ′(u0), β̇̇β̇β
′(u0))

′, β̇̇β̇β(·) denotes the first order derivatives of βββ(·) with respect

to Uit, and PPP it =

 XXX it,2

XXX it,2 ⊗ (Uit − u0)

 is a (2d2) × 1 vector. Hence, the nonparametric GMM

estimator of the varying coefficients are given by

δ̂δδ = δ̂δδ(u0) = (SSS′
NSSSN )−1SSS′

NTTTN , (7)

where SSSN = 1
NT

N∑
i=1

T∑
t=1

QQQitPPP
′
itKh2(Uit−u0) and TTTN = 1

NT

N∑
i=1

T∑
t=1

QQQitKh2(Uit−u0)Y ∗
it with Kh2(·) =

h−1
2 K(·/h2) and the bandwidth h2 = h2N > 0. Motivated by local linear fitting, a simple choice of

QQQit suggested by Cai and Li (2008) is a (2q)× 1 vector

QQQit =

 WWW it

WWW it ⊗ (Uit − u0)/h2

 .,

which is used at the last stage.

3 Asymptotic Theories

3.1 Asymptotic Properties

In this section, we will derive the asymptotic results of both estimators γ̂γγ and β̂ββ(u0). The detailed

proofs are relegated to Appendices. Firstly, we give some notations and definitions which will be

used in the rest of the paper. Denote µj =
∫∞
−∞ ujK(u)du and νj =

∫∞
−∞ ujK2(u)du with j ≥ 0. Let

σ2(vvv) = V ar(ϵit|VVV it = vvv), ΩΩΩ = ΩΩΩ(u0) = E(VVV itXXX
′
it|u0), Ω̃ΩΩ = Ω̃ΩΩ(u0) = E(WWW itXXX

′
it,2|u0), ΦΦΦ = ΦΦΦ(u0) =

V ar(VVV itϵit|u0), σ1t(VVV i1,VVV it) = E(ϵi1ϵit|VVV i1,VVV it), and GGG1t(Ui1, Uit) = E{VVV i1VVV
′
itσ1t|Ui1, Uit}. Note

that GGG1t(Ui1, Uit) = E{VVV i1VVV
′
itϵi1ϵit|Ui1, Uit}. Moreover, Define SSS = SSS(u0) =

 Ω̃ΩΩ 000

000 µ2Ω̃ΩΩ

. Next,

note that ΦΦΦN = ΩΩΩNθθθ +ΦΦΦ∗
N +ΨΨΨN +ΛΛΛN , where

ΦΦΦ∗
N =

1

NT

N∑
i=1

T∑
t=1

Kh1(Uit − u0)QQQitϵit,

ΨΨΨN =
1

NT

N∑
i=1

T∑
t=1

Kh1(Uit − u0)QQQit

d∑
j=1

ψj(Uit, u0)Xitj ,

and ΛΛΛN =
1

NT

N∑
i=1

T∑
t=1

Kh1(Uit − u0)QQQit

d∑
j=1

Λj(Uit, u0)Xitj
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with ψj(Uit, u0) = θ̇j(u0)(Uit − u0) +
1
2 θ̈j(u0)(Uit − u0)

2 and Λj(Uit, u0) = θj(Uit) − θj(u0) −

θ̇j(u0)(Uit − u0)− 1
2 θ̈j(u0)(Uit − u0)

2. Substituting it into (4), we have

(θ̂θθ − θθθ)− (ΩΩΩ′
NΩΩΩN )−1ΩΩΩ′

NΨΨΨN − (ΩΩΩ′
NΩΩΩN )−1ΩΩΩ′

NΛΛΛN = (ΩΩΩ′
NΩΩΩN )−1ΩΩΩ′

NΦΦΦ
∗
N . (8)

We will show that the second term on the left side determines the bias, the last term on the left

can be asymptotically ignored, and the term on the right follows the asymptotic normality.

To establish the asymptotic results for the proposed estimators, following assumptions are needed

although they might not be the weakest possible.

A1. {(WWW it,XXXit, Yit, Uit, ϵit)} are independent and identically distributed across the i index for each

fixed t and strictly stationary over t for each fixed i, E||WWW itXXX
′
it||2 < ∞, E||WWW itWWW

′
it||2 < ∞,

E(ϵit) = 0, and E|ϵit|2 ≪ ∞, where || · ||2 is the standard L2-norm for a finite-dimensional

matrix.

A2. For each t ≥ 1, GGG1t(Ui1, Uit) is continuous at (Ui1, Uit). Also, for each u0, ΩΩΩ(u0) > 0 and

f(u0) > 0, which is continuous density function at u0. Further, supt≥1|GGG1t(u0, u0)f(u0)| ≤

MMM(u0) < ∞ for some function MMM(u0). Finally, βββ(u0) and f(u0) are both two times continu-

ously differentiable in u ∈ (u0 − hN , u0 + hN ) which is the neighborhood of u0.

