过渡金属纯簇和混合簇的密度泛函研究: Nb4, Co4 和 Nb2 Co2

林梦海* Ŧ 张乾二 娴 固体表面物理化学国家重点实验室 厦门 361005) (厦门大学化学系)

摘要 用密度泛函方法对过渡金属双原子 Nb₂, Co₂和 NbCo 的电子态进行研究,得到三者的基态分别为 $^{3}\Sigma_{e}^{-}$, $^{5}\Sigma_{e}^{+}$ 和 $^{3}\Delta$. 并以此为基础,讨论四核簇Nb₄, Co₄和Nb₂Co₂的成键情况,发现稳定的单金属簇Nb₄具有高对称性的密堆结构,稳定的Co₄ 具有低对称性的变形封闭结构,两者都是典型的金属键;而 Nb₂Co2 在封闭式结构中是一般的金属键,在线形结构中有强弱 交替的定域键, Nb 原子易相互靠近成键, Co 原子趋于远离不成键. 三种团簇的多重度以 Nb4< Nb2Co2< Co4 顺序依次升高. 关键词 过渡金属团簇,金属键,定域键,铌,钴

Density Functional Theory Study of Pure and Mixed Transition-metal Clusters: Nb₄, Co₄ and Nb₂Co₂

LIN, Meng-Hai^{*} WANG, Xian ZHANG, Oian-Er

(Department of Chemistry, Xiamen University, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen 361005)

Abstract The transition-metal dimers Nb2, Co2 and diatomics NbCo have been calculated using density functional theory. Their ground states were predicted to be ${}^{3}\Sigma_{g}^{-}$, ${}^{5}\Sigma_{g}^{+}$ and ${}^{3}\Delta$, respectively. The tetramers Nb4, Co4 and Nb2Co2 have been discussed at UBP86 level. The results show that Nb4 clusters have compact structures with high symmetries, while Co₄ have distortion structures with low symmetries. Both of them have normal metal bonds. On the other hand, mixed clusters Nb2Co2 have not only three and two-dimensional structures, but also straight-line structures with the weak-strong alternant bonds. Two Nb atoms tend to bond each other, while two Co atoms tend to dissociate. The multiplicities of tetramers follow the order of Nb₄< Nb₂Co₂< Co₄.

Keywords transition-metal cluster, metal bond, local bond, niobium, cobalt

具有明显超导性的Nb和铁磁性的Co一直倍受关注^[1]. 与之相关的研究多集中于 Nb_n 和 Co_n 纯过渡金属簇模型的 建立和物理化学性质的探讨.近年来人们也开始对 Nb 和 Co 合金材料的性质进行研究,例如发现 NbCo 合金的 Nb Co 界 面有磁性消失现象[2]. 尽管理论计算上有关 $Nb_n^{[3-5]}$, Co,^[6-8]团簇的研究很多,但对二元混合簇的研究却很少.本 文用密度泛函(DFT)方法分析 Nb4, Co4 和 Nb2Co2 四核团簇 的电子结构和成键性质,希望能为研究大分子团簇,以及 NbCo 合金的金属键提供初步的理论依据.

单金属双原子簇 Nb₂, Co₂ 的基态电子态, 与文献中的实验值 和理论计算值比较, 以选定 UBP86^[9,10] 为后续研究的合适方 法,而后计算 NbCo 金属对和四核团簇 Nb4, Co4, Nb2Co2.由 于 DFT 方法是单行列式的计算,得到自旋量子数平方 S^2 算 符的本征态,而本文计算所得的体系总能量为多个电子态的 平均能量(自旋多重度为表观多重度的最大值).计算过程中 每个Nb原子冻结内层 28 个电子(1s~3d),每个 Co原子冻 结(1s~2p)内层 10个电子,采用 LanL2 赝势和 LanL2DZ 基 组.同时对每个构型都作振动频率分析.全部计算采用 Gaussian 98 程序^[11].

