纳米尺寸团簇 $Ni_n Zr_n(n=3\sim5)$ 的几何结构 与成键规律研究

王艺平 董昆明 谭 凯 王 娴 林梦海 林连堂 张乾二 (厦门大学化学系, 物理化学研究所, 固体表面物理化学国家重点实验室, 厦门 361005)

摘要 根据化学键理论与拓朴原理,设计了团簇 $N_{i,z}Z_{r,n}$ ($n=3\sim5$) 的可能几何构型,并用从头算方法进行构型优化。结果表明:由 $N_{i,z}Z_{r,n}$ ($n=3\sim5$) 的可能几何构型,并用从头算方法进行构型优化。结果表明:由 $N_{i,z}Z_{r,n}$ ($n=3\sim5$) 团簇电子性质与有机烯烃分子等瓣相似,原子之间的成键按照强弱相间的规则分布。关键词 $N_{i,z}Z_{r,n}$ 团簇:从头算:等瓣相似

中图分类号 0.641

文献标识码 A

文章编号 0251-0790(2002)03-0453-04

Ni 与前过渡金属Ti 和 Zr 形成的合金,由于它们具有特殊的微观结构、良好的电子及磁学性质而成为化学界的研究热点[1,2]. 实验上可利用直接水淬法制备 $ZresAl_{7.5}Cur_{7.5}Ni_{10}$ 大块非晶态合金[3],Ti—Ni, Zr—Ni 合金可作为形状记忆合金[4]. 含有 NiZr 的合金可作为贮氢材料[5]. 在理论方面,已有人对纯 $Ni^{[6,7]}$ 、纯 $Zr^{[8]}$ 原子簇进行了详细研究,并找到了几种较为稳定的构型,同时还对 NiZr 合金进行了多方面的性质(电子、磁学) 研究[9]. 我们在前期工作中,对 $ZrxNi_{7-x}(n=6)$ 团簇进行了从头算研究[10]. 本文将就 Zr—Ni 合金玻璃中,纳米尺寸 $Zr_nNi_n(n=3\sim5)$ 团簇的几何结构与成键规律进行量化研究.

1 计算方法

NiZr 合金玻璃的合成中,不同的 NiZr 组成比例,使其短程结构发生变化,性质也随之变化。本文 拟就 NiZr 原子比为 1 1 的组成研究它们结构中 Zr—Ni 间的相互作用。计算程序采用 Gamess $95^{[11]}$,先进行能量计算与结构预测,然后对可能的几何构型进行优化计算,讨论其电子性质,并推测团簇生成过程。计算中 Ni,Zr 采用 Hav 赝势基组 $^{[12]}$,对原子进行冻芯处理。

2 结果与讨论

2.1 Ni³Zr³ 与 Ni⁴Zr⁴ 的几何构型与电子结构

对于 $N_{\rm i}^3Z_{\rm r}^3$ 原子团簇,本文设计了平面、三棱柱和八面体等 6 种构型. 优化结果发现,八面体的构型的团簇较为稳定,其几何对称性和总能量 $E_{\rm T}$ 见表 1 中 1—6.

对 20 几种 Ni_4Zr_4 的可能构型进行优化,得到 18 种独立的较稳定的几何构型(见图 1). 其几何对称性和总能量(E_T) 见表 1 中 7—24. 18 种构型大致可分为 5 类.

第一类: 构型 $7 \sim 10$ 为准立方体(或准四棱柱)构型,能量较接近,约为 166.06 a.u. 随着对称性逐步降低, T_d D_{2h} C_4 , 总能量略有降低.以构型 1 为例,每个 Ni 或 Zr 原子均与 3 个异种原子配位,共形成 12 个 Ni—Zr 键, Ni—Zr 间原子电荷重叠集居数为 0.344,基本为离域键.

第二类:构型 11—13,构型 11 的原设计为四方反棱柱,优化后 Ni—Ni 间的键全部断开,形成一个矮四棱台,构型 12 则是一个曲面的网络构型,以 4 个 Zr 形成的四边形为中心,4 个 Ni 原子 2 上 2 下与 Zr 原子形成棱桥.

