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1 Introduction

The value-at-risk (hereafter, VaR) and expected shortfall (ES) have become two popular

measures on market risk associated with an asset or a portfolio of assets during the recent

decade. In particular, VaR has been chosen by the Basle Committee on Banking Supervision

as the benchmark of risk measures for capital requirements and both of them have been used

by financial institutions for asset managements and minimization of risk as well as have been

developed rapidly as analytic tools to assess riskiness of trading activities. See, to name just

a few, Morgan (1996), Duffie and Pan (1997), Jorion (2001, 2003), and Duffie and Singleton

(2003) for the financial background, statistical inferences, and various applications. In terms

of the formal definition, VaR is simply a quantile of the loss distribution (future portfolio

values) over a prescribed holding period (e.g., 2 weeks) at a given confidence level, while ES

is the expected loss, given that the loss is at least as large as some given quantile of the loss

distribution (e.g., VaR). It is well known from Artzner, Delbaen, Eber and Heath (1999) that

ES is a coherent risk measure such as it satisfies the four axioms: homogeneity (increasing the

size of a portfolio by a factor should scale its risk measure by the same factor), monotonicity

(a portfolio must have greater risk if it has systematically lower values than another), risk-

free condition or translation invariance (adding some amount of cash to a portfolio should

reduce its risk by the same amount), and subadditivity (the risk of a portfolio must be less

than the sum of separate risks or merging portfolios cannot increase risk). VaR satisfies

homogeneity, monotonicity, and risk-free condition but is not sub-additive. See Artzner, et

al. (1999) for details.

As advocated by Artzner, et al. (1999), ES is preferred due to its better properties

although VaR is widely used in applications.

Measures of risk might depend on the state of the economy since economic and market

conditions vary from time to time. This requires risk managers need to focus on the condi-
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tional distributions of profit and loss, which take full account of current information about

the investment environment (macroeconomic and financial as well as political) in forecasting

future market values, volatilities, and correlations. As pointed out by Duffie and Singleton

(2003), not only are the prices of the underlying market indices changing randomly over

time, the portfolio itself is changing, as are the volatilities of prices, the credit qualities of

counterparties, and so on. On the other hand, one would expect the VaR to increase as the

past returns become very negative, because one bad day makes the probability of the next

somewhat greater. Similarly, very good days also increase the VaR, as would be the case for

volatility models. Therefore, VaR could depend on the past returns in someway. Hence, an

appropriate risk analytical tool or methodology should be allowed to adapt to varying mar-

ket conditions and to reflect the latest available information in a time series setting rather

than the iid framework. Most of the existing risk management literature has concentrated

on unconditional distributions and the iid setting although there have been some studies on

the conditional distributions and time series data. For more background, see Chernozhukov

and Umanstev (2001), Cai (2002), Fan and Gu (2003), Engle and Manganelli (2004), Cai

and Xu (2005), and Scaillet (2005), and references therein for conditional models, and Duffie

and Pan (1997), Artzner, et al. (1999), Rockafellar and Uryasev (2000), Acerbi and Tasche

(2002), Frey and McNeil (2002), Scaillet (2004), Chen and Tang (2005), and among others

for unconditional models. Also, most of studies in the literature and applications are limited

to parametric models, such as all standard industry models like CreditRisk+, CreditMetrics,

CreditPortfolio View and the model proposed by the KMV corporation. See Chernozhukov

and Umanstev (2001), Frey and McNeil (2002), Engle and Manganelli (2004), and references

therein on parametric models in practice and Fan and Gu (2003) and references therein for

semiparametric models.

The main focus of this paper is on the conditional value-at-risk (CVaR) and conditional

expected shortfall (CES) and is to propose a new nonparametric estimation procedure to
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estimate CVaR and CES functions where the conditional information is allowed to contain

economic and market (exogenous) variables and the past observed returns. Parametric mod-

els for CVaR and CES can be most efficient if the underlying functions are correctly specified.

See Chernozhukov and Umanstev (2001) for a polynomial type regression model and Engle

and Manganelli (2004) for a GARCH type parametric model for CVaR based on regres-

sion quantile. However, a misspecification may cause serious bias and model constraints

may distort the underlying distributions. A nonparametric modeling is appealing in several

aspects. One of the advantages for nonparametric modeling is that little or no restrictive

prior information on functionals is needed. Further, it may provide useful insight for further

parametric fitting.

This paper proposes a new nonparametric approach to estimate CVaR and CES. In

essence, our estimator for CVaR is based on inverting a newly proposed estimator of the

conditional distribution function for time series data and the estimator for CES is by a

plugging-in method based on plugging in the estimated conditional probability density func-

tion and the estimated CVaR function. Note that they are analogous to the estimators

studied by Scaillet (2005) by using the Nadaraya-Watson (NW) type double kernel (smooth-

ing in both the y and x directions) estimation, and Cai (2002) by utilizing the weighted

Nadaraya-Watson (WNW) kernel type technique to avoid the so-called boundary effects as

well as Yu and Jones (1998) by employing the double kernel local linear method. More

precisely, our newly proposed estimator combines the WNW method of Cai (2002) and the

double kernel local linear technique of Yu and Jones (1998), termed as weighted double kernel

local linear (WDKLL) estimator.

The paper consists of two themes. The first part is devoted to establishing the asymptotic

properties for the WDKLL estimators of the conditional probability density function (PDF)

and cumulative distribution function (CDF) for the α-mixing time series at both boundary
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and interior points. It is therefore shown that the WDKLL method enjoys the same con-

vergence rates as those of the double kernel local linear estimator of Yu and Jones (1998)

and the WNW estimator of Cai (2002). It is also shown that the WDKLL estimators have

desired sampling properties at both boundary and interior points of the support of the design

density, which seems to be seminal. Secondly, we derive the WDKLL estimator of CVaR by

inverting the WDKLL conditional distribution estimator and the WDKLL estimator of CES

by plugging in the WDKLL PDF and CVaR estimators. We show that the WDKLL CVaR

estimator exists always due to the WDKLL CDF being a distribution function itself and

that it inherits all better properties from the WDKLL CDF estimator; that is, the WDKLL

CDF is a CDF and differentiable and it possess the asymptotic properties such as design

adaption, avoiding boundary effects, and mathematical efficiency.

Note that CVaR defined here is essentially the conditional quantile or quantile regression

of Koenker and Bassett (1978), based on the conditional distribution, rather than CVaR

defined in some risk management literature (see, e.g., Rockafellar and Uryasev, 2000; Jorion,

2001, 2003) which is what we call ES here. Also, note that the ES here is called TailVaR in

Artzner, et al. (1999). Moreover, as aforementioned, CVaR can be regarded as a special case

of quantile regression. See Cai and Xu (2005) for the state-of-the-art about current research

on nonparametric quantile regression, including CVaR. Further, note that both ES and CES

have been known for decades among actuary sciences and they are very popular in insurance

industry. Indeed, they have been used to assess risk on a portfolio of potential claims, and to

design reinsurance treaties. See the book by Embrechts, Kluppelberg, and Mikosch (1997)

for the excellent review on this subject and the papers by McNeil (1997), Hürlimann (2003),

and Scaillet (2005). Finally, ES or CES is also closely related to other applied fields such as

the mean residual life function in reliability and the biometric function in biostatistics. See

Oakes and Dasu (1990) and Cai and Qian (2000) and references therein.
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The plan of the paper is as follows. Section 2 provides a blueprint for the basic notations

and concepts. In Section 3, we present the detailed motivations and formulations for the

new nonparametric estimation procedures for estimating the conditional PDF, CDF, VaR

and ES. We establish the asymptotic properties of these nonparametric estimators at both

boundary and interior points with a comparison in Section 4. Together with a convenient and

efficient data-driven method for selecting the bandwidth based on the nonparametric Akaike

information criterion (AIC), Monte Carol simulation studies and empirical applications on

several stock index returns are presented in Section 5. Finally, the derivations of the theorems

are given in Section 6 with some lemmas and Appendix contains the technical proofs of

certain lemmas needed in the proofs of the theorems in Section 6.

2 Framework

Assume that the observed data {(Xt, Yt); 1 ≤ t ≤ n}, Xt ∈ ℜd, are available and they are

observed from a stationary time series model. Here Yt is the risk or loss variable which can

be the negative logarithm of return (log loss) and Xt is allowed to include both economic and

market (exogenous) variables and the lagged variables of Yt and also it can be a vector. But,

for the expositional purpose, we only consider the case that Xt is a scalar (d = 1). Note that

the proposed methodologies and their theory for the univariate case (d = 1) continue to hold

for multivariate situations (d > 1). Extension to the case d > 1 involves no fundamentally

new ideas. Note that models with large d are often not practically useful due to “curse of

dimensionality”.

We now turn to considering the nonparametric estimation of the conditional expected

shortfall µp(x), which is defined as µp(x) = E[Yt |Yt ≥ νp(x), Xt = x], where νp(x) is

the conditional value-at-risk, which is defined as the solution of P (Yt ≥ νp(x) |Xt = x) =

S(νp(x) |x) = p or expressed as νp(x) = S−1(p |x), where S(y |x) is the conditional survival

function of Yt given Xt = x; S(y |x) = 1−F (y |x), and F (y |x) is the conditional cumulative
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distribution function. It is easy to see that

µp(x) =
∫ ∞

νp(x)
y f(y |x) dy/p,

where f(y |x) is the conditional probability density function of Yt given Xt = x. To estimate

CES µp(x), one can use the plugging-in method as

µ̂p(x) =
∫ ∞

ν̂p(x)
y f̂(y |x) dy/p, (1)

where ν̂p(x) is a nonparametric estimation of νp(x) and f̂(y |x) is a nonparametric estimation

of f(y |x).