计算方法 1

首先用三种 DFT 方法(UBP86, UPW91 和 UB3LYP) 计算

^{*} E-mail: linmh@xmu.edu.cn; Fax: 0592-2184708. Received April 15, 2004; revised and accepted June 3, 2004.

国家自然科学基金(Nos 20206038, 20073053)和福建省重大项目基金(No. 2002F010)资助项目 国家自然科学基金(Nos 20206038, 20073053)和福建省重大项目基金(No. 2002F010)资助项目

2 结果与讨论

2.1 过渡金属双原子簇

2.1.1 双原子分子 Nb₂ 和 Co₂

比较用三种 DFT 方法得到的双原子分子 Nb₂ 和 Co₂ 的 基态键长 R_{e} , 振动频率 ω_{e} 和解离能 D_{e} (见表 1), 发现尽管 UBP86 得到 Nb₂ 的键长比实验值略偏长, 但各方法结果差别 不大, 而 Co₂ 的结果中 UBP86 的振动频率和解离能与实验值 吻合得最好. 同时 Barden 等^[12] 也指出 UBP86 是计算第一过 渡周期元素的较好方法, 所以我们最终选用该方法进行后续 的计算. 下文主要讨论 UBP86 的计算结果.

表 1 基态 Nb_2 和 Co_2 的相关参数比较

Ta ble	1	Comparison	of	characters	for	the	ground	state	of	Nb ₂	and	Co ₂
--------	---	------------	----	------------	-----	-----	--------	-------	----	-----------------	-----	-----------------

	Method	State	$R_{ m e}/{ m nm}$	ω_{e} / cm ⁻¹	$D_{e^{\prime}}$ eV
Nb_2	UBP86	$3 \sum_{g}^{-}$	0. 2144	455. 343	4.689
	UPW91	$^{3}\Sigma_{g}^{-}$	0.2143	457. 172	5.986
	UB3LYP	$^{3}\Sigma_{g}^{-}$	0. 2129	471. 596	5.921
	LSDA ^[14]	$^{3}\Sigma_{g}^{-}$	0.212	451.05	5.03
	LDA ^[3]	${}^{3}\Sigma_{g}^{-}$	0.208	472	5.8
	GGA ^[3]	$^{3}\Sigma_{g}^{-}$	0.210	447	5.4
	Expt.	$^{3}\Sigma_{g}^{-}$	$0.2078^{[13]}$	424.8917 ^[13]	5.2±0.30 ^[15]
Co_2	UBP86	$^5\Sigma_{ m g}^+$	0.2355	260. 888	1.673
	UPW91	$^{5}\Delta_{\mathrm{g}}$	0. 1989	398. 491	3. 283
	UB3LYP	$^5\Sigma_{ m g}^+$	0.2406	235. 310	1.528
	HF-CI ^[18]	$^5\Sigma_{ m g}^+$	0.256	240	_
	GGA ^[19]	$^{5}\Delta_{\mathrm{g}}$	0. 201	342	2.26
	UB3LYP ^[12]	$^5\Sigma_{ m g}^+$	0.2438	223	1.58
	UBP86 ^[12]	$^5\Sigma_{ m g}^+$	0. 2373	239	1.52
	Expt.	—	—	296.8±0.54 ^[17]	1.69±0.26 ^[16]

1993 年实验上首次用电子光谱测得 Nb₂ 的键长(0.2078 nm) 和振动频率(424.89 cm⁻¹)^[13]. 理论上的相关研究也很 *家*, Sdnn 等^[14] 得到 Nb₂ 的原子间距为 0.212 nm, 离解能为 5.03 eV, 频率 451.05 cm⁻¹, Goodwin 等^[3] 用 LSDA 方法得到 键长为 0.208 nm (local) 和 0.210 nm (non-local). 我们用 UBP86 方法获得与前人研究结果相同的基态³ Σ_{g}^{-} ([core] (1 π_{u})⁴(1 σ_{g})²(2 σ_{g})²(1 δ_{g})²). 1 π_{u} 和单占据的 1 δ_{g} 完全来自铌 的4d 原子轨道, 两个杂化轨道 σ_{g} 中, 1 σ_{g} 主要由 5s 提供, 2 σ_{g} 主要来自 4d_z². 键长为 0.2144 nm 略大于实验值, 这导致解离 能 4.689 eV 比实验值(5.2±0.30) eV^[15]偏小.

