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ABSTRACT 
 
Compressed sensing has shown great potential to speed up 
magnetic resonance imaging (MRI) assuming the image is 
sparse and compressible in a transform domain. 
Conventional methods typically use a pre-defined 
sparsifying transform such as wavelets or finite difference, 
which sometimes does not lead to a sufficient sparse 
representation. In this paper, we design a patch-based 
nonlocal operator (PANO) to model the sparsity between 
image patches. The linearity of PANO allows us to establish 
a general formulation to reconstruct magnetic resonance 
image from undersampled data and provides feasibility to 
incorporate prior information learnt from guide images. To 
demonstrate the feasibility and performance of PANO, 
learning similarities from multi-modal images are presented 
to significantly improve the reconstructed images over 
conventional redundant wavelets in terms of visual quality 
and reconstruction errors. 
 

Index Terms— MRI, Fast imaging, compressed 
sensing, nonlocal operator, multi-modality 

 
1. INTRODUCTION 

 
Magnetic resonance imaging (MRI) is widely used in the 
clinical diagnosis but limited by its data acquisition speed. 
Compressed sensing MRI (CS-MRI) has shown promising 
results to speed up the imaging assuming magnetic 
resonance (MR) images are sparse/highly compressible in a 
certain transform domain [1]. Typical transforms used in 
CS-MRI are wavelets, which is optimal for piece-smooth 
features, and finite difference, which is optimal for piece-
wise constant features.  Allowing the transform to sparsely 
represent other image features, contourlets [2] and high 
order total variation [3] are previously introduced in to MR 
image reconstruction. These transforms could be combined 
to further improve the reconstruction [1, 4].  

A sparsifying transform or dictionaries learnt from 
undersampled data or prior images have shown great 
potential to reduce the reconstruction error. For example, 
dictionaries could be learnt from fully sampled image [5] or 
undersampled data [6]. If a guide image, indicating some 
image features of target image to be reconstructed, is 
available, the pixel sorting information [7, 8], geometric 
information [9] or the relationship between guide and target 
images can also be modeled [10] to improve the 
reconstruction. 

Recently, the nonlocal processing has been introduced for 
MRI reconstruction to make use of the similarity of image 
patches [11-14]. Differences between neighboring patches 
are penalized. The sparsity originated from the similarity of 
image patches was exploited to reconstruct images from 
undersampled Fourier measurements in [15, 16]. It has been 
shown that edges are better preserved for these methods. 
However, MR image are reconstructed following an 
algorithm without a rigorous reconstruction model, which 
makes it hard to trade the data consistency and sparsity, as 
well as incorporate other prior information. 

In this paper, we first establish a general patch-based 
nonlocal operator (PANO) to model the sparsity between 
image patches. The linearity of PANO allows us to establish 
a general reconstruction formulation and tradeoff between 
the sparsity of patches and the data consistency. Using 
PANO in formulation also provides the flexibility to 
incorporate other knowledge, e.g. prior information from a 
guide image, into the reconstruction. To demonstrate the 
feasibility of PANO, learning similarities from multi-modal 
images are presented to significantly improve the 
reconstructed images in terms of visual quality and 
reconstruction errors. 
 

2. PATCH-BASED NONLOCAL OPERATOR 
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In this section, the linear operator PANO will be defined 
and undersampled MR image reconstruction will be 
presented.  
 
2.1 Definition of PANO 
 
Patch grouping is shown in Fig. 1. For a given image 

N∈x  , we first decompose it into patches with fixed size 
L L× . Let iP  defines the patch decomposition, and the ith  

patch 
2L

i ∈b   is expressed as i i=b P x . The jv  group of 

image patches is denoted as 
jv iR b  where { }1, ,j Qv i i=   

stores the index of patches. Let 3DΨ  be a 3D transform, we 

define the nonlocal operator PANO as 

3 jj D v i=A Ψ R P .                  (1) 

If only one patch is available in a group, 3DΨ  is reduced to 

a 2D sparsifying transform, e.g. discrete cosine transform or 
Haar wavelet transform.  

 
Fig.1. Group image patches. (a) An image with 6×6 pixels, (b) 

four groups of patches, (c) the patch and group dimension. 
 