收稿日期: 2001-02-07.

基金项目: 国家自然科学基金(批准号: 29892166, 29983001, 29803006)资助.

Table 1	The symmetries and	energies of the several	models from	Ni ₃ Zr ₃ to Ni ₅ Zr ₅
1ame +	THE SYMPHICALIES AND	cicigios di the several	HIOGERS LIGHT	1313ZA3 LU 1315ZA5

Cluster	No.	Symmetry	<i>E</i> _T / a. u.	Cluster	No.	Symmetry	<i>E</i> _T / a. u.	Cluster	No.	Symmetry	<i>E</i> _T / a. u.
Ni3Zr3	1	D 3 h	- 124. 517 9	N i4Zr4	13	C_{2h}	- 166. 254 1	Ni5Zr5	19	C 2v	- 207. 723 4
	2	D 3 h	- 124. 502 1		14	C_{3v}	- 166. 068 4		20	C 4 v	- 207. 091 4
	3	C_{3v}	- 124. 487 4		15	C_{3v}	- 166. 077 9		21	C $2v$	- 207. 720 1
	4	D3 h	- 124. 395 0		16	C_{2h}	- 166. 107 8		22	C 4 v	- 207. 696 8
	5	C_{3v}	- 124. 566 9		17	C_{2h}	- 166. 113 2		23	C_2	- 207. 833 9
	6	C_s	- 124. 690 0		18	C_{2h}	- 166. 210 9		24	C_{5v}	- 207. 559 6
Ni_4Zr_4	7	T_d	- 166. 069 8		19	D_{2h}	- 166. 022 5		25	C_{2v}	- 207. 6415
	8	D_{2h}	- 166. 066 3		20	D_{2h}	- 166. 018 3		26	C_{2v}	- 207. 697 7
	9	C_{2v}	- 165. 987 3		21	D_{4h}	- 165. 916 7		27	C_{2v}	- 207.678 5
	10	C_{1h}	- 166. 189 2		22	D_{2h}	- 165. 965 0		28	C_{5v}	- 207. 791 6
	11	C_{4v}	- 166. 061 8		23	C_{2v}	- 166. 714 3		29	D_{5h}	- 207. 451 7
	12	D_{2d}	- 166. 090 3		24	D_{2h}	- 166. 100 9		30	D_{5h}	- 207. 211 7

Fig. 1 Predicted geometric structures for Ni₄Zr₄

第三类: 是重叠三角锥构型 14 和 15, 构型 15 是由 4 个 Ni 原子形成的三角锥叠在 Zr 形成的三角锥上,构型 14则是锥顶 Ni, Zr 原子互换. 两构型中侧面的 3 个 Ni—Zr 键都是多重键.

第四类: 构型 16—18 为链环式构型, 折叠程度越来越小, 构型 18 已摊开成平面. 构型 16 虽是立体构型, 但 Zr—Zr, Zr—Ni, Ni—Ni 之间的电荷分布较为均匀. 除了同一层 Zr—Zr. 电荷集居数为 0. 868外, 其余三种原子间的电荷重叠集居数分别为 0. 694, 0. 684, 0. 457, 基本为离域键, 而平面构型 18, 则原子间强弱交替现象十分明显. E4-ch Zri 原子中相连的 Zre—Zri 原子间相距 0.0d307h mm;//电荷集ki.i.

居数为 0.416,双环内 Z_r 原子间距 0.198 z_{nm} ,电荷集居数为 0.784,4 个 z_r — z_{nm} 间分别间隔 0.225 z_{nm} 和 z_{nm} 电荷集居数分别为 z_{nm} 0.521. 而 z_{nm} 间则几乎未成键(电荷集居数为 z_{nm} 0.016). 这种明显的强弱键表明构型 z_{nm} 内是定域键占主导地位.

第五类, 平面构型 13-18 与 Ni5Zr5 平面构型一起讨论.