 Co_2 与 Nb₂不同,存在多种接近简并的电子组态,所以实验上难以确定它的基态电子态和键长.用理论方法预测这些数据也因采用的计算方法或软件的不同而有很大差别,例如HF Cl^[18]方法得到基态⁵ Σ_g^+ ,键长为 0. 256 nm; GCA^[19]方法得到基态⁵ Δ_g ,键长 0. 201 nm.我们的三种计算方法也得到不同电子态,其中 UBP86 得到 Co₂ 的基态为⁵ Σ_g^+ {[ore] (1 σ_g)² (1 π_u)⁴(1 π_u)⁴(2 σ_g)¹(1 δ_u)³(1 σ_u)¹},解离能 1. 673 eV 与实

验值(1.69±0.26) $eV^{[16]}$ 接近, 但振动频率比实验值(296.8 ±0.54) $cm^{-1[17]}$ 偏小. 5s 电子填充在 $1\sigma_g$ 轨道上, 其它价轨 道都由 3d 电子填充.单占据的 $2\sigma_g$ 和 $1\sigma_u$ 轨道来自 $3d_2^2$, $1\delta_g$ 和 $1\delta_u$ 则来自 $3d_{x^2-y^2}$ 的贡献, 该电子态与文献 [12] 中用 UBP86 得到的结果相同.

2.1.2 NbCo 金属对

Nb 为前过渡金属, 价电子态为 $5s^{1}4d^{4}$, Co 为后过渡金属, d 电子比较多, 价电子态为 $3d^{7}4s^{2}$. 计算得到 Nb-Co 金属 对的基态为 ^{3}d [core] (10)²(1π)⁴(20)²(1δ)⁴(2δ)¹(30)¹, 原子间 距为 0. 2175 nm, 解离能为 2. 97 eV, 与 Marse 等^[20] 用电子光 谱测得的离解能(2.729 ± 0.001) eV 接近, 且电子态相同, 但 轨道能级顺序略有不同(能量最低的 1 σ 成键轨道由 Nb 和 Co 的 d^{2} 电子贡献, 而 2^{σ} 轨道由 s 电子提供). 此外也计算了 其他多重度($5\sim 9$) 的结构, 它们的能量和键长都随单电子数 的增多而升高, 解离能则随之减少.

2.2 过渡金属四核团簇

四核团簇包含更多的拓扑结构和电子自旋态,所以成键 情况更复杂.我们用 UBP86 方法尝试不同多重度的可能构 型,并通过频率计算来排除有虚频的不稳定结构.

2.2.1 Nb4 团簇

我们得到没有虚频的四个 Nh₄ 稳定结构,包括一个正四面体(T_d)和三个蝶形(C_{2v}). T_d 结构的价层 20 个电子排在 10 个成键轨道上($1a_1$)²($2a_1$)²($1t_2$)⁶(1e)⁴($2t_2$)⁶. 其中除 $2a_1$ 是 四个 Nb 原子的 s 电子贡献,其他轨道都由 d 电子填充. $1a_1$ 对应第 17 号轨道,由四个原子的 d²电子提供, 1e 对应第 22 和 23 号轨道,它们的电子云示意图见图 1. 三重简并的 t₂ 轨道分两类,由 d 电子贡献得到成键轨道,而由 s 电子贡献得 到能量较高的反键空轨道.体系的 20 个价电子恰好能填满 10 个成键轨道,故预测最稳定的结构是电子态为¹A₁ 的正四面体.计算结果证实了我们的推测,该正四面体的边长为 0. 2546 nm,与前人的结果 0. 247 nm^[3]和 0. 253 nm^[5]接近.