A3. The kernel function K(·) is a symmetric, bounded density with a bounded support region.

A4. The instrumental variable VVV it satisfies the instrument exogeneity condition such as E(ϵit|VVV it) =

0.

A5. h1 → 0, h2 → 0, Nh1 → ∞ and Nh2 → ∞ as N → ∞. Furthermore, h1 = op(h2).

To derive the asymptotic properties for θ̂θθ and γ̂γγ, we need the following preliminary results.

Proposition 1. Under Assumptions A1-A5, we have

(i) ΩΩΩN = f(u0)ΩΩΩ[1 + op(1)],

(ii) ΨΨΨN =
h21
2
f(u0)µ2[2(Ω̇ΩΩ +ΩΩΩ

ḟ(u0)

f(u0)
)θ̇θθ +ΩΩΩθ̈θθ] + op(h

2
1),

(iii) ΛΛΛN = op(h
2
1),

(iv) Nh1V ar(ΦΦΦ
∗
N ) → 1

T
f(u0)ΦΦΦ +

2

T 2
f(u0)

T∑
t=2

(T − t+ 1)GGG1t(u0, u0) ≡ f(u0)ΘΘΘ1.
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Clearly, by Proposition 1 and (8), we can obtain

(θ̂θθ − θθθ)− biasθθθ = f−1(u0)(ΩΩΩ
′ΩΩΩ)−1ΩΩΩ′ΦΦΦ∗

N [1 + op(1)] (9)

where biasθθθ =
h2
1
2 f(u0)µ2[2((ΩΩΩ

′ΩΩΩ)−1ΩΩΩ′Ω̇ΩΩ+ ḟ(u0)
f(u0)

)θ̇θθ+θ̈θθ]+op(h
2
1). The next two theorems demonstrate

the consistency and asymptotic normality of γ̂γγ, respectively.

THEOREM 1. Under Assumptions A1-A5, we have

(θ̂θθ − θθθ)− biasθθθ = op(h
2
1) +Op(

1√
Nh1

), (10)

which implies the consistency of θ̂θθ.

Remark 1: As defined earlier, θθθ = θθθ(u0) = (γγγ′(u0),βββ
′(u0))

′ so that γ̂γγ is the first d1 component in

θ̂θθ. Thus, we have

γ̂γγ − γγγ =
1

NT

N∑
i=1

T∑
t=1

e′1[(θ̂θθ(Uit)− θθθ(Uit))− biasθθθ] +Op(
1√
N

)

=
1

NT

N∑
i=1

T∑
t=1

[γ̂γγ(Uit)− γγγ(Uit)− biasγγγ(u0)] +Op(
1√
N

), (11)

where the selection matrix e′1 = (IIId1 ,000d1×d2) and biasγγγ(u0) = h21f(u0)µ2(ΩΩΩ
′ΩΩΩ)−1ΩΩΩ′Ω̇ΩΩθ̇θθ+op(h

2
1). It is

worth to mention that the asymptotic variance has been smoothed out due to the average method.

THEOREM 2. Under Assumptions A1-A5, we have

√
N(γ̂γγ − γγγ − biasγγγ)

D→ N(0,ΣΣΣγ), (12)

where ΣΣΣγ = E{e′1[ 1TDDD(Ui1)ΦΦΦ(Ui1)DDD
′(Ui1) +

2
T 2

T∑
t=1

(T − t + 1)DDD(Ui1)G1tG1tG1t(Ui1, Uit)DDD
′(Uit)]e1} with

DDD(Uit) = (ΩΩΩ′(Uit)ΩΩΩ(Uit))
−1ΩΩΩ′(Uit) and biasγγγ = E[biasγγγ(Uit)].

Remark 2: As Nh41 → 0, the bias term in the above theorem shrinks toward zero, which implies

that we need to under-smooth at the first step to reduce the influence of the bias term that may

be brought to the second step, while in the meantime, the variance can be smoothed out by using

the average method.
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Finally, we focus on the nonparametric estimation of βββ(u0). Similar to the decomposition of ΦΦΦN ,

we have TTTN = S̃SSNHHHδδδ + TTT ∗
N +BBBN +RRRN and

TTT ∗
N =

1

NT

N∑
i=1

T∑
t=1

Kh2(Uit − u0)QQQitϵit,

BBBN =
1

NT

N∑
i=1

T∑
t=1

Kh2(Uit − u0)QQQit
1

2

d2∑
j=1

β̈j(u0)(Uit − u0)
2Xit,2j ,

and RRRN =
1

NT

N∑
i=1

T∑
t=1

Kh2(Uit − u0)QQQit

d2∑
j=1

Rj(Uit, u0)Xit,2j

where Rj(Uit, u0) = βj(Uit)− aj − bj(Uit − u0)− 1
2 β̈j(u0)(Uit − u0)

2. Hence,

HHH(δ̂δδ − δδδ)− [S̃SS
′
NS̃SSN ]−1S̃SS

′
NBBBN − [S̃SS

′
NS̃SSN ]−1S̃SS

′
NRRRN = [S̃SS

′
NS̃SSN ]−1S̃SS

′
NTTT

∗
N . (13)

where HHH = (IIId2 , h2IIId2) and S̃SSN = SSSNHHH
−1 = 1

NT

N∑
i=1

T∑
t=1

QQQitP̃PP
′
itKh2(Uit − u0) with P̃PP it = HHH−1PPP it.