Note that Scaillet (2005) used the NW type double kernel method to estimate f(y |x)

first, due to Roussas (1969), denoted by f̃(y |x), and then estimated νp(x) by inverting

the estimated conditional survival function, denoted by ν̃p(x), and finally estimated µp(x)

by plugging f̃(y |x) and ν̃p(x) into (1), denoted by µ̃p(x), where ν̃p(x) = S̃−1(y |x) and

S̃(y |x) =
∫ ∞
y f̃(u |x)du. But, it is well documented (see, e.g., Fan and Gijbels, 1996) that

the NW kernel type procedures have serious drawbacks: the asymptotic bias involves the

design density so that they can not be adaptive, and they have boundary effects so that

they require boundary modifications. In particular, the boundary effect might cause a big

problem for estimating CVaR νp(x) since it is only concerned with the tail probability. The

question now is how to estimate CVaR νp(x) and the conditional density function f(y |x)

efficiently and optimally so that we can estimate µp(x) well. Therefore, we need to address

this issue in the next section.

3 Nonparametric Estimating Procedures

We start with the nonparametric estimators for the conditional density function and its

distribution function first and then turn to discussing the nonparametric estimators for the

conditional VaR and ES functions.
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3.1 Estimation of Conditional PDF and CDF

There are several methods available for estimating CVaR νp(x) and conditional density

f(y |x) in the literature, such as kernel and nearest-neighbor. To name just a few, see Lejeune

and Sarda (1988), Troung (1989), Samanta (1989), and Chaudhuri (1991) for iid errors,

Roussas (1969) and Roussas (1991) for Markovian processes, and Troung and Stone (1992)

and Boente and Fraiman (1995) for mixing sequences. To attenuate these drawbacks of the

kernel type estimators mentioned in Section 2, recently, some new methods of estimating

conditional quantiles have been proposed. The first one, a more direct approach, by using

the “check” function such as the robustified local linear smoother, was provided by Fan, Hu,

and Troung (1994) and further extended by Yu and Jones (1997, 1998) for iid data. A more

general nonparametric setting was explored by Cai and Xu (2005) for time series data. This

modeling idea was initialed by Koenker and Bassett (1978) for linear regression quantiles and

Fan, Hu, and Troung (1994) for nonparametric models. See Cai and Xu (2005) and references

therein for more discussions on models and applications. An alternative procedure is first to

estimate the conditional distribution function by using double kernel local linear technique

of Fan, Yao, and Tong (1996) and then to invert the conditional distribution estimator to

produce an estimator of a conditional quantile or CVaR. Yu and Jones (1997, 1998) compared

these two methods and suggested that the double kernel local linear would be better.

To make a connection between the conditional density (distribution) function and non-

parametric regression problem, it is noted by the standard kernel estimation theory (see,

e.g., Fan and Gijbles, 1996) that for a given symmetric density function K(·),

E{Kh0
(y−Yt) |Xt = x} = f(y |x)+

h2
0

2
µ2(K) f 2,0(y |x)+o(h2

0) ≈ f(y |x), as h0 → 0, (2)

where Kh0
(u) = K(u/h0)/h0, µ2(K) =

∫ ∞
−∞ u2K(u)du, f 2,0(y |x) = ∂2/∂y2f(y |x), and ≈

denotes an approximation by ignoring the higher terms. Note that Y ∗
t (y) = Kh0

(y − Yt) can

be regarded as an initial estimate of f(y |x) smoothing in the y direction. Also, note that
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this approximation ignores the higher order terms O(hj
0) for j ≥ 2, since they are negligible

if h0 = o(h), where h is the bandwidth used in smoothing in the x direction (see (3) below).

Therefore, the smoothing in the y direction is not important in the context of this subject so

that intuitively, it should be under-smoothed. Thus, the left hand side of (2) can be regraded

as a nonparametric regression of the observed variable Y ∗
t (y) versus Xt and the local linear

(or polynomial) fitting scheme of Fan and Gijbles (1996) can be applied to here. This leads

us to consider the following locally weighted least squares regression problem:

n∑

t=1

{Y ∗
t (y) − a − b (Xt − x)}2 Wh(x − Xt), (3)

where W (·) is a kernel function and h = h(n) > 0 is the bandwidth satisfying h → 0 and

nh → ∞ as n → ∞, which controls the amount of smoothing used in the estimation. Note

that (3) involves two kernels K(·) and W (·). This is the reason of calling “double kernel”.

Minimizing the locally weighted least squares with respect to a and b, we obtain the locally

weighted least squares estimator of f(y |x), denoted by f̂(y |x), which is â. From Fan and

Gijbels (1996) or Fan, Yao and Tong (1996), f̂(y |x) can be re-expressed as a linear estimator

form as

f̂ll(y |x) =
n∑

t=1

Wll,t(x, h) Y ∗
t (y),

where with Sn,j(x) =
∑n

t=1 Wh(x − Xt) (Xt − x)j, the weights {Wll,t(x, h)} are given by

Wll,t(x, h) =
[Sn,2(x) − (x − Xt) Sn,1(x)] Wh(x − Xt)

Sn,0(x)Sn,2(x) − S2
n,1(x)

.

Clearly, {Wll,t(x, h)} satisfy the so-called discrete moments conditions as follows: for 0 ≤

j ≤ 1,
n∑

t=1

Wll,t(x, h) (Xt − x)j = δ0,j =
{

1 if j = 0
0 otherwsie

(4)

based on the least squares theory; see (3.12) of Fan and Gijbels (1996, p.63). Note that the

estimator f̂ll(y |x) can range outside [0, ∞). The double kernel local linear estimator of
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F (y |x) is constructed (see (8) of Yu and Jones (1998)) by integrating f̂ll(y |x)

F̂ll(y |x) =
∫ y

−∞
f̂ll(y |x)dy =

n∑

t=1

Wll,t(x, h) Gh0
(y − Yt),

where G(·) is the distribution function of K(·) and Gh0
(u) = G(u/h0). Clearly, F̂ll(y |x)

is continuous and differentiable with respect to y with F̂ll(−∞|x) = 0 and F̂ll(∞|x) = 1.

Note that the differentiability of the estimated distribution function can make the asymptotic

analysis much easier for CVaR and CES (see later).

Although Yu and Jones (1998) showed that the double kernel local linear estimator has

some attractive properties such as no boundary effects, design adaptation, and mathematical

efficiency (see, e.g., Fan and Gijbels, 1996), it has the disadvantage of producing conditional

distribution function estimators that are not constrained either to lie between zero and one

or to be monotone increasing, which is not good for estimating CVaR if the inverting method

is used. In both these respects, the NW method is superior, despite its rather large bias and

boundary effects. The properties of positivity and monotonicity are particularly advanta-

geous if the method of inverting conditional distribution estimator is applied to produce an

estimator of the conditional quantile or CVaR. To overcome these difficulties, Hall, Wolff,

and Yao (1999) and Cai (2002) proposed the WNW estimator based on an empirical likeli-

hood principle, which is designed to possess the superior properties of local linear methods

such as bias reduction and no boundary effects, and to preserve the property that the NW

estimator is always a distribution function, although it might require more computational

efforts since it requires estimating and optimizing additional weights aimed at the bias cor-

rection. Cai (2002) discussed the asymptotic properties of the WNW estimator at both

interior and boundary points for the mixing time series under some regularity assumptions

and showed that the WNW estimator has a better performance than other competitors. See

Cai (2002) for details.

The WNW estimator of the conditional distribution F (y |x) of Yt given Xt = x is defined
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by

F̂c1(y |x) =
n∑

t=1

Wc,t(x, h) I(Yt ≤ y), (5)

where the weights {Wc,t(x, h)} are given by

Wc,t(x, h) =
pt(x) Wh(x − Xt)∑n

t=1 pt(x) Wh(x − Xt)
, (6)

and {pt(x)} is chosen to be pt(x) = n−1 {1 + λ (Xt − x) Wh(x − Xt)}−1 ≥ 0 with λ, a

function of data and x, uniquely defined by maximizing the logarithm of the empirical

likelihood

Ln(λ) = −
n∑

t=1

log {1 + λ (Xt − x) Wh(x − Xt)}

subject to the constraints
∑n

t=1 pt(x) = 1 and the discrete moments conditions in (4); that

is,
n∑

t=1

Wc,t(x, h) (Xt − x)j = δ0,j (7)

for 0 ≤ j ≤ 1. Also, see Cai (2002) for details on this aspect. In implementation, Cai (2002)

recommended using the Newton-Raphson scheme to find the root of equation L′
n(λ) = 0.

Note that 0 ≤ F̂c1(y |x) ≤ 1 and it is monotone in y. But F̂c1(y |x) is not continuous in y

and of course, not differentiable in y either. Note that under regression setting, Cai (2001)

provided a comparison of the local linear estimator and the WNW estimator and discussed

the asymptotic minimax efficiency of the WNW estimator.