将 T_d 群延 C_2 轴畸变并改变多重度可得到三个 C_{2x} 对称 性的蝶形结构, 它们的能量随着多重度的增大而升高. 其中 电子态为³B₂ 和⁵A₁的蝶形几何结构相似, 能量分别比基态高 0. 653 eV 和 1. 550 eV. 而当多重度达到 9 时由于每个 Nb 上 有 2 个单占据电子, Nb 原子间的成键数减少, 只形成 4 个键 组成蝶形的四边, 该结构能量最高. 由 Nb₄ 的计算结果可知 铌四核簇的稳定结构趋于多重度低的密堆构型, 该规律在其 他 Nb 小分子簇^[3,4,2] 中也有体现.

2.2.2 Co4 团簇

Co₄ 的成键情况比 Nb₄ 复杂, 优化得到的结构也更多样, 有五个三维结构和两个二维结构(见图 2). 考虑到 Co₄ 的 36 个价电子中必然有一部分要占据反键轨道, 且纯簇的未成对 电子通常平均分布在每个原子, 故推测基态不再是 T_d 对称 性, 而可能降为 D_{2d} . 又因为 Jahn-Teller (JT) 效应, T_d 结构可 能依 2 次轴畸变为 C_{2v} , 甚至 C_2 . 经过计算证实最稳定的结 构为多重度 11 的 C_2 对称性的蝶形结构(见图 2 的 No. 1), 其几何结构与文献[19] 接近. 四边中两边长为 0. 2206 nm, 另

© 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 2 Co₄ 异构体几何结构示意图(键角 α , 两面角 ϕ , 键长 r/ nm, Mull ken 集居加下划线)

Figure 2 Geometry structures of various Co₄ clusters (bond angles α , dihedral angles ϕ , bond lengths r/nm and Mulliken populations with underline have been shown)

两边为 0. 2209 nm, 很接近 D_{2d} 对称性, 之所以降为 C_2 是因 为 JT 效应破坏了简并的 e 轨道. 另一个电子态为⁹B₁ 的蝶形 结构(No. 2) 有一个很大的两面角 ϕ = 142. 42*S*, 在蝶形中部 成键, 具有 C_{2v} 对称性, 能量略高.

我们得到的三个四面体中较不稳定的是多重度和对称 性都比较高的结构 No. 3, 能量比 No. 1 高出 1.088 eV. 如果 将多重度和对称性都降低, 就得到更稳定的异构体 No. 4 和 No. 5, 它们的多重度分别为 11 和 3. 但后者并不表示它只有 2 个未成对电子, 事实上该结构的两个 Co 原子有 5 个自旋 向上的电子, 另外两个 Co 原子上有 3 个自旋向下的电子. 这 种特殊的电子自旋态在 Mn 团凝^{22]}中比较常见, 这使我们怀 疑在某些 Co 的小分子簇中也有类似 Mn 团簇的反铁磁现象 存在.

除了三维结构,我们推测 Co₄ 有平面结构存在.由于 JT 效应,最高对称性的 D_{4h} 结构畸变为对称性 D_{2h} 的菱形(No. 7)和 C_{2n} 的不规则四边形(No. 6).由于前者的多重度和对称 性都比后者高,结构较不稳定,后者则是所有异构体中次稳 定的结构. 两者的总能量比 No. 1分别高 2.312 和 0.190 eV. 可以看出虽然钴团簇有超顺磁性, 多以高自旋态存在, 但并 非磁性越高越稳定. 如异构体 No. 3 和 No. 7 的多重度为 13, 原子的平均磁矩^μ= 3 μ_B , 它们的能量却比较高; 而相对 稳定的结构多重度一般为 11, 即 μ = 2.5 μ_B . 文献[19] 也证 实 Co₄ 的原子平均磁矩为 2 或 2.5 μ_B . 当然, DFT 方法用单 slater 行列式, 其自旋多重度是一种平均态.