An optimal grouping is expected to produce sparse 
coefficients 

j j=α A x .                        (2) 

The adjoint operator T
jA  is 3j

T T T T
j i v D=A P R Ψ  and it satisfies 
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if 3DΨ is an orthogonal transform. no  is a counter indicating 

the times of the nth pixel are grouped and  c  is the overlap 
factor if overlapping patches are used [9]. Therefore, an 
image is estimated from PANO coefficients according to 
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Given the definition of PANO, we are now able to 
establish a general reconstruction formulation. 
 
2.2 Reconstruction model using PANO 
 

 
 
Assuming that jα  is sparse, we propose to reconstruct the 

MR image from undersampled k-space data by solving the 
following problem 
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where the term 
1

1

J

j
j =
 A x promotes the sparsity and the term 

2

2
− Uy F x  enforces the data consistency. λ  trades the 

sparsity with the data consistency.  =UF UF means that a 

undersampling operator M N×∈U   multiplies on a unitary 

Fourier transform N N×∈F  [1-9]. 
To solve the problem in Eq. (5), we use the variable 

splitting and quadratic penalty technique proposed in [17] 
because of its advantage in handling the 1  norm-based 

optimization with image patches [5, 9]. Details are omitted 
here due to the limited space.  
 
2.3 Choice of grouping 
 
In this paper, similar patches are grouped to produce sparse 
coefficients since it shows great potentials to improve the 
MR image reconstruction [15, 16].  

Fig. 2(a) illustrates how to group similar patches. For a 
search region Ω  and the reference patch T , we measure 
the similarity between the reference patch and a candidate 
patch using the 2  norm distance. 1Q −  candidates with the 

   
(a)                                         (b) 

            
(c)                                           (d) 

Fig.2.  Illustration of the similar patches found via block matching 
and the sparsity results in. (a) A search region Ω  with 

39 39D D× = ×  and the reference patch T  with 8 8L L× = × , (b) 
16Q =  similar patches found by the 2  norm distance measure 

with patch size 8L = , (c) 3D array stacked from the similar 
patches, and (d) curves for decay of pixel values, 2D and 3D 
wavelet coefficients.  



smallest distance are selected as similar patches. This 
process is called block matching [18]. Since the available 
search region can be as large as the entire image, the similar 
patches are not limited to a local region. Thus, the similarity 
is nonlocal. 

Performing the 3D Haar wavelet transform on this group, 
spares coefficients are produced due to the similarity of 
these patches. An example is shown in Fig. 2. 15 similar 
patches and the reference patch are grouped in Fig. 2(c). Fig. 
2(d) shows that 3D Haar wavelet coefficients of the 3D 
array decay much faster than the coefficients of 2D Haar 
wavelet and the pixel values of these patches. This 
observation implies that 3D Haar wavelets can provide 
sparser vectors of these grouped patches than 2D Haar 
wavelets. 
 

3. RESULTS 
 
To demonstrate the feasibility of PANO, two examples, 
which learn similarities from an intermediate image or 
another modal image, will be presented in this section. The 
flowchart of the reconstruction is shown in Fig.3.  

 
 

Fig.3. Flowchart of PANO-based undersampled magnetic 
resonance image reconstruction. 

  
The multi-modal MR images shown in Fig. 4 are T1 and 

T2 weighted MR images [19]. These images are with 1mm3 
voxel resolution and 8 bit quantization from the Brainweb 
phantom [20]. Undersampling is simulated by acquiring 
partial phase encodings as shown in Fig. 4(b). The realistic 
multi-modal MR images shown in Fig. 5 are T1 and T2 
weighted MR images, which are acquired from a healthy 
volunteer at a 1.5T Philips MRI scanner with sequence 
parameters (T1-weighted image: TR/TE=1700/390ms; T2-
weighted image: TR/TE=3000/800ms, both images are with 
230×230 mm field of view, 5 mm slice thickness). 
Undersampling is simulated by acquiring partial phase 
encodings as shown in Fig. 5(b). 

To evaluate the reconstruction error, we use the relative 

2  norm error (RLNE) [9] defined as 

( )
2 2

ˆ ˆ /e = −x x x x                              (6) 

to measure the difference of reconstructed image x̂  and 
fully sampled image x .  

Parameters of PANO are D×D=39×39, L×L=8×8, 
and Q=8. The regularization parameter isλ=106 for PANO 

and shift-invariant wavelets (SIDWT) used as sparsifying 
transform in conventional CS-MRI method. SIDWT is 
chosen since it outperforms the original CS-MRI [1] and is 
with fast computation.  