To accommodate all nice properties (monotonicity, continuity, differentiability, and lying

between zero and one) and the attractive asymptotic properties (design adaption, avoiding

boundary effects, and mathematical efficiency, see Cai (2002) for detailed discussions) of

both estimators F̂ll(y |x) and F̂c1(y |x) under a unified framework, we propose the following

nonparametric estimators for the conditional density function f(y |x) and its conditional

distribution function F (y |x), termed as weighted double kernel local linear estimation,

f̂c(y |x) =
n∑

t=1

Wc,t(x, h) Y ∗
t (y),
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where Wc,t(x, h) is given in (6), and

F̂c(y |x) =
∫ y

−∞
f̂c(y |x)dy =

n∑

t=1

Wc,t(x, h) Gh0
(y − Yt). (8)

Note that if pt(x) in (6) is a constant for all t, or λ = 0, then f̂c(y |x) becomes the classical

NW type double kernel estimator used by Scaillet (2005). However, Scaillet (2005) adopted

a single bandwidth for smoothing in both the y and x directions. Clearly, f̂c(y |x) is a

probability density function so that F̂c(y |x) is a cumulative distribution function (monotone,

0 ≤ F̂c(y |x) ≤ 1, F̂c(−∞|x) = 0, and F̂c(∞|x) = 1). Also, F̂c(y |x) is continuous and

differentiable in y. Further, as expected, it will be shown that like F̂c1(y |x), F̂c(y |x) has

the attractive properties such as no boundary effects, design adaptation, and mathematical

efficiency.

3.2 Estimation of Conditional VaR and ES

We now are ready to formulate the nonparametric estimators for νp(x) and µp(x). To this

end, from (8), νp(x) is estimated by inverting the estimated conditional survival distribution

Ŝc(y |x) = 1− F̂c(y |x), denoted by ν̂p(x) and defined as ν̂p(x) = Ŝ−1
c (p |x). Note that ν̂p(x)

always exists since Ŝc(p |x) is a survival function itself. Plugging-in ν̂p(x) and f̂c(y |x) into

(1), we obtain the nonparametric estimation of µp(x),

µ̂p(x) = p−1
∫ ∞

ν̂p(x)
y f̂c(y |x) dy = p−1

n∑

t=1

Wc,t(x, h)
∫ ∞

ν̂p(x)
y Kh0

(y − Yt)dy

= p−1
n∑

t=1

Wc,t(x, h)
[
Yt Ḡh0

(ν̂p(x) − Yt) + h0 G1,h0
(ν̂p(x) − Yt)

]
, (9)

where Ḡ(u) = 1 − G(u), G1,h0
(u) = G1(u/h0), and G1(u) =

∫ ∞
u v K(v)dv. We next discuss

the sampling properties of the proposed estimators.
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4 Distribution Theory

4.1 Assumptions

The errors in a time series model are usually assumed to follow certain linear time series

models such as an autoregressive and moving average (ARMA) process. Here we consider

a more general structure – the α-mixing process, which includes many linear and nonlinear

time series models as special cases. The asymptotic results here are derived under the α-

mixing assumption, which is popular and common for controlling dependence in dynamic

econometrics and finance with exogenous or lagged variables; see Pötscher and Prucha (1997)

and Cai (2002, 2003) for more details. Finally, Carrasco and Chen (2002) showed that some

generalized autoregressive conditional heteroscedastic (GARCH) and stochastic volatility

models are strong mixing under some mild conditions. See Chen and Tang (2005) for more

examples.

Before we proceed with the asymptotic properties of the proposed nonparametric estima-

tors, we first list all assumptions needed for the asymptotic theory, although some of them

might not be the weakest possible. Note that proofs of the asymptotic results presented in

this section may be found in Section 6 with some lemmas and their detailed proofs rele-

gated to Appendix. First, we introduce some notation. Let α(K) =
∫ ∞
−∞ uK(u) Ḡ(u)du and

µj(W ) =
∫ ∞
−∞ uj W (u)du. Also, for any j ≥ 0, write

lj(u | v) = E[Y j
t I(Yt ≥ u) |Xt = v] =

∫ ∞

u
yj f(y | v)dy, la,b

j (u | v) =
∂ab

∂ua∂vb
lj(u | v),

and la,b
j (νp(x) |x) = la,b

j (u | v)
∣∣∣
u=νp(x),v=x

. Clearly, l0(u | v) = S(u | v) and l1(νp(x) |x) =

p µp(x). Finally, l1,0
j (u | v) = −uj f(u | v) and l2,0

j (u | v) = −[uj f 1,0(u | v) + j uj−1 f(u | v)].

We now list the following regularity conditions.

Assumption A:

A1. For fixed y and x, 0 < F (y |x) < 1, g(x) > 0, the marginal density of Xt, and is
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continuous at x, and F (y |x) has continuous second order derivative with respect to

both x and y.

A2. The kernels K(·) and W (·) are symmetric, bounded, and compactly supported density.

A3. h → 0 and nh → ∞, and h0 → 0 and nh0 → ∞, as n → ∞.

A4. Let g1,t(·, ·) be the joint density of X1 and Xt for t ≥ 2. Assume that |g1,t(u, v) −

g(u) g(v)| ≤ M < ∞ for all u and v.

A5. The process {(Xt, Yt)} is a stationary α-mixing with the mixing coefficient satisfying

α(t) = O
(
t−(2+δ)

)
for some δ > 0.

A6. nh1+2/δ → ∞.

A7. h0 = o(h).

Assumption B:

B1. Assume that E
(
|Yt|δ |Xt = u

)
≤ M3 < ∞ for some δ > 2, in a neighborhood of x.

B2. Assume that |g1,t(y1, y2 |x1, x2)| ≤ M1 < ∞ for all t ≥ 2, where g1,t(y1, y2 |x1, x2) be

the conditional density of Y1 and Yt given X1 = x1 and Xt = x2.

B3. The mixing coefficient of the α-mixing process {(Xt, Yt)}∞t=−∞ satisfies
∑

t≥1 taα1−2/δ(t)

< ∞ for some a > 1 − 2/δ, where δ is given in Assumption B1.

B4. Assume that there exists a sequence of integers sn > 0 such that sn → ∞, sn =

o((nh)1/2), and (n/h)1/2α(sn) → 0, as n → ∞.

B5. There exists δ∗ > δ such that E
(
|Yt|δ∗ |Xt = u

)
≤ M4 < ∞ in a neighborhood of

x, α(t) = O(t−θ∗), where δ is given in Assumption B1, θ∗ ≥ δ∗ δ/{2(δ∗ − δ)}, and

n1/2−δ/4 hδ/δ∗−1/2−δ/4 = O(1).
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Remark 1. Note that Assumptions A1 - A5 and B1 - B5 are used commonly in the literature

of time series data (see, e.g., Masry and Fan, 1997, Cai, 2001). Note that α-mixing imposed

in Assumption A5 is weaker than β-mixing in Hall, Wolff, and Yao (1999) and ρ-mixing

in Fan, Yao, and Tong (1996). Because A6 is satisfied by the bandwidths of optimal size

(i.e., h ≈ n−1/5) if δ > 1/2, we do not concern ourselves with such refinements. Indeed,

Assumptions A1 - A6 are also required in Cai (2002). Assumption A7 means that the initial

step bandwidth should be chosen as small as possible so that the bias from the initial step

can be ignored. Since the common technique – truncation approach for time series data is

not applicable to our setting (see, e.g., Masry and Fan, 1997), the purpose of Assumption

B5 is to use the moment inequality. If α(t) decays geometrically, then Assumptions B4 and

B5 are satisfied automatically. Note that Assumptions B3, B4, and B5 are stronger than

Assumptions A5 and A6. This is not surprising because the higher moments involved, the

faster decaying rate of α(·) is required. Finally, Assumptions B1 - B5 are also imposed in

Cai (2001).

4.2 Asymptotic Properties for f̂c(y |x) and Ŝc(y |x)

First, we investigate the asymptotic behavior of f̂c(y |x) and we have the following asymp-

totic normality for f̂c(y |x).

Theorem 1: Under Assumptions A1 - A5 and B1 - B4 with h in A3, B3, and B4 replaced

by h0 h, we have

√
nh0 h

[
f̂c(y |x) − f(y |x) − Bf (y |x) + op(h

2 + h2
0)

]
→ N

{
0, σ2

f (y |x)
}

,

where the asymptotic bias is

Bf (y |x) =
h2

2
µ2(W ) f 0,2(y |x) +

h2
0

2
µ2(K) f 2,0(y |x),

and the asymptotic variance is σ2
f (y |x) = µ0(K

2)µ0(W
2) f(y |x)/g(x).
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Remark 2: The asymptotic results for f̂c(y |x) in Theorem 1 are similar to those for f̂ll(y |x)

in Fan, Yao, and Tong (1996) for the ρ-mixing sequence, which is stronger than α-mixing,

but as mentioned early, f̂ll(y |x) is not always a probability density function. The asymptotic

bias and variance are intuitively expected. The bias comes from the approximations in both

x and y directions and the variance is from the local conditional variance in the density

estimation setting, which is f(y |x).

Next, we study the asymptotic behaviors for Ŝc(y |x) at both interior and boundary

points. Similar to Theorem 1 for f̂c(y |x), we have the following asymptotic normality for

Ŝc(y |x).

Theorem 2: Under Assumptions A1 - A6, we have

√
nh

[
Ŝc(y |x) − S(y |x) − BS(y |x) + op(h

2 + h2
0)

]
→ N

{
0, σ2

S(y |x)
}

,

where the asymptotic bias is given by

BS(y |x) =
h2

2
µ2(W ) S0,2(y |x) − h2

0

2
µ2(K) f 1,0(y |x),

and the asymptotic variance is σ2
S(y |x) = µ0(W

2) S(y |x) [1 − S(y |x)]/g(x). In particular,

if Assumption A7 holds true, then,

√
nh

[
Ŝc(y |x) − S(y |x) − h2

2
µ2(W ) S0,2(y |x) + op(h

2)

]
→ N

{
0, σ2

S(y |x)
}

.