2. 2 Nis Zrs 几何构型与电子结构

试探了几十种 N is Zrs 可能的几何构型, 仅得到 12 种较稳定的构型, 构型 19—24 为立体构型, 构型 25—30 为平面构型, 其几何对称性和总能量见表 1. 现在先过论立体构型.

构型 **19** 可看作是由两个四棱锥重叠而成. 体系主要由 13 个 N_{i} — Z_{r} 键组成, 除中间垂直的 N_{i} — Z_{r} 键较弱(电荷集居数仅 0. 156),其余垂直与水平的 N_{i} — Z_{r} 键都较强,电荷重叠集居数分别为 0. 698 4, 0. 478 8. 体系中两组较靠近的 Z_{r} — Z_{r} , N_{i} — N_{i} 原子间各形成 2 组同核键, Z_{r} — Z_{r} 键很强,为三重键 (电荷集居数达 1. 325), N_{i} — N_{i} 键很弱,图 2 所示为构型 **19** 的 N_{o} . 28, N_{o} . 29, N_{o} . 33 和 N_{o} . 35 分子轨道图. N_{o} . 28 是上层 N_{i} 原子与 4 个 Z_{r} 原子的成键轨道. N_{o} . 29 是下层 Z_{r} 与 4 个配位 N_{i} 的成键轨道,主要由 Z_{r} 的 d 轨道提供电子, Z_{r} 就可以是垂直 4 个 Z_{r} 键的成键分子轨道, Z_{r} 化分 Z_{r} 键的成键分子轨道。

Fig. 2 Some diagrams of molecular orbitals for Ni₅Zr₅(19)

构型 23 是另一个较稳定的构型. $5 \land Z_r$ 原子与 $1 \land N_i$ 原子形成网状结构. $5 \land Z_r$ 原子均是 sd^3 杂化形成四面体配位,其中 $3 \land Z_r$ 原子是 4 配位($2 \land Z_r$, $2 \land N_i$),其余 $2 \land Z_r$ 原子与 $3 \land Z_r$ 配位,另一杂化轨道为单电子占据,该体系多重度为 3. $4 \land N_i$ 原子分别与 $1 \land Z_r$ 个原子成键,形成类似金属原子团簇卤化物 $M_6 X_{12}$ 端基配位.

2.3 NiZr 金属团簇与有机多烯分子等瓣相似

无论 $N_{ii}Zr_3$, $N_{ii}Zr_4$ 还是 $N_{i5}Zr_5$ 团簇都有一些平面构型的电子结构与有机多烯分子极其相似. 例如, $N_{i4}Zr_4$ 有 2 个是辐射四边形构型, Zr_4 或 N_{i4} 形成的四元环之间原子电荷集居数较少,而 N_{i} —Zr 之间的电荷重叠集居数很高,形成明显多重键。整个体系中强、弱键交替出现,类似四亚甲基环丁烷分子。这种情况也发生在 $N_{i5}Zr_5$ 的辐射三角形(类同三亚甲基环丙烷), $N_{i5}Zr_5$ 的辐射五边形构型(图 3). 又如 $N_{i4}Zr_4$ 构型 12 的双四环构型,类似有机分子双环丁烯。其 N_{i} —Zr 键有两种键长:0. 224 9 和 0. 274 9 nm,原子间电荷集居数分别为 0. 953 2 和 0. 521 4,而 Zr—Zr 原子间键长也有两种:0. 198 和 0. 307 nm 电荷集居数为 0. 784 6 和 0. 416, N_{i} — N_{i} 间则电荷集居数很少(0. 016),即金属团簇分子也

© 1994-20 Fig (3hirThe is otobre i analogy of latteneound Elusters NiZiflbond: length (nm)/population | http://www.cnki.i

出现局域键. 这种现象可用 NiZr 金属对与亚甲基的前线轨道等瓣近似来解释,Kubacek 等 $^{[13]}$ 指出:金属与配体的分子碎片与甲基 CH_3 ,亚甲基 CH_2 。次甲基 CH 等存在等瓣相似关系.