Similar to Proposition 1, we have the following preliminary results.

Proposition 2. Under Assumptions A1-A5, we have

(i) S̃SSN = f(u0)SSS[1 + op(1)],

(ii) BBBN =
h22
2
f(u0)

 µ2Ω̃ΩΩβ̈ββ

0

+ op(h
2
2),

(iii) RRRN = op(h
2
2),

(iv) Nh2V ar(TTT
∗
N ) → 1

T
f(u0)SSS

∗ +
2

T 2
f(u0)

T∑
t=2

(T − t+ 1)GGG∗
1t(u0, u0) ≡ f(u0)ΘΘΘ2,

where e′2 = (IIIq,000q×1) is a selecting matrix, SSS∗ = SSS∗(u0) =

 ν0e
′
2ΦΦΦe2 000

000 ν2e
′
2ΦΦΦe2

, and GGG∗
1t =

GGG∗
1t(u0, u0) =

 ν0e
′
2GGG1t(u0, u0)e2 000

000 ν2e
′
2GGG1t(u0, u0)e2

.

By Proposition 2 and (12), we can obtain

HHH(δ̂δδ − δδδ)− h22
2

 µ2β̈ββ

000

+ op(h
2
2) = f−1(u0)(SSS

′SSS)−1SSS′TTT ∗
N [1 + op(1)]. (14)

The next two theorems depict the consistency and asymptotic normality of β̂ββ(u0), respectively.
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THEOREM 3. Under Assumptions A1-A5, we have

HHH

 β̂ββ − βββ

ˆ̇
βββ − β̇ββ

− h22
2

 µ2β̈ββ

000

 = op(h
2
2) +Op(

1√
Nh2

). (15)

Also, we have the following asymptotic normality,

√
Nh2[HHH

 β̂ββ − βββ

ˆ̇
βββ − β̇ββ

− h22
2

 µ2β̈ββ

000

+ op(h
2
2)]

D→ N(0, f−1(u0)ΘΘΘ2), (16)

where ΘΘΘ2 is defined in Proposition 2.

3.2 Efficiency Issue

To estimate the parameter γγγ without being overly influenced by the tail behavior of the distribution

of Uit, one might use a trimming function wi = I(Uit ∈ D) with a compact subset D of R; see Cai

and Masry (2000) for details. Then, a weighted average estimator is defined by

γ̂γγw =

N∑
i=1

T∑
t=1

wiγ̂γγ(Uit)

N∑
i=1

T∑
t=1

wi

. (17)

By following the same proofs as used in proving Theorems 1 and 2, it is not difficult to establish

the asymptotic properties for γ̂γγw and the detailed proof is omitted.

Clearly, either the average estimate γ̂γγ in (5) or its trimmed version γ̂γγw in (17) might not be

efficient. To address the efficient issue, following Cai and Xiong (2011), we can apply a general

weighted average approach to improve the efficiency of the estimation of γγγ. Note that a generalized

weighted average estimator of γγγ using a weighting function ∆(·) is given by

γ̌γγ∆ = [
N∑
i=1

T∑
t=1

∆(Uit)]
−1[

N∑
i=1

T∑
t=1

∆(Uit)γ̂γγ(Uit)], (18)

where ∆(·) is a weighting function (a symmetric matrix). Appropriately selecting the weighting

function can significantly affect the variance but not the bias of the resulting estimator γ̌γγ∆. This

enables us to obtain an optimal estimator of γγγ by selecting bandwidths and weighting functions

through minimizing the asymptotic MSE. In the meantime, the trimming function wi in (17)

can still be applied to (18) too. Following a similar arguments in the proof of Theorem 2, it is

10



straightforward to show that the weighted average estimator of γγγ, γ̌γγ∆, defined in (18) has the

following asymptotic variance-covariance matrix:

ΣΣΣγ,∆ = [E∆(Uit)]
−1E{∆(Uit)e

′
1[
1

T
DDD(Ui1)ΦΦΦ(Ui1)DDD

′(Ui1)

+
2

T 2

T∑
t=1

(T − t+ 1)DDD(Ui1)G1tG1tG1t(Ui1, Uit)DDD
′(Uit)]e1∆(Uit)}[E∆(Uit)]

−1

= [E∆(Uit)]
−1E[∆(Uit)∆0(Uit)∆(Uit)][E∆(Uit)]

−1,

where∆0(Uit) = E{e′1[ 1TDDD(Ui1)ΦΦΦ(Ui1)DDD
′(Ui1)+

2
T 2

T∑
t=1

(T − t+1)DDD(Ui1)G1tG1tG1t(Ui1, Uit)DDD
′(Uit)]e1|Uit}.