Remark 3: Note that the asymptotic results for Ŝc(y |x) in Theorem 2 are analogous to

those for Ŝll(y |x) = 1 − F̂ll(y |x) in Yu and Jones (1998) for iid data, but as mentioned

previously, F̂ll(y |x) is not always a distribution function. A comparison of Bs(y |x) with

the asymptotic bias for Ŝc1(y |x) (see Theorem 1 in Cai (2002)), it reveals that there is an

extra term
h2

0

2
f 1,0(y |x) µ2(K) in the asymptotic bias expression Bs(y |x) due to the vertical

smoothing in the y direction. Also, there is an extra term in the asymptotic variance (see
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(20)). These extra terms are carried over from the initial estimate but they can be ignored

if the bandwidth at the initial step is taken to be a higher order than the bandwidth at the

smoothing step.

Remark 4: It is important to examine the performance of Ŝc(y |x) by considering the

asymptotic mean squared error (AMSE). Theorem 2 concludes that the AMSE of Ŝc(y |x)

is

AMSE
(
Ŝc(y |x)

)
=

{h2 µ2(W ) S0,2(y |x) − h2
0 µ2(K) f 1,0(y |x)}2

4

+
1

nh

µ0(W
2) S(y |x) [1 − S(y |x)]

g(x)
. (10)

By minimizing AMSE in (10) and taking h0 = o(h), therefore, we obtain the optimal band-

width given by

hopt,S(y |x) =

[
µ0(W

2) S(y |x) [1 − S(y |x)]

{µ2(W ) S0,2(y |x)}2 g(x)

]1/5

n−1/5.

Therefore, the optimal rate of the AMSE of Ŝc(y |x) is n−4/5.

As for the boundary behavior of the WDKLL estimator, we can follow Cai (2002) to

establish a similar result for Ŝc(y |x) like Theorem 2 in Cai (2002). Without loss of generality,

we consider the left boundary point x = c h, 0 < c < 1. From Fan, Hu, and Troung (1994), we

take W (·) to have support [−1, 1] and g(·) to have support [0, 1]. Then, under Assumptions

A1 - A7, by following the same proof as that for Theorem 2 and using the second assertion

in Lemma 1, although not straightforward, we can show that

√
nh

[
Ŝc(y | c h) − Sc(y | c h) − BS,c(y) + op(h

2)
]
→ N

(
0, σ2

S,c(y)
)
, (11)

where the asymptotic bias term is given by BS,c(y) = h2 β0(c) S0,2(y | 0+)/[2 β1(c)] and the

asymptotic variance is σ2
S,c(y) = β2(0) S(y | 0+)[1 − S(y | 0+)]/[β2

1(c) g(0+)] with g(0+) =

limz↓0 g(z),

β0(c) =
∫ c

−1

u2 W (u)

1 − λc uW (u)
du, βj(c) =

∫ c

−1

W j(u)

{1 − λc uW (u)}j
du, 1 ≤ j ≤ 2,
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and λc being the root of equation Lc(λ) = 0

Lc(λ) =
∫ c

−1

uW (u)

1 − λ uW (u)
du.

Note that the proof of (11) is similar to that for Theorem 2 in Cai (2002) and omitted.

Theorem 2 and (11) reflect two of the major advantages of the WKDLL estimator: (a) the

asymptotic bias does not depend on the design density g(x), and indeed it is dependent only

on the simple conditional distribution curvature S0,2(y |x) and conditional density curvature

f 1,0(y |x); and (b) it has an automatic good behavior at boundaries. See Cai (2002) for the

detailed discussions.

Finally, we remark that if the point 0 were an interior point, then, (11) would hold with

c = 1, which becomes Theorem 2. Therefore, Theorem 2 shows that the WKDLL estimation

has the automatic good behavior at boundaries without the need of the boundary correction.

4.3 Asymptotic Properties for ν̂p(x) and µ̂p(x)

By the differentiability of Ŝc(ν̂p(x) |x), we use the Taylor expansion and ignore the higher

terms to obtain

Ŝc(ν̂p(x) |x) = p ≈ Ŝc(νp(x) |x) − f̂c(νp(x) |x) (ν̂p(x) − νp(x)), (12)

then,

ν̂p(x) − νp(x) ≈ [Ŝc(νp(x) |x) − p]/f̂c(νp(x) |x) ≈ [Ŝc(νp(x) |x) − p]/f(νp(x) |x)

by Theorem 1. As an application of Theorem 2, we can establish the following theorem for

the asymptotic normality of ν̂p(x) but the proof is omitted since it is similar to that for

Theorem 2.

Theorem 3: Under Assumptions A1 - A6, we have

√
nh

[
ν̂p(x) − νp(x) − Bν(x) + op(h

2 + h2
0)

]
→ N

{
0, σ2

ν(x)
}

,

17



where the asymptotic bias is Bν(x) = BS(νp(x) |x)/f(νp(x) |x) and the asymptotic variance

is σ2
ν(x) = µ0(W

2) p(1 − p)/[g(x)f 2(νp(x) |x)]. In particular, if Assumption A7 holds, then,

√
nh

[
ν̂p(x) − νp(x) − h2

2

S0,2(νp(x) |x)

f(νp(x) |x)
µ2(W ) + op(h

2)

]
→ N

{
0, σ2

ν(x)
}

.

Remark 5: First, as a consequence of Theorem 3, ν̂p(x)− νp(x) = Op

(
h2 + h2

0 + (nh)−1/2
)

so that ν̂p(x) is a consistent estimator of νp(x) with a convergence rate. Also, note that

the asymptotic results for ν̂p(x) in Theorem 3 are akin to those for ν̂ll,p(x) = Ŝ−1
ll (p |x)

in Yu and Jones (1998) for iid data. But in the bias term of Theorem 3, the quantity

S0,2(νp(x) |x)/f(νp(x) |x), involving the second derivative of the conditional distribution

function with respect to x, replaces ν ′′
p (x), the second derivative of the conditional VaR

function itself, which is in the bias term of the “check” function type local linear estimator

in Yu and Jones (1998) for iid data and Cai and Xu (2005) for time series. See Cai and Xu

(2005) for details. This is not surprising since the bias comes only from the approximation.

The former utilizes the approximation of the conditional distribution function but the later

uses the approximation of the conditional VaR function. Finally, Theorems 2 and 3 imply

that if the initial bandwidth h0 is chosen small as possible such as h0 = o(h), the final

estimates of S(y |x) and νp(x) are not sensitive to the value of h0 as long as it satisfies

h0 = o(h). This makes the selection of bandwidths much easier in practice, which will be

elaborated later (see Section 5.1).

Remark 6: Similar to Remark 5, we can derive the asymptotic mean squared error for

ν̂p(x). By following Yu and Jones (1998), Theorem 3 and (20) (given in Section 6) imply

that the AMSE of ν̂p(x) is given by

AMSE (ν̂p(x)) =
{h2 S0,2(νp(x) |x) µ2(W ) − h2

0 f 1,0(νp(x) |x) µ2(K)}2

4 f 2(νp(x) |x)

+
1

nh

µ0(W
2) [p(1 − p) + 2 h0 f(νp(x) |x) α(K)]

f 2(νp(x) |x) g(x)
. (13)
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Note that the above result is similar to that in Theorem 1 in Yu and Jones (1998) for the

double kernel local linear conditional quantile estimator. But, a comparison of (13) with

Theorem 3 in Cai (2002) for the WNW estimator reveals that (13) has two extra terms

(negligible if h0 = o(h)) due to the vertical smoothing in the y direction, as mentioned

previously. By minimizing AMSE in (13) and taking h0 = o(h), therefore, we obtain the

optimal bandwidth given by

hopt,ν(x) =

[
µ0(W

2) p(1 − p)

{µ2(W ) S0,2(νp(x) |x)}2 g(x)

]1/5

n−1/5.

Therefore, the optimal rate of the AMSE of ν̂p(x) is n−4/5. By comparing hopt,ν(x) with

hopt,S(y |x), it turns out that hopt,ν(x) is hopt,ν(y |x) evaluated at y = νp(x). Therefore, the

best choice of the bandwidth for estimating Sc(y |x) can be used for estimating νp(x).

Remark 7: Similar to (11), one can establish the asymptotic result at boundaries for νp(x)

as follows, one can show that if h0 = o(h),

√
nh

[
ν̂p(c h) − νp(c h) − Bν,c + op(h

2)
]
→ N

(
0, σ2

ν,c

)
,

where the asymptotic bias is Bν,c = h2β2(c)S
0,2(νp(0+)|0+)/[2β1(c)f(νp(0+)|0+)] and the

asymptotic variance is σ2
ν,c = β0(0) p [1 − p]/[β2

1(c) f 2(νp(0+) | 0+) g(0+)]. Clearly, ν̂p(x)

inherits all good properties from the WDKLL conditional distribution estimator Sc(y |x).

Note that the above result can be established by using the second assertion in Lemma 1 and

following the same lines along with those used in the proof of Theorem 2 and omitted.

Finally, we examine the asymptotic behavior for µ̂p(x) at both interior and boundary

points. First, we establish the following theorem for the asymptotic normality for µ̂p(x).