在纳米尺寸的 NiZr 团簇研究中,发现 $Ni_nZr_n(n=3\sim5)$ 团簇也有这种现象,这是因为 Ni 的价电子态为 $3d^84s^2$,5 个 d 轨道中有 3 个被孤对电子占据,2 个单占据轨道与 s 轨道形成 sd^2 前线轨道,Zr 的价电子态为 $4d^25s^2$,也是 2 个单占据轨道与 s 轨道形成前线轨道,Ni—Zr 形成金属对时,两组 sd^2 前线轨道重叠形成 σ , π 三重键后,还有 2 个单占据轨道,与 CH_2 前线轨道等瓣相似,所以 NiZr 金属对与 CH_2 一样,可有三聚、四聚、五聚体结构出现,还有类似双环丁烯和萘分子等构型的 NiZr 团簇出现。这里仅是初步研究,进一步研究结果将陆续报道。

参考文献

- 1 CAI Qiang(蔡 强), WEI Chang-Ping(魏长平), XU Yong-Yi(许永谊) et al.. Chem. J. Chinese Universities(高等学校化学学报)[J], 1999, **20**(3): 344—349
- 2 YAN Qian-Gu(严前古), YU Zuo-Long(于作龙), YUAN Song-Yue(远松月). Chem. J. Chinese Universities (高等学校化学学报) [J], 1998, **19**(4): 626—628
- 3 QU Xiang-Dong, SUN Wen-Sheng, ZHANG Feng-Jun et al.. Metallic Functional Materials[J], 1998, 5(4): 161-163
- 4 Hsieh S. F., Wu S. K., J. Alloys & Compounds [J], 1998, 270: 237-241
- 5 ZHANG Wen-Kui, MA Chun-an, YANG Xiao-Guang et al.. Rare Metal Materials and Engineering [J], 1999, 28: 4 202-4 205
- Walch S. P. J. Chem. Phys. [J], 1987, 86(9): 5 082-5 087
- 7 Reuse F. A., Khanna S. N., Chem. Phys. Letters[J], 1995, 234: 77-81
- 8 Majumdar D., Balasubramanian K.. Chem. Phys. Letters[J], 1997, 279: 403-410
- 9 Hausleitner Ch., Hafner J.. Phys. Rev. [J], 1992, 45(1): 115—127
- 10 WANG Yi-Ping(王艺平), DONG Kun-Ming(董昆明), HUANG Hai-Sheng(黄海晟) et al.. J. Xiam en University Natural Science Ed. (厦门大学学报,自然科学版)[J], 2000, **39**(6): 786—792
- 11 Schmidt M. W., Baldridge K. K., Boatz J. A. et al.. J. Comput. Chem. [J], 1993, 14: 1347—1363
- 12 Hay P. J., Wadt W. R., J. Chem. Phys. [J], 1985, 82: 270-283, 299-310
- 13 Kubacek P., Hoffmann R., J. Am. Chem. Soc. [J], 1981, 103, 4 320-4 332

Geometry Structures and Bonding Rule for Nanoclusters Ni_nZr_n(n= 3—5)

WANG Yi-Ping, DONG Kun-Ming, TAN Kai, WANG Xian, LIN Meng-Hai* LIN Lian-Tang, ZHANG Qian-Er

(Department of Chemistry, Institute of Physical Chemistry, Xiamen University, State Key Laboratry for Physical Chemistry of Solid Surfaces, Xiamen 361005, China)

Abstract According to the chemical bond theory and topological principle, 26 clusters $Ni_nZr_n(n=3-5)$ have been optimized with quantum chemistry method Gamess. The results indicate that zirconium atoms play an active role in the forming of metallic bonds and the cluster tends to form a planar net structure. We have also found that the electronic structure of $Ni_nZr_n(n=3-5)$ planar clusters is a isolobal analogy to alkenes, which show that the strong bonds and the weak bonds are interlaced.

Keywords Ni—Zr clusters; *Ab initio*; Isolobel analogy

(Ed.:I,X)