2.2.3 前后过渡金属混合簇Nb₂Co₂

由铌和钴纯簇的成键性质推测混合簇 Nb₂Co₂ 可由 Nb Co, Nb Nb 和 Co Co 金属对聚合而成,其可能的几何结构包 括立体、平面和线形(见图 3).

异构体 No. 1~ No. 4 是对称性均为 $C_{2\nu}$ 的立体结构. 其 中电子态为⁵A₁ 的四面体 No. 1 是我们得到的所有 Nb₂Co₂ 中 能量最低的结构. 它存在一个很强的 Nb—Nb 键, 键长和 Mulliken 集 居分别为 0. 2269 nm 和 1. 016; 相反 Co—Co 键较 弱, 集居只有 0. 077, 键长为 0. 2583 nm, 四个单电子都占据在 Co 原子上, 其余的四个 Nb—Co 键等长, 且键长与强度都在 Nb —Nb 键和 Co —Co 键之间. 异构体 No. 2 的每个 Nb 和 Co 原子上分别有 2 个和 1 个自旋电子,该结构每个键都比 No. 1 长,且键强小,所以能量较 No. 1 高. 蝶形结构 No. 3 和 No. 4 的电子态分别为⁵A₁和⁷B₁,其中前者有一个较长的 Nb —Nb 键 0.2949 nm 和较大的两面角 ϕ (Co —Nb —Nb —Co) 127.695°,整个分子结构比 No. 4 松散,较不稳定.

Nb₂Co₂ 优化得到的四个平面结构包括一个菱形,两个不 规则四边形和一个平行四边形.菱形(No. 5)是其中最稳定 的,对角线方向有一个长为 0. 2288 nm 的 Nb —Nb 键,集居为 0. 848,成键较强,而四边的 Nb —Co 键较弱. 6 个单占据电子 2 个分布在 Nb 原子上,4 个分布在 Co 上,电子态为⁷B_{1u}. 比较 两个对称性为 C_s 的不规则四边形 No. 6 (⁷A')和 No. 7 (⁹A'),除在对角线方向前者比后者多一个 Nb —Co 键外,两 者的几何结构很相似,且体系中 Nb—Nb 键最强.平行四边 形(No. 8)的两个 Co 原子在短的对角线方向成键. 它类似于 Co 四核簇的 No. 5 结构,存在自旋相反的单电子,Nb 上 5 个 单电子自旋向上, Co 上 3 个单电子自旋向下.由于单电子数 *S*,该结构是上述 8 个异构体中最不稳定的. No. 9 是折线结构, 主要以 σ 和离域 π 键将四个原子相 连, 但因为体系有10个自旋电子(7个自旋向上, 3个自旋向 下), 所以每个键都比较弱. 此外, 在我们得到的所有异构体 中成键情况最特殊的是直线型 No. 10和 No. 11, 多重度分 别为7和9. 中间的 Nb—Nb 键比两端 Nb—Co 键弱, Nb—Nb 键的 Mulliken 集居分别为 0.546 (No. 10)和 0.058 (No. 11), Nb—Co 的集居分别为 0.859 (No. 10)和 0.831 (No. 11).由 表 3 的净电荷数据发现, 直线结构电子转移情况也与其它异 构体相反. 这些特殊的成键性质归结于线型结构中原子之间 不再以一般的金属键相连, 而是形成类似有机多烯的强弱交 替的定域键.