The programs run on dual core 2.2 GHz CPU laptop with 
3 GB RAM. The proposed method requires 4 minutes to 
reconstruct one image for a given similarity. 

 
3.1 Learn similarities from an intermediate image 
 
The guide image is pre-reconstructed using shift-invariant 
Haar wavelets [9]. Comparing Fig. 4(c) with Fig. 4(d), 
PANO significantly remove the artifacts and reduce the 
reconstruction error by learning similarities from the images. 
However, some are still presented in the tagged place of Fig. 
4(d) when PANO is used. 

 
Fig.4. Reconstructed images on simulated data. (a) Fully sampled 
T2-image, (b) undersampling pattern with 25% data sampled, (c) 
reconstructed image using shift-invariant wavelets with four 
decomposition levels, (d) reconstructed using PANO with (c) as 
the guide image, (e) fully sampled T1-image,  (d) reconstructed 
using PANO with (e) as the guide image. The reconstruction error 
RLNEs of (c), (d) and (f) are 0.18, 0.092, and 0.070.  
 
3.2 Learn similarities from another modal image 
 
For diagnosis, multi-modal MR images may be acquired. 
Due to the correlated features between these images, it is 



possible to incorporate information from one modal image 
into another modal image.  

Assuming that a full T1 weighted image shown in Fig. 
1(e) is available, similarities can also be learnt from it then 
feed it into PANO as prior information. For the given 
sampling pattern in Fig. 4(b), learning the similarities from 
this T1 image outperforms learning the similarities from 
conventional CS-MRI reconstruction since better visual 
quality and lower reconstruction error are achieved 
comparing Fig. 4(f) with Fig. 4(d). The same observation is 
found for realistic MRI data as shown in Fig. 5.  
 

 
Fig.5. Reconstructed images on in vivo data. (a) Fully sampled T2-
image, (b) undersampling pattern with 35% data sampled, (c) 
reconstructed image using shift-invariant wavelets with four 
decomposition levels, (d) reconstructed using PANO with (c) as 
the guide image, (e) fully sampled T1-image,  (d) reconstructed 
using PANO with (e) as the guide image. The reconstruction error 
RLNEs of (c), (d) and (f) are 0.120, 0.081, and 0.062.  
 

4. CONCLUSIONS 
 
A patch-based nonlocal operator (PANO) is established to 
model the linear representation of image patches. By 
learning the similarities from guide images, undersampled 
magnetic resonance image reconstruction using PANO 
significantly improves the reconstructed images. Learning 
similarities from another full modal image outperforms 

learning similarities from undersampled data for the given 
examples. Further investigation on the proposed method 
with in vivo data is undergoing. More details on PANO-
based CS-MRI image reconstruction can be found in [21].  
 

5. ACKNOWLEDGEMENTS 
 
The authors sincerely thank Dr. Feng Huang at Philips 
Research China for providing the realistic MRI data used in 
in Fig. 5. This work was supported by the NNSF of China 
(61201045 and 11174239), Open Fund from Key Lab of 
Digital Signal and Image Processing of Guangdong 
Province (54600321), the NSF of Shandong Province 
(ZR2011FM004), and Scientific Research Foundation for 
the Introduction of Talent at Xiamen University of 
Technology (90030606).  
 

6. REFERENCES 
 
[1] M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI: The 

application of compressed sensing for rapid MR imaging," 
Magnetic Resonance in Medicine, vol. 58, pp. 1182-1195, 
2007. 

 
[2] X. B. Qu, W. R. Zhang, D. Guo, C. B. Cai, S. H. Cai, and Z. 

Chen, "Iterative thresholding compressed sensing MRI based 
on contourlet transform," Inverse Problems in Science and 
Engineering, vol. 18, pp. 737-758, 2010. 

 
[3] F. Knoll, K. Bredies, T. Pock, and R. Stollberger, "Second 

order total generalized variation (TGV) for MRI," Magnetic 
Resonance in Medicine, vol. 65, pp. 480-491, 2011. 

 
[4] X. B. Qu, X. Cao, D. Guo, C. W. Hu, and Z. Chen, 

"Combined sparsifying transforms for compressed sensing 
MRI," Electronics Letters, vol. 46, pp. 121-122, 2010. 

 
[5] Y. M. Chen, X. J. Ye, and F. Huang, "A novel method and 

fast algorithm for MR image reconstruction with 
significantly under-sampled data," Inverse Problems and 
Imaging, vol. 4, pp. 223-240, 2010. 