Theorem 4: Under Assumptions A1 - A5 and B1 - B5, we have

√
nh

[
µ̂p(x) − µp(x) − Bµ(x) + op(h

2 + h2
0)

]
→ N

{
0, σ2

µ(x)
}

,
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where the asymptotic bias is Bµ(x) = Bµ,0(x) +
h2

0

2
µ2(K) p−1f(νp(x) |x) with

Bµ,0(x) =
h2

2
µ2(W ) p−1

[
l0,2
1 (νp(x) |x) − νp(x) S0,2(νp(x) |x)

]
,

and the asymptotic variance is

σ2
µ(x) =

µ0(W
2)

p g(x)

[
p−1 l2(νp(x) |x) − p µ2

p(x) + (1 − p) νp(x) {νp(x) − 2 µp(x)}
]
.

In particular, if Assumption A7 holds true, then,

√
nh

[
µ̂p(x) − µp(x) − Bµ,0(x) + op(h

2)
]
→ N

{
0, σ2

µ(x)
}

.

Remark 8: First, Theorem 4 concludes that µ̂p(x) − µp(x) = Op

(
h2 + h2

0 + (nh)−1/2
)

so

that µ̂p(x) is a consistent estimator of µp(x) with a convergence rate. Also, note that the

asymptotic results in Theorem 4 imply that µ̂p(x) is a consistent estimator for µp(x) with

a convergence rate
√

nh. Further, note that although the asymptotic variance σ2
µ(x) is the

same as in Scaillet (2005) for µ̃p(x), Scaillet (2005) did not provide an expression for the

asymptotic bias term like Bµ(x) in the first result or Bµ,0(x) in the second conclusion in

Theorem 4. Clearly, the second term in the asymptotic bias expression is carried over from

the y direction smoothing at the initial step and it is negligible if h0 = o(h). If h0 = o(h),

then Bµ(x) becomes Bµ,0(x).

Remark 9: Like Remark 5, the AMSE for µ̂p(x) can be derived in the same manner. It

follows from Theorem 4 that the AMSE of µ̂p(x) is given by

AMSE (µ̂p(x)) =
1

nh
σ2

µ(x) +

{
Bµ,0(x) +

h2
0

2
µ2(K) p−1 f(νp(x) |x)

}2

. (14)

If h0 = o(h), minimizing AMSE in (14) with respect to h yields the optimal bandwidth given

by

hopt,µ(x) =


 σµ(x)

µ2(W ) p−1
{
l0,2
1 (νp(x) |x) − νp(x) S0,2(νp(x) |x)

}




2/5

n−1/5.
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Therefore, as expected, the optimal rate of the AMSE of µ̂p(x) is n−4/5.

Finally, we offer the asymptotic results for µ̂p(x) at the left boundary point x = c h. By

the same fashion, one can show that if h0 = o(h),

√
nh

[
µ̂p(c h) − µp(c h) − Bµ,c + op(h

2)
]
→ N

(
0, σ2

µ,c

)
,

where the asymptotic bias is

Bµ,c = h2β2(c) p−1
[
l0,2
1 (νp(0+) | 0+) − νp(0+) S0,2(νp(0+) | 0+)

]
/[2β1(c)],

and the asymptotic variance is

σ2
µ,c =

β0(0)

p β2
1(c) g(0+)

[
p−1 l2(νp(0+) | 0+) − p µ2

p(0+) + (1 − p) νp(0+) {νp(0+) − 2 µp(0+)}
]
.

Note that the proof of the above result can be carried over by using the second assertion in

Lemma 1 and following the same lines along with those used in the proof of Theorem 4 and

omitted. Next, we consider the comparison of the performance of the WDKLL estimation

µ̂p(x) with the NW type kernel estimator µ̃p(x) as in Scaillet (2005). To this effect, it is not

very difficult to derive the asymptotic results for the NW type kernel estimator but the proof

is omitted since it is along the same line with the proof of Theorem 2. See Scaillet (2005) for

the results at the interior point. Under some regularity conditions, it can be shown although

tediously (see Cai (2002) for details) that at the left boundary x = c h, the asymptotic bias

term for the NW type kernel estimator µ̃p(x) is of the order h by comparing to the order

h2 for the WDKLL estimate (see Bµ,c above). This shows that the WDKLL estimate does

not suffer from boundary effects but the NW type kernel estimator estimate does. This is

another advantage of the WDKLL estimator over the WW type kernel estimator µ̃p(x).

5 Empirical Examples

To illustrate the methods proposed earlier, we consider two simulated examples and two real

data examples on stock index returns. Throughout this section, the Epanechnikov kernel

K(u) = 0.75(1 − u2)+ is used and bandwidths are selected as described in the next section.
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5.1 Bandwidth Selection

With the basic model at hand, one must address the important bandwidth selection issue,

as the quality of the curve estimates depends sensitively on the choice of the bandwidth. For

practitioners, it is desirable to have a convenient and effective data-driven rule. However,

almost nothing has been done so far about this problem in the context of estimating CVaR

νp(x) and CES µp(x) although there are some results available in the literature in other

contexts for some specific purposes.

As indicated earlier, the choice of the initial bandwidth h0 is not very sensitive to the

final estimation but it needs to be specified. First, we use a very simple idea to choose h0.

As mentioned previously, the WNW method involves only one bandwidth in estimating the

conditional distribution and VaR. Because the WNW estimate is a linear smoother (see (5)),

we recommend using the optimal bandwidth selector, the so-called nonparametric Akaike

information criterion proposed by Cai and Tiwari (2000), to select the bandwidth, called h̃.

Then we take 0.1× h̃ or smaller as the initial bandwidth h0. For the given h0, we can select

h as follows. According to (8), F̂c(·|·) is a linear estimator so that the nonparametric AIC

selector of Cai and Tiwari (2000) can be applied here to select the optimal bandwidth for

F̂c(·|·), denoted by hS. As mentioned at the end of Remark 6, the bandwidth for ν̂p(x) is

the same as that for F̂c(·|·) so that it is simply to take hS as hν . From (9), µ̂p(x) is a linear

estimator too. Therefore, by the same token, the nonparametric AIC selector is applied to

selecting hµ for µ̂p(x). This is used in our implementation in the next sections.

5.2 Simulated Examples

In the simulated examples, we demonstrate the performance of the estimators in terms of the

mean absolute deviation error (MADE). For example, for the conditional expected shortfall
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function, the MADE is defined as

Eµp
=

1

n0

n0∑

k=1

|µ̂p(xk) − µp(xk)|,

where xk, k = 1, · · · , n0 are the regular grid points. Similarly, we can define the MADE for

the conditional value-at-risk function, denoted by Eνp
.

Example 1. We use a simulated example of an ARCH type model with Xt = Yt−1

Yt = 0.9 sin(2.5Xt) + σ(Xt)εt,

where σ2(x) = 0.8
√

1.2 + x2 and {εt} are i.i.d. N(0, 1). We consider three sample sizes:

n = 250, n = 500, and n = 1000. The 5% WDKLL and NW estimation of conditional

value-at-risk and expected shortfalls are computed and 500 replications are performed for

each sample size. We compute the mean absolute deviation errors for each sample size. The

results are summarized in Figures 1 and 2. For each n, the 500 Eνp
values of WDKLL

estimation and the 500 Eνp
values of NW estimation of conditional VaR are plotted in

Figure 1(d) in the form of boxplots. We can observe that the estimation becomes stable

as the sample size increases for both WDKLL and NW estimators. This is in line with

our asymptotic theory that the proposed estimators are consistent. It is obvious that the

MADEs of WDKLL estimator are smaller than the MADEs of NW estimator. This indicates

that our WDKLL estimator has smaller bias than NW estimator.

Figures 1(a) − (c), respectively, display the true conditional VaR functions νp(x) =

0.9 sin(2.5Xt)+σ(x)Φ−1(1− p) in solid lines, where Φ(·) is the standard normal distribution

function. Also, the dashed lines represent the proposed WDKLL estimates of conditional

VaR from a typical sample. The dotted lines represent the NW estimates of conditional

VaR from a typical sample. The typical sample is selected in such a way that its Eνp
value

equals to the median in the 500 replications. It is obvious that the both WDKLL and NW

estimates give the best fit of true conditional VaR function when n = 500. The performance

of WDKLL is better than NW estimator, especially in the boundary.
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In Figures 2(a) − (c), the solid lines show the true conditional ES functions µp(x) =

0.9 sin(2.5Xt)p + σ(x)µ1(Φ
−1(1 − p)), where µ1(t) =

∫ ∞
t uφ(u)du and φ(·) is the standard

normal distribution density function. The dashed lines are the proposed WDKLL estimates

of conditional ES from the typical sample. The dotted lines are the NW estimates of con-

ditional ES from the typical sample. The typical sample is selected in such a way that its

Eµp
value equals to the median in the 500 replications. For each n, boxplots of the 500 Eµp

values of conditional ES are plotted in Figure 2(d) for both WDKLL and NW estimates. We

can conclude that conditional ES estimators have a similar performance as that for condi-

tional VaR estimators. The estimation becomes stable as the sample size increases and the

estimated curves perform better as n increases.

The 1% WDKLL and NW estimates of conditional VaR and ES are computed under the

same setting. The results are displayed in Figures 3 and 4. Results similar to those for the

5% estimates can be observed. But it is not surprising to see that the performance of 1%

conditional VaR and conditional ES estimates is not good as that for the 5% estimates.