2.2.4 四核团簇 Nb₂, Co₄ 和 Nb₂Co₂ 的成键性质比较

从我们的计算结果可以发现过渡金属纯簇和混合簇的 成键情况有以下不同:

 价层 d 电子数是体系成键情况的重要影响因素.前 过渡金属价层 d 电子少,小分子纯簇趋于最密堆积并保持高 对称性;后过渡金属的价层 d 电子云密集,引起 JT 效应使密 堆积结构变形,高对称性被破坏.所以Nb₄的稳定结构都是

图3 Nb₂Co₂ 异构体几何结构示意图(键角 α ,两面角 ϕ ,键长 r/nm, Mulliken 集居加下划线)

Figure 3 Geometry structures of various Nb₂Co₄ clusters (bond angles α , dihedral angles ϕ , bond lengths r/nm and Mulliken populations with underline have been shown)

表 2 Co ₄	团簇相关性	质的比	北较
---------------------	-------	-----	----

 Table 2
 Comparison of characters for various Co4 clusters

No.	Structure	Symmetry	State	$\Delta E^a / \mathrm{eV}$	Frequency $\omega_{e'}$ cm ⁻¹
1	Butterfly	C_2	^{11}A	0. 000	94, 96, 196, 285, 287, 300
12	Butterfly	C_{2v}	${}^{9}\mathrm{B}_{1}$	0. 245	72, 150, 153, 178, 280, 328
3	Tetrahedron	D_{2d}	${}^{13}A_1$	1. 088	148, 149, 151, 186, 188, 271
4	Tetrahedron	C_2	^{11}B	0. 272	27, 121, 144, 148, 186, 311
5	Tetrahedron	C_2	³ B	0. 870	74, 115, 126, 154, 203, 270
6	Trapezium	C_{2v}	$^{11}\mathrm{A}_{1}$	0. 190	40, 133, 191, 197, 266, 272
7	Rhombus	D_{2h}	${}^{13}B_{1u}$	2. 312	105, 165, 167, 195, 277, 331

^{*a*} △*E* 为体系相对于计算所得最稳定态¹¹A ($E = -15.793 \times 10^3 \text{ eV}$)的能量差.

表 3 Nb₂Co₂ 异构体的相关性质比较

Table 3 Comparison of characters for various Nb₂Co₂ clusters

St	State	$\Delta E^a / \mathrm{eV}$	Total atomic charge ^b		Total atomic spin density ^b		E	
Structure			Nb	Со	Nb	Со	Frequency ω_{e} cm	
1 Tetrahedron	⁵ A ₁	0.000	0.15	- 0.15	0.23	1.77	96, 109, 176, 204, 206, 390	
2 Tetrahedron	${}^{7}B_{2}$	1.251	0.24	- 0. 24	2.04	0.96	125, 130, 140, 164, 187, 345	
3 Butterfly	${}^{5}\!A_{1}$	1.414	0.20	- 0. 20	1.00	1.00	67, 117, 144, 298, 312, 343	
4 Butterfly	${}^{7}B_{1}$	0.571	0.05	- 0.05	0.91	2.09	68, 104, 108, 203, 217, 359	
5 Rhombus	$^{7}\mathrm{B}_{\mathrm{lu}}$	0.761	0.13	- 0. 13	1.01	1.99	24, 107, 119, 151, 228, 373	
6 Trapezium	⁷ A'	0.952	0.05 ⁽¹⁾	0. 0 ⁽¹⁾	0. 30 ⁽¹⁾	$2.22^{(1)}$	55, 90, 151, 184, 241, 347	
			$0.0^{(2)}$	- 0. 05 ⁽²⁾	1. 51 ⁽²⁾	$0.20^{(2)}$		
7 Trapezium	⁹ A'	1.441	0.04 ⁽¹⁾	0. 02 ⁽¹⁾	1.62 ⁽¹⁾	2.55 ⁽¹⁾	35, 143, 165, 196, 228, 336	
			$0.07^{(2)}$	- 0. 13 ⁽²⁾	1. 52 ⁽²⁾	2.31 ⁽²⁾		
8 Parallelogram	${}^{3}B_{u}$	1.904	0.09	- 0.09	2.51	- 1.51	55, 88, 134, 152, 244, 260	
9 Folded line	${}^{5}A_{g}$	2.230	0.11	- 0.11	3. 53	- 1.53	41, 97, 132, 132, 206, 211	
10 Straigh t line	—	3.046	- 0.17	0. 17	1.12	1.88	46, 46, 50, 50, 183, 297, 354	
11 Straigh t -line	—	3.481	- 0.12	0. 12	2.36	1.64	26, 26, 67, 67, 180, 262, 268	