 
[6] S. Ravishankar and Y. Bresler, "MR image reconstruction 

from highly undersampled k-space data by dictionary 
learning," IEEE Transactions on Medical Imaging, vol. 30, 
pp. 1028-1041, 2011. 

 
[7] E. V. R. DiBella and G. Adluru, "Reordering for improved 

constrained reconstruction from undersampled k-space data," 
International Journal of Biomedical Imaging, vol. 2008, 
Article ID 341684, 2008. 

 
[8] B. Wu, R. P. Millane, R. Watts, and P. J. Bones, "Prior 

estimate-based compressed sensing in parallel MRI," 
Magnetic Resonance in Medicine, vol. 65, pp. 83-95, 2011. 

 
[9] X. B. Qu, D. Guo, B. D. Ning, Y. K. Hou, Y. L. Lin, S.H. 

Cai, and Z. Chen, "Undersampled MRI reconstruction with 



patch-based directional wavelets," Magnetic Resonance 
Imaging, vol. 30, pp. 964-977, 2012. 

 
[10] H. Q. Du and F. Lam, "Compressed sensing MR image 

reconstruction using a motion-compensated reference," 
Magnetic Resonance Imaging, vol. 30, pp. 954-963, 2012. 

 
[11] G. Adluru, T. Tasdizen, M. C. Schabel, and E. V. R. DiBella, 

"Reconstruction of 3D dynamic contrast-enhanced magnetic 
resonance imaging using nonlocal means," Journal of 
Magnetic Resonance Imaging, vol. 32, pp. 1217-1227, 2010. 

 
[12] D. Liang, H.F. Wang, Y. C. Chang, and L. Ying, "Sensitivity 

encoding reconstruction with nonlocal total variation 
regularization," Magnetic Resonance in Medicine, vol. 65, 
pp. 1384-1392, 2011. 

 
[13] S. Fang, K. Ying, L. Zhao, and J. P. Cheng, "Coherence 

regularization for SENSE reconstruction with a nonlocal 
operator (CORNOL)," Magnetic Resonance in Medicine, vol. 
64, pp. 1414-1426, 2010. 

 
[14] A. Wong, A. Mishra, P. Fieguth, and D. Clausi, "Sparse 

reconstruction of breast MRI using homotopic L0 
minimization in a regional sparsified domain," IEEE 
Transactions on Biomedical Engineering, vol. 60, pp.743-
752, 2013. 

 
[15] K. Egiazarian, A. Foi, and V. Katkovnik, "Compressed 

sensing image reconstruction via recursive spatially adaptive 
filtering," in 14th IEEE International Conference on Image 
Processing, ICIP 2007, September 16, 2007 - September 19, 
2007, IEEE, San Antonio, TX, United states, pp. 549-552, 
2006. 

 
[16] M. Akçakaya, T. A. Basha, B. Goddu, L. A. Goepfert, K. V. 

Kissinger, V. Tarokh, W. J. Manning, and R. Nezafat, "Low-
dimensional-structure self-learning and thresholding: 
Regularization beyond compressed sensing for MRI 
Reconstruction," Magnetic Resonance in Medicine, vol. 66, 
pp. 756-767, 2011. 

 
[17] J. F. Yang, Y. Zhang, and W.T. Yin, "A Fast TVL1-L2 

minimization algorithm for signal reconstruction from partial 
Fourier data," Technical Report, Rice University, 2009. 

 
[18] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image 

denoising by sparse 3-D transform-domain collaborative 
filtering," IEEE Transactions on Image Processing, vol. 16, 
pp. 2080-2095, 2007. 

 
[19] J. V. Manjn, N. A. Thacker, J. J. Lull, G. Garcia-Marti, L. 

Marti-Bonmati, and M. Robles, "Multicomponent MR image 
denoising," International Journal of Biomedical Imaging, 
Article ID 756897, 2009. 

 
[20] C. A. Cocosco, V. Kollokian, Kwan, and A. C. Evans, 

"BrainWeb: Online interface to a 3D MRI simulated brain 
database," Neuroimage, vol. 5, p. S425, 1997. 

 

[21]  X. B. Qu, Y. K. Hou, F. Lam, D. Guo, J. H. Zhong, and Z. 
Chen, “Magnetic resonance image reconstruction from 
undersampled measurements using a patch-based nonlocal 
operator”, submitted to Medical Image Analysis, 2013. 

 