Example 2. In the above example, we only consider the case that Xt is a scalar. In this

example, we consider the multivariate situation, i.e. Xt consists of two lagged variables: Yt−1

and Yt−2. The model is shown below:

Yt = m(Xt) + σ(Xt)εt,

where m(Xt) = 0.63Yt−1−0.47Yt−2 and σ2(Xt) = 0.5+0.23Y 2
t−1+0.3Y 2

t−2. {εt} are generated

from N(0, 1). Three sample sizes: n = 200, n = 400, and n = 600, are considered here. For

each sample size, we replicate the design 500 times. Here we only present the boxplots of the

MADE for the conditional VaR and ES estimates in Figure 5. Figures 5(a) display boxplots

of the 500 Eνp
values of WDKLL and the 500 Eνp

NW estimates of conditional VaR. Figures

5(b) display boxplots of the 500 Eµp
values of WDKLL and the 500 Eµp

values NW estimates

of conditional ES. From Figures 5(a) and (b), it is visually verified that both WDKLL and
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NW estimation become stable as the sample size increases and the performance of WDKLL

estimator is better than the performance of NW estimator.

5.3 Real Examples

Example 3. Now we consider data on Dow Jones Industrials (DJI) index returns. We

take a sample of 1801 daily prices from DJI indices, from November 3, 1998 to January 3,

2006, and compute the daily returns as 100 times the difference of the log of prices. Let

Yt be the daily negative log return (log loss) of DJI and Xt be the first lagged variable of

Yt. The estimators proposed in this paper are used to estimate the 5% conditional VaR

and ES functions. The estimation results are shown in Figure 6. Figure 6(a) shows the 5%

conditional VaR estimates and Figure 6(b) shows the 5% conditional ES estimates. Both

conditional VaR and ES estimates exhibit a U-shape, which is close to the so-called “volatility

smile”. Therefore, the risk tends to be lower when the lagged log loss of DJI is close to the

empirical average and larger otherwise. We can also observe that the curves are asymmetric.

This may indicate that the DJI is more likely to fall down if there was a loss within the last

day than there was a same amount positive return.

Example 4. We apply the proposed methods to estimate the conditional value-at-risk

and expected shortfall of the International Business Machine Co. (NYSE: IBM) security

returns. The data are one-day prices recorded from March 1, 1996 to April 6, 2005. We

use the same method to calculate the daily returns as in Example 3. In order to estimate

the value-at-risk of a stock return, generally, the information set Xt may contain a market

index of corresponding capitalization and type, the industry index, and the lagged values of

stock return. For this example, Yt is the log loss of IBM, and we choose two variables as

information set for the sake of simplicity. Let Xt be the first lagged variable of Yt and lagged

daily negative log return of Dow Jones Industrials (DJI) index. Our main results from the

estimation of the model are summarized in Figure 7. Figures 7(a) and (b) show the surfaces
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of conditional VaR and ES estimators of IBM returns. For the fixed value of IBM log loss,

we know conditional VaR and ES are the functions of DJI log loss. Figures 7(c) and (e)

depict the conditional VaR and ES curves for three different values of negative log-return

of IBM stock (−0.275, −0.025, 0.325). For the fixed value of DJI log loss, we conclude that

conditional VaR and ES are the functions of IBM log loss. Figures 7(d) and (f) display the

conditional VaR and ES curves for three different values of negative log-return of DJI stock

(−0.225, 0.025, 0.425).

From Figures 7(c) - (f), we can observe that most of these curves are U-shaped. This is

consistent with the results observed in Example 3. Also, we need to notice that these three

curves in each figure are not parallel. This implies that the effects of lagged IBM and lagged

DJI variables on the risk of IBM are mixing. Let us examine Figure 7(d). When past IBM

log loss is around −0.2 these three curves are close to each other. It seems that DJI has

fewer effects (bring less information) on CVaR around this value. On the other hand, DJI

has more effects when IBM log loss is far from this value.

6 Proofs of Theorems

In this section, we present the proofs of Theorems 1 - 4. First, we list two lemmas.

Lemma 1: Under Assumptions A1 - A5, we have

λ = −h λ0 {1 + op(1)} and pt(x) = n−1 bt(x) {1 + op(1)},

where λ0 = µ2(W ) g′(x)/[2 µ2(W
2) g(x)] and bt(x) = [1 − h λ0 (Xt − x) Wh(x − Xt)]

−1. Fur-

ther, we have

pt(c h) = n−1 bc
t(c h) {1 + op(1)},

where bc
t(x) = [1 + λc (Xt − x) Kh(x − Xt)]

−1.

Proof: See the proofs of Lemmas 2 and 3 in Cai (2002), omitted.
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Lemma 2: Under Assumptions A1 - A5, we have, for any j ≥ 0,

Jj = n−1
n∑

t=1

ct(x)
(

Xt − x

h

)j

= g(x) µj(W ) + Op(h
2),

where ct(x) = bt(x) Wh(x − Xt).

Proof: See Appendix.

Before we start to provide the main steps for proofs of theorems. First, it follows from

Lemmas 1 and 2 that

Wc,t(x, h) ≈ bt(x) Wh(x − Xt)∑n
t=1 bt(x) Wh(x − Xt)

≈ n−1 g−1(x) bt(x) Wh(x − Xt) =
ct(x)

n g(x)
. (15)

Now we embark on the proofs of theorems.

Proof of Theorem 1: By (7), we decompose f̂c(y |x) − f(y |x) into three parts as follows

f̂c(y |x) − f(y |x) ≡ I1 + I2 + I3, (16)

where with εt,1 = Y ∗
t (y) − E(Y ∗

t (y)|Xt),

I1 =
n∑

t=1

εt,1 Wc,t(x, h), I2 =
n∑

t=1

[E(Y ∗
t (y)|Xt) − f(y|Xt)] Wc,t(x, h),

and

I3 =
n∑

t=1

[f(y |Xt) − f(y |x)] Wc,t(x, h).

An application of the Taylor expansion, (7), (15), and Lemmas 1 and 2 gives

I3 =
n∑

t=1

1

2
f 0,2(y |x) Wc,t(x, h) (Xt − x)2 + op(h

2)

=
1

2
g−1(x) f 0,2(y |x) n−1

n∑

t=1

ct(x) (Xt − x)2 + op(h
2)

=
h2

2
µ2(W ) f 0,2(y |x) + op(h

2).

By (2) and following the same steps as in the proof of Lemma 2, we have

I2 =
h2

0 µ2(K)

2 g(x)
n−1

n∑

t=1

f 2,0(y |Xt) ct(x) + op(h
2
0 + h2) =

h2
0

2
µ2(K) f 2,0(y |x) + op(h

2
0 + h2).
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Therefore,

I2 + I3 =
h2

2
µ2(W ) f 0,2(y |x) +

h2
0

2
µ2(K) f 2,0(y |x) + op(h

2 + h2
0) = Bf (y |x) + op(h

2 + h2
0).

Thus, (16) becomes

√
nh0h

[
f̂c(y |x) − f(y |x) − Bf (y |x) + op(h

2 + h2
0)

]
=

√
nh0h I1

= g−1(x) I4 {1 + op(1)} → N
{
0, σ2

f (y |x)
}

,

where I4 =
√

h0 h/n
∑n

t=1 εt,1 ct(x). This, together with Lemma 3 in Appendix, therefore,

proves the theorem.

Proof of Theorem 2: Similar to (16), we have

Ŝc(y |x) − S(y |x) ≡ I5 + I6 + I7, (17)

where with εt,2 = Ḡh0
(y − Yt) − E(Ḡh0

(y − Yt)|Xt),

I5 =
n∑

t=1

εt,2 Wc,t(x, h), I6 =
n∑

t=1

[E{Ḡh0
(y − Yt) |Xt} − S(y|Xt)] Wc,t(x, h),

and

I7 =
n∑

t=1

[S(y |Xt) − S(y |x)] Wc,t(x, h).

By analogy with the analysis of I2, the Taylor expansion, (7), and Lemmas 1 and 2, we have

I7 =
n∑

t=1

1

2
S0,2(y |x) Wc,t(x, h) (Xt − x)2 + op(h

2)

=
1

2
S0,2(y |x) g−1(x) n−1

n∑

t=1

ct(x) (Xt − x)2 + op(h
2)

=
h2

2
µ2(W ) S0,2(y |x) + op(h

2).

To evaluate I6, first, we consider the following

E[Ḡh0
(y − Yt) |Xt = x] =

∫ ∞

−∞
K(u) S(y − h0 u |x)du

= S(y |x) +
h2

0

2
µ2(K) S2,0(y |x) + o(h2

0)

= S(y |x) − h2
0

2
µ2(K) f 1,0(y |x) + o(h2

0). (18)
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By (18) and following the same arguments as in the proof of Lemma 2, we have

I6 = −h2
0 µ2(K)

2 g(x)
n−1

n∑

t=1

f 1,0(y |Xt)ct(x) + op(h
2
0 + h2) = −h2

0

2
µ2(K) f 1,0(y |x) + op(h

2
0 + h2).

Therefore,

I6 + I7 =
h2

2
µ2(W ) S0,2(y |x) − h2

0

2
µ2(K) f 1,0(y |x) + op(h

2 + h2
0) = BS(y |x) + op(h

2 + h2
0),

so that by (17),

√
nh

[
Ŝc(y |x) − S(y |x) − BS(y |x) + op(h

2 + h2
0)

]
=

√
nh I5.

Clearly, to accomplish the proof of theorem, it suffices to establish the asymptotic normality

of
√

nh I5. To this end, first, we compute Var(εt,2 |Xt = x). Note that

E[Ḡ2
h0

(y − Yt) |Xt = x] =
∫ ∞

−∞
Ḡ2

h0
(y − u) f(u |x)du

=
∫ ∞

−∞

∫ ∞

−∞
K(u1) K(u2) S(max(y − h0 u1, y − h0 u2) |x)du1du2

= S(y |x) + 2 h0 α(K) f(y |x) + O(h2
0), (19)

which, in conjunction with (18), implies that

Var(εt,2 |Xt = x) = S(y |x) [1 − S(y |x)] + 2 h0 α(K) f(y |x) + o(h0).