" △E 为体系相对于计算所得最稳定态⁵A₁(E = -10.961×10³ eV)的能量差.^b上标(1)(2)对应图 3 中 Nb 或 Co 的下标。

三维的, 而 Co_4 的稳定结构不仅有立体的, 还有平面的. 混合 簇的情况更复杂, 因为 Nb 原子和 Co 原子的外层 d 电子近似 看成互补, 它们的几何结构更多样, 不仅有立体和平面结构, 还有折线和直线构型, 具有一定对称性(如 C_{2x} , D_{2h} 等) 的结 构比较稳定.

2. Nb₄ 中电子趋向于两两配对, 多重度低, 一般为 1~ 5, 其中最稳定的电子态为¹A₁; Co₄ 的多重度在 9~ 13 之间, 当 多重度为 11 时结构比较稳定; Nb₂Co₂ 的电子自旋情况比较 复杂多样, 但多重度多在 5~ 9 之间, 这是因为双金属混合簇 的 d 电子数居中, 其电子自旋度也居前后单金属簇之间.

3. 单金属簇的电荷平均分布,离域在整个团簇上;混合簇的电荷发生转移,一般是从 d 轨道能级较高的前过渡金属 Nb 转移到能级较低的后过渡金属 Co 上,但在直线型结构中因为有局域键形成,电荷转移方向相反.

4. 纯簇与混合簇的能级分布也有明显不同. 图 4 以 Co_4 的 No. 6 异构体, Nb₂Co₂ 的 No. 5 和 No. 10 异构体, 以及 Nb₄ 的基态结构为例, 比较它们价层的 α 轨道能级分布. 单一过 渡金属元素团簇, 同一周期从左到右 d 轨道能级逐次降低;

图4 团簇 Co₄, Nb₂Co₂ 和 Nb₄ 的 α 轨道能级分布图 ($\Delta E =$

$E_{\text{LUMO}} - E_{\text{HOMO}})$

Figure 4 Energy level distributions of α valence orbitals of Co₄, Nb₂Co₂ and Nb₄ clusters

同一族元素周期数增大。d轨道能级也逐步降低、钴团簇与shin 铌团簇虽不在同一周期、但仍然是 Co的d 轨道能级比 Nb

低, Femi 能级也略低. 前者的轨道能量集中在-8.2~-5.4 eV, 后者集中在-3.5~-4.6 eV. 两者的能级间隙 ΔE ($E_{\text{LUMO}} - E_{\text{HOMO}}$)都比较大, 分别为 1.868 eV 和 1.255 eV. 而 团簇 Nb₂Co₂ 能级分布比较集中在中部, 尤其是菱形结构电子 离域在整个团簇上, Femi 能级附近轨道比较密集能隙小, 只 有 0.467 eV, 这表明在混合簇中轨道杂化更严重, 通常价层 的 d 轨道不像 s 和 p 轨道直接参与成键, 而是通过 sdⁿ 杂化 来成键. 与菱形相比, 多重度为 7 的直线结构有较大的能隙 1.231 eV, 这一方面说明尽管直线型结构的热力学稳定性比 立体或平面异构体低, 但它的动力学稳定性较大, 可以稳定 存在. Femi 能级的顺序为 $E_f(\text{Nb}_4) > E_f(\text{Nb}_2\text{Co}_2) > E_f(\text{Co}_4)$.