Thus, the optimal choice of the weighting function is obtained by setting ∆opt(Uit) = [∆0(Uit)]
−1,

and as a result, the optimal asymptotic variance is given by ΣΣΣγ,opt(Uit) = [E∆−1
0 (Uit)]

−1. Hence,

we can use the following estimated weighting function

∆̂opt(Uit) = [∆̂0(Uit)]
−1.

To obtain a feasible estimator, we follow the method proposed in Cai and Fan (2000) and Cai

and Xiong (2011). The idea is as follows: divide the sample into a relatively small (first) subsample

and a relatively large (second) subsample. ∆̂0(Uit) can be consistently estimated based on the first

subsample, and then γ̂γγ(Uit) can be estimated using the second subsample. This shows that the

optimal variance can be achieved, at least theoretically.

4 Monte Carlo Simulations

In this section, Monte Carlo simulations are conducted to verify theoretical results in Section 3 and

demonstrate the finite sample performance of both estimators. The mean absolute deviation errors

(MADE) of the estimators are computed to measure the estimation performance. The MADE is

defined by

MADEj =
1

G

G∑
i=g

|δ̂j(Ug)− δj(ug)|.

where δ(·) is either γY , γZ or β(·) in (19) and {ug}Gg=1 are the gird points within the domain of Uit.

Note that for both γY and γZ , their MADE becomes the absolute deviation error (ADE).

We consider the following data generating process:

Yit = Yit−1γY + ZitγZ + X̃itβ(Uit) + ϵit, X̃it =Wit + ηit, (19)
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where the smoothing variable Uit and the exogenous variable Zit are generated from uniform dis-

tributions U(−3, 3) and U(−2, 2), respectively. The excluded instruments Wit is generated inde-

pendently from a uniform distribution U(−2, 2). The error terms ϵit and ηit are generated jointly

from a standard bivariate normal distribution with the correlation coefficient 0.3. The coefficients

are set by γY = 0.5, γZ = 3 and β(Uit) = 1.5e−U2
it . We fix T = 10 and let N = 200, 500 and

1000 respectively. When generating the series of Yit, we set the initial value to be zero and drop

the first 100 observations to reduce the impact of initial values. For a given sample size, we repeat

500 times to calculate the MADE. The bandwidth in the first step is undersmoothed and we find

the estimation of γ is not very sensitive to the bandwidth selection when it is chosen within a

reasonable range.

Table 1 reports the medians and the standard deviations (in parentheses) of the MADE for

different estimators under different sample sizes. When the sample size increases, the medians of

ADE values for γ̂Y and γ̂Z shrink from 0.004 to 0.001 and from 0.016 to 0.006, respectively. The

standard deviations also shrink quickly when the sample size is enlarged. For γ̂Y , the standard

deviation shrinks from 0.003 to 0.001, and for γ̂Z , it decreases from 0.012 to 0.005. The nonpara-

metric estimator of β(·) shows similar results. The median of the MADE values decreases from

0.076 to 0.030 when the sample size increases from 200 to 1000. At the same time, the standard

deviation of the estimator also shrinks from 0.014 to 0.006. Compared to parametric estimations in

Columns 2 and 3, the convergence speed of nonparametric estimator is relatively slow. All results

show that the estimators proposed in the paper are consistent estimators and all outcomes in the

simulations are consistent to the theoretical results in the previous section.

Figure 1 demonstrates the estimated curve of β(·) with a sample size N = 500 for a typical

sample. The typical example is chosen such that its MADEβ value equals to the median of the

500 MADEβ values in the repeated experiments of the case N = 500. The solid line represents the

true curve and the dotted line denotes the estimated one. Figure 1 shows that the nonparametric

GMM estimation works very well even in a small sample.

12



Table 1: Median and standard deviation of the MADE

values.

N γY γZ β(·)

200 0.004144002 0.01629416 0.0768469

(0.003479078) (0.01242114) (0.01431995)

500 0.002379212 0.009720373 0.04487873

(0.002281685) (0.008604812) (0.00858833)

1000 0.001707388 0.006097411 0.03057437

(0.001506411) (0.005766932) (0.006049484)

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

  

  

beta_x (N=500)

Figure 1: Functional Coefficient of β(·). The solid line represents the true curve and the dotted

line denotes the estimated one.
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