This, together with the fact that

Var(εt,2 ct(x)) = E
[
c2
t (x) E{ε2

t,2 |Xt}
]

= E
[
c2
t (x) Var(εt,2 |Xt)

]
,

leads to

h Var{εt,2 ct(x)} = µ0(W
2) g(x) [S(y |x){1 − S(y |x)} + 2 h0 α(K) f(y |x)] + o(h0).

Now, since |εt,2| ≤ 1, by following the same arguments as those used in the proofs of Lemma

2 and 3 in Appendix (or Lemma 1 and Theorem 1 in Cai (2002)), we can show although

tediously that

Var(I8) = σ2
S(y |x) g2(x) + 2 µ0(W

2) h0 α(K) f(y |x) g(x) + o(h0), (20)
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where I8 =
√

h/n
∑n

t=1 εt,2 ct(x), and

√
nh I5 = g−1(x) I8 {1 + op(1)} → N

{
0, σ2

S(y |x)
}

.

This completes the proof of Theorem 2.

Proof of Theorem 4: Similar to (12), we use the Taylor expansion and ignore the higher

terms to obtain

∫ ∞

ν̂p(x)
y Kh0

(y − Yt)dy ≈
∫ ∞

νp(x)
y Kh0

(y − Yt)dy − νp(x) Kh0
(νp(x) − Yt) [ν̂p(x) − νp(x)]

= YtḠh0
(νp(x) − Yt) − νp(x) Kh0

(νp(x) − Yt) [ν̂p(x) − νp(x)] + h0 G1,h0
(νp(x) − Yt).

Plugging the above into (9) leads to

p µ̂p(x) ≈ µ̂p,1(x) + I9, (21)

where

µ̂p,1(x) =
n∑

t=1

Wc,t(x, h) YtḠh0
(νp(x) − Yt) − νp(x)f̂c(νp(x)|x)[ν̂p(x) − νp(x)],

which will be shown later to be the source of both the asymptotic bias and variance, and

I9 = h0

n∑

t=1

Wc,t(x, h) G1,h0
(νp(x) − Yt),

which will be shown to contribute only the asymptotic bias (see Lemma 4 in Appendix).

From (12) and (8),

f̂c(νp(x) |x) [ν̂p(x) − νp(x)] ≈
n∑

t=1

Wc,t(x, h){Ḡh0
(νp(x) − Yt) − p}.

Therefore, by (15),

µ̂p,1(x) =
n∑

t=1

Wc,t(x, h) [{Yt − νp(x)}Ḡh0
(νp(x) − Yt) − p νp(x)]

=
n∑

t=1

Wc,t(x, h) εt,3 +
n∑

t=1

Wc,t(x, h) E{ζt(x) |Xt}

≈ g−1(x) n−1
n∑

t=1

εt,3 ct(x) +
n∑

t=1

Wc,t(x, h) E{ζt(x) |Xt}

≡ µ̂p,2(x) + µ̂p,3(x),

30



where ζt(x) = [Yt−νp(x)] Ḡh0
(νp(x)−Yt)+p νp(x) and εt,3 = ζt(x)−E{ζt(x) |Xt}. Next, we

derive the asymptotic bias and variance for µ̂p,1(x). Indeed, we will show that asymptotic

bias of µ̂p(x) comes from µ̂p,3(x) and together with I9 and the asymptotic variance for µ̂p,1(x)

is only from µ̂p,2(x). First, we consider µ̂p,3(x). Now, it is easy to see by the Taylor expansion

that

E[Yt Ḡh0
(νp(x) − Yt) |Xt = v] =

∫ ∞

−∞
K(u)du

∫ ∞

νp(x)−h0 u
y f(y | v)dy

=
∫ ∞

−∞
l1(νp(x) − h0 u | v) K(u)du = l1(νp(x) | v) +

h2
0

2
µ2(K) l2,0

1 (νp(x) | v) + o(h2
0)

= l1(νp(x) | v) − h2
0

2
µ2(K)

[
νp(x) f 1,0(νp(x) | v) + f(νp(x) |x)

]
+ o(h2

0),

which, in conjunction with (18), leads to

ζ(v) = E[ζt(x) |Xt = v] = A(νp(x) | v) − h2
0

2
µ2(K) f(νp(x) | v) + o(h2

0), (22)

where A(νp(x)|v) = l1(νp(x) | v)−νp(x) [S(νp(x) | v)−p]. It is easy to verify that A(νp(x)|v) =

E[{Yt − νp(x)} I(Yt ≥ νp(x)) |Xt = v] + p νp(x), A(νp(x)|x) = p µp(x), and A0,2(νp(x)|x) =

l0,2
1 (νp(x) |x)−νp(x) S0,2(νp(x) |x). Therefore, by (22), the Taylor expansion, and (7), µ̂p,3(x)

becomes

µ̂p,3(x) =
n∑

t=1

Wc,t(x, h) ζ(Xt) = ζ(x) +
1

2
ζ ′′(x)

n∑

t=1

Wc,t(x, h) (Xt − x)2 + op(h
2).

Further, by Lemmas 1 and 2,

µ̂p,3(x) = ζ(x) +
h2

2
µ2(W ) ζ ′′(x) + op(h

2)

= p µp(x) +
h2

2
µ2(W ) A0,2(νp(x) |x) − h2

0

2
µ2(K) f(νp(x) |x) + op(h

2
0).

This, in conjunction with Lemma 4, concludes that

µ̂p,3(x) + I9 = p [µp(x) + Bµ(x)] + op(h
2 + h2

0),

so that by (21),

µ̂p,1(x) − p [µp(x) + Bµ(x)] = µ̂p,2(x) + op(h
2 + h2

0),
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and

µ̂p(x) − µp(x) − Bµ(x) = p−1 µ̂p,2(x) + op(h
2 + h2

0).

Finally, by Lemma 5 in Appendix, we have

√
nh

[
µ̂p(x) − µp(x) − Bµ(x) + op(h

2 + h2
0)

]
=

1

p g(x)
I10 {1 + op(1)} → N

{
0, σ2

µ(x)
}

,

where I10 =
√

h/n
∑n

t=1 εt,3ct(x). Thus, we prove the theorem.

Appendix: Proofs of Lemmas

In this section, we present the proofs of Lemmas 2, 3, 4, and 5. Note that we use the same

notation as in Sections 2 - 6. Also, throughout this appendix, we denote a generic constant

by C, which may take different values at different appearances.

Proof of Lemma 2: Let ξt = ct(x)(Xt−x)j/hj. It is easy to verify by the Taylor expansion

that

E(Jj) = E(ξt) =
∫ vj W (v) g(x − h v)

1 + h λ0 v W (v)
dv = g(x) µj(W ) + O(h2), (A.1)

and

E(ξ2
t ) = h−1

∫ v2j W 2(v) g(x − h v)

[1 + h λ0 v W (v)]2
dv = O(h−1).

Also, by the stationarity, a straightforward manipulation yields

n Var(Jj) = Var(ξ1) +
n∑

t=2

ln,t Cov(ξ1, ξt), (A.2)

where ln,t = 2 (n− t+1)/n. Now decompose the second term on the right hand side of (A.2)

into two terms as follows

n∑

t=2

|Cov(ξ1, ξt)| =
dn∑

t=2

(· · ·) +
n∑

t=dn+1

(· · ·) ≡ Jj1 + Jj2, (A.3)

where dn = O(h−1/(1+δ/2)). For Jj1, it follows by Assumption A4 that |Cov(ξ1, ξt)| ≤ C, so

that Jj1 = O(dn) = o(h−1). For Jj2, Assumption A2 implies that |(Xt − x)j Wh(x − Xt)| ≤
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C hj−1, so that |ξt| ≤ C h−1. Then, it follows from the Davydov’s inequality (see, e.g.,

Theorem 17.2.1 of Ibragimov and Linnik (1971)) that |Cov(ξ1, ξt+1)| ≤ C h−2 α(t), which,

together with Assumption A5, implies that

Jj2 ≤ C h−2
∑

t≥dn

α(t) ≤ C h−2 d−(1+δ)
n = o(h−1).

This, together with (A.2) and (A.3), therefore implies that Var(Jj) = O((nh)−1) = o(1).

This completes the proof of the lemma.

Lemma 3: Under Assumptions A1 - A6, we have

I4 =

√
h0 h

n

n∑

t=1

εt,1 ct(x) → N
{
0, σ2

f (y |x) g2(x)
}

.

Proof: It follows by using the same lines as those used in the proof of Lemma 2 and

Theorem 1 in Cai (2002), omitted. The outline is described as follows. First, similar to the

proof of Lemma 2, it is easy to see that

Var(I4) = h0 h Var(εt,1 ct(x)) + h0 h
n∑

t=2

ln,t Cov(ε1,1 c1(x), εt,1 ct(x)). (A.4)

Next, we compute Var(εt,1 |Xt = x). Note that

h0 E[Y ∗
t (y)2 |Xt = x] =

∫ ∞

−∞
K2(u) f(y − h0u |x)du = µ0(K

2) f(y |x) + O(h2
0),

which, together with the fact that

Var(εt,1 ct(x)) = E
[
c2
t (x) E{ε2

t,1 |Xt}
]

= E
[
c2
t (x) Var(εt,1 |Xt)

]

and (2), implies that

h h0 Var(εt,1 ct(x)) = µ0(K
2) µ0(W

2) f(y |x) g(x) + O(h2
0) = σ2

f (y |x) g2(x) + O(h2
0).