5. 过渡金属是介于典型的金属与非金属之间的,除了 一般的金属性质外它们还具有一些非金属的性质. 我们的研 究表明纯过渡金属团簇原子间以典型的金属键相连, 而混合 簇不仅有典型的金属键, 在直线型结构中还有强弱交替的定 域键存在, 因此非金属性在混合簇中得以加强. 总的来看, 前 过渡金属原子相互吸引易成多重键, 后过渡金属相互排斥不 易成键, 因为它们的解离能顺序为 Nb —Nb> Nb—Co> Co— Co. 所以在多数 Nb₂Co₂ 团簇中, Nb —Nb 键总比 Co—Co 键短, 强度大, 且存在 Co—Co 键的结构能量一般较高.

本文为"庆贺蔡启瑞教授九十华诞暨执教五十八年"征文

References

 Yang, W.-S.; Yin, D.-H.; Chang, J.; Xiang, H.-W.; Xu, Y.-Y.; Li, Y.-W. Acta Chim. Sinica 2003, 61, 681 (in Chinese).

(杨文书,银董红,常杰,相宏伟,徐元源,李永旺,化学学 报, **2003**, *61*, 681.)

- 2 Pick, Š.; Turek, I.; Dreyss, H. Solid State Commun. 2002, 124, 21.
- 3 Goodwin, L.; Salahub, D. R. Phys. Rev. A 1993, 47, R774.
- 4 GH nbeck, H.; Ros n, A.; Andreoni, W. Phys. Rev. A 1998, 58, 4630.
- 5 Kumar, V.; Kawazoe, Y. Phys. Rev. B 2002, 65, 125403.
- 6 Jamorski, C.; Martinez, A.; Castro, M.; Salahub, D. R. Phys. Rev. B 1997, 55, 10905.
- 7 Fan, H.-J.; Liu, C.-W.; Liao, M.-S. Chem. Phys. Lett. 1997, 273, 353.

- 8 Pereiro, M.; Man' Kovsky, S.; Baldomir, D.; Iglesias, M.; Mlynarski, P.; Valladares, M.; Suarez, D.; Castro, M.; Arias, J. E. Comput. Mater. Sci. 2001, 22, 118.
- 9 Becke, A. D. Phys. Rev. A 1988, 38, 3098.
- 10 Perdew, J. P. Phys. Rev. A 1986, 33, 8822.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. 11 E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M.-W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., Gaussian 98, Revision A. 9, Gaussian, Inc., Pittsburgh, PA, 2000.
- Barden, C. J.; Rienstra-Kiracofe, J. C.; Schaefer , H. F. J. Chem. Phys. 2000, 113, 690.
- 13 James, A. M.; Kowalczyk, P.; Fournier, R.; Simard, B. J. Chem. Phys. 1993, 99, 8504.
- 14 Sohn, K.; Lee, S.; Bylander, L. M.; Kleinman, L. Phys. Rev. B 1989, 39, 9983.
- 15 Loh, S. K.; Lian, L.; Armentrout, P. B. J. Am. Chem. Soc. 1989, 111, 3169.
- 16 Kant, A.; Strauss, B. J. Chem. Phys. 1964, 41, 3806.
- 17 Dong, J.-G.; Hu, Z.-D.; Craig, R.; Lombardi, J. R.; Lindsay, D. M. J. Chem. Phys. 1994, 101, 9280.
- 18 Shim, I.; Gingerich, K. A. J. Chem. Phys. 1983, 78, 5693.
- 19 Jamorski, C.; Martinez, A.; Castro, M. Phys. Rev. B 1997, 55, 10905.
- 20 Arrington, C. A.; Blume, T.; Morse, M. D. J. Phys. Chem. 1994, 98, 1398.
- 21 Fournier, R.; Pang, T.; Chen, C.-F. Phys. Rev. A 1998, 57, 3683.
- 22 Nayak, S. K.; Nooijen, M.; Jena, P. J. Phys. Chem. 1999, 103, 9853.

 $(\ A04\ 04152 \quad CH \ ENG, \ B.\ ; \ LING, \ J.\)$