As for the second term on the right hand side of (A.4), similar to (A.3), it is decomposed

into two summons. By using Assumptions A4 and B2 for the first summon and using

the Davydov’s inequality and Assumption A5 to the second summon, we can show that
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the second term on the right hand side of (A.4) goes to zero as n goes to infinity. Thus,

Var(I4) → σ2
f (y |x) g2(x) by (A.4). To show the normality, we employ Doob’s small-block

and large-block technique (see, e.g., Ibragimov and Linnik, 1971, p. 316). Namely, partition

{1, . . . , n} into 2 qn + 1 subsets with large-block of size rn = ⌊(nh)1/2⌋ and small-block of

size sn = ⌊(nh)1/2/ log n⌋, where qn = ⌊n/(rn + sn)⌋ with ⌊x⌋ denoting the integer part of x.

By following the same steps as in the proof of Theorem 1 in Cai (2002), we can accomplish

the rest of proofs: the summands for the large-blocks are asymptotically independent, two

summands for the small-blocks are asymptotically negligible in probability, and the standard

Lindeberg-Feller conditions hold for the summands for the large-blocks. See Cai (2002) for

details. So, the proof of the lemma is complete.

Lemma 4: Under Assumptions A1 - A6, we have

I9 = h0

n∑

t=1

Wc,t(x, h) G1,h0
(νp(x) − Yt) = h2

0 µ2(K) f(νp(x) |x) + op(h
2
0).

Proof: Define ξt,1 = ct(x) G1,h0
(νp(x)−Yt). Then, by Lemma 1, I9 = I10 {1+ op(1)}, where

I10 = g−1(x) h0
∑n

t=1 ξt,1/n. Similar to (A.1),

E (ξt,1) = E [ct(x) E {G1,h0
(νp(x) − Yt) |Xt}]

=
∫ ∞

−∞

∫ ∞

−∞

K(u) W (v) uS(νp(x) − h0 u) |x) g(x − h v)

1 + h λ0 v W (v)
dudv

= h0 µ2(K) f(νp(x) |x) g(x) + O(h0 h2),

and

E(ξ2
t,1) = E

[
b2
t (x) W 2

h (x − Xt) E
{
G2

1,h0
(νp(x) − Yt) |Xt

}]
= O(h0/h),

so that Var(ξt,1) = O(h0/h). By following the same arguments in the derivation of Var(Jj)

in Lemma 2, one can show that Var(I10) = O((nh)−1) = o(1). This proves the lemma.

Lemma 5: Under Assumptions A1 - A5 and B1 - B5, we have

I10 =

√
h

n

n∑

t=1

εt,3ct(x) → N
{
0, p2 g2(x) σ2

µ(x)
}

.
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Proof: It follows by using the same lines as those used in the proof of Lemma A.1 and

Theorem 1 in Cai (2001), omitted. The main idea is as follows. First, similar to the proof

of Lemmas 2 and 3, we will show by Assumptions B1 - B3 that

Var(I10) → p2σ2
µ(x) g2(x). (A.5)

Finally, we need to compute Var(εt,3 ct(x)). Since

Var(εt,3 ct(x)) = E
[
c2
t (x) E{ε2

t,3 |Xt}
]

= E
[
c2
t (x) Var(ζt(x) |Xt)

]
,

then, we first need to calculate Var(ζt(x) |Xt). To this effect, by (22),

Var(ζt(x) |Xt = v) = Var[(Yt − νp(x)) Ḡh0
(νp(x) − Yt) |Xt = v]

= E
[
(Yt − νp(x))2Ḡ2

h0
(νp(x) − Yt)|Xt = v

]
− [l1(νp(x)|v) − νp(x)S(νp(x)|v)]2 + O(h2

0).

Similar to (19),

E[(Yt − νp(x))2 Ḡ2
h0

(νp(x) − Yt) |Xt = v] =
∫ ∞

−∞
G2

h0
(νp(x) − y) (y − νp(x))2 f(y | v)dy

=
∫ ∞

−∞

∫ ∞

−∞
K(u1) K(u2) τ(max(νp(x) − h0 u1, νp(x) − h0 u2) | v)du1du2

= τ(νp(x) | v) − 2 h0 τ 1,0(νp(x) | v) α(K) + O(h2
0) = τ(νp(x) | v) + O(h2

0)

since τ 1,0(νp(x) | v) = 0, where τ(u | v) = l2(u | v)− 2 νp(x)l1(u | v)+ ν2
p(x)S(u | v). Therefore,

Var(ζt(x) |Xt = v) = Var[(Yt − νp(x))I(Yt ≥ νp(x)) |Xt = v] + O(h2
0),

and

h Var(εt,3 ct(x)) = µ0(W
2) Var[(Yt − νp(x))I(Yt ≥ νp(x)) |Xt = x] g(x) + o(1).

Similar to Lemmas 2 and 3, clearly, we have,

Var(I10) = h Var(εt,3 ct(x)) + h
n∑

t=2

ln,t Cov(ε1,3 c1(x), εt,3 ct(x)),

and the first term on right hand side of the above equation converges to p2 σ2
µ(x) g2(x). As

for the second term on the right hand side of the above equation, similar to (A.3), it is
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decomposed into two summons. By using Assumptions A4 and B2 for the first summon and

using the Davydov’s inequality and Assumption A5 to the second summon, we can show

that the second term on the right hand side of the above equation goes to zero as n goes

to infinity. Thus, (A.5) holds. To show the normality, we employ Doob’s small-block and

large-block technique (see, e.g., Ibragimov and Linnik, 1971, p. 316). Namely, partition

{1, . . . , n} into 2 qn + 1 subsets with large-block of size rn and small-block of size sn, where

sn is given in Assumption B4, qn = ⌊n/(rn + sn)⌋ with ⌊x⌋ denoting the integer part of x,

and rn = ⌊(nh)1/2/γn⌋ with γn satisfying followings: γn is a sequence of positive numbers

γn → ∞ such that γn sn/
√

nh → 0 and γn (n/h)1/2α(sn) → 0 by Assumption B4. By

following the same steps as in the proof of Theorem 1 in Cai (2001), we can accomplish

the rest of proofs: the summands for the large-blocks are asymptotically independent, two

summands for the small-blocks are asymptotically negligible in probability, and the standard

Lindeberg-Feller conditions hold for the summands for the large-blocks. See Cai (2001) for

details. Therefore, the lemma is proved.
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Figure 1: Simulation results for Example 1 when p = 0.05. Displayed in (a) - (c) are the true
conditional VaR functions (in solid lines), the estimated WDKLL conditional VaR functions
(in dashed lines), and the estimated NW conditional VaR functions (in dotted lines)for
n = 250, 500 and 1000, respectively. Boxplots of the 500 MADE values for both WDKLL
and NW estimation of the conditional VaR are plotted in (d).
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Figure 2: Simulation results for Example 1 when p = 0.05. Displayed in (a) - (c) are the true
conditional ES functions (in solid lines), the estimated WDKLL conditional ES functions (in
dashed lines), and the estimated NW conditional ES functions (in dotted lines) for n = 250,
500 and 1000, respectively. Boxplots of the 500 MADE values for both WDKLL and NW
estimation of the conditional ES are plotted in (d).
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Figure 3: Simulation results for Example 1 when p = 0.01. Displayed in (a) - (c) are the true
conditional VaR functions (in solid lines), the estimated WDKLL conditional VaR functions
(in dashed lines), and the estimated NW conditional VaR functions (in dotted lines) for
n = 250, 500 and 1000, respectively. Boxplots of the 500 MADE values for both WDKLL
and NW estimation of the conditional VaR are plotted in (d).
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Figure 4: Simulation results for Example 1 when p = 0.01. Displayed in (a) - (c) are the true
conditional ES functions (in solid lines), the estimated WDKLL conditional ES functions (in
dashed lines), and the estimated NW conditional ES functions (in dotted lines) for n = 250,
500 and 1000, respectively. Boxplots of the 500 MADE values for both WDKLL and NW
estimation of the conditional VaR are plotted in (d).
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Figure 5: Simulation results for Example 2 when p = 0.05. (a) Boxplots of MADE for both
WDKLL and NW conditional VaR estimates. (b) Boxplots of MADE for Both WDKLL and
NW conditional ES estimates.

−1.0 −0.5 0.0 0.5 1.0

1.
60

1.
65

1.
70

1.
75

1.
80

1.
85

1.
90

(a) Conditional VaR

−1.0 −0.5 0.0 0.5 1.0

2.
2

2.
3

2.
4

2.
5

2.
6

(b) Conditional ES

Figure 6: (a) 5% conditional VaR estimate for DJI index. (b) 5% conditional ES estimate
for DJI index.
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Figure 7: (a) 5% conditional VaR estimates for IBM stock returns. (b) 5% conditional ES
estimates for IBM stock returns index. (c) 5% conditional VaR estimates for three different
values of lagged negative IBM returns (−0.275, −0.025, 0.325). (d) 5% conditional VaR
estimates for three different values of lagged negative DJI returns (−0.225, 0.025, 0.425).
(e) 5% conditional ES estimates for three different values of lagged negative IBM returns
(−0.275, −0.025, 0.325). (f) 5% conditional ES estimates for three different values of lagged
negative DJI returns (−0.225, 0.025, 0.425).
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