•研究论文•

过渡金属混合簇 Nb₂Rh₂的密度泛函研究

陈健谭凯林梦海*张乾二

(厦门大学化学系 固体表面物理化学国家重点实验室 厦门 361005)

摘要 采用密度泛函方法(DFT)研究了过渡金属混合簇 Nb_mRh_n (m, n≤2) 的结构、稳定性规律及它们的成键情况.结果 表明, Nb—Nb 键较强, Rh—Rh 键较弱, 而 Nb—Rh 键的强度则介于两者之间.在 Nb₂Rh₂ 直线和折线构型中,金属键有 强弱交替的现象. Nb₂Rh₂ 的各种构型在自旋多重度较小时稳定. 关键词 密度泛函理论; 过渡金属团簇; 金属键

Density Functional Theory Study of Mixed Transition-Metal Clusters Nb₂Rh₂

CHEN, Jian TAN, Kai LIN, Meng-Hai^{*} ZHANG, Qian-Er (State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005)

Abstract The mixed transition-metal clusters $Nb_mRh_n(m, n \le 2)$ have been calculated using density functional theory and the structures, stabilities and bond formation discussed. The results show that the bond Nb—Nb is stronger than that of Nb—Rh, and the weakest bond is Rh—Rh. The straight line and fold line structures of Nb₂Rh₂ have the weak-strong alternately bonds and all the structures are stable under low spin multiplicity.

Keywords density functional theory; transition-metal cluster; metal bond

过渡金属团簇是实验和理论研究的热门话题, 近年 来, 纯的过渡金属团簇的研究发展比较快^[1~4]. 小团簇 是模拟表面及化学吸附的合适模型, 开展对小团簇的研 究有助于理解团簇不同于原子和固体的许多物理和化 学性质, 有助于阐明金属团簇的结构特征, 总结相应的 规律. 对于研究过渡金属混合簇也是如此. 本课题组对 前-后过渡金属 Ni_nZr_n (n=3~5), V₂Co₂, Nb₂Co₂等混合 簇进行了初步研究^[5,6], 探讨了一些基本金属间成键规 律. 本文将继续探讨前-后过渡金属混合簇 Nb₂Rh₂的一 些基本性质.

1 计算方法

对过渡金属 Nb, Rh 分别采用相对论有效核势

(RECP)^[7]屏蔽其 28 个内层电子,用有效核势 Lanl2dz 基 组进行 DFT 计算,对于混合团簇 Nb_mRh_n (*m*, *n*≤2)采用 杂化的相关交换泛函 B3PW91^[8,9]进行结构优化.为了确 定得到的结果为稳定构型,在构型优化的基础上做了频 率分析,只讨论无虚频的结构.所有计算均采用 Gaussian 98 程序^[10].

2 结果与讨论

2.1 Nb₂, Rh₂和 NbRh

对于同核金属双原子分子 Nb₂ 及 Rh₂, 实验和理论 上已经进行了较为广泛的研究^[4,11~27](如表 1 所示). 对 于双原子分子 Nb₂, 实验及理论研究一致认为其基态为 $^{3}\Sigma_{g}^{-[19,21~24,26]}$, 其电子组态为 $1\pi_{u}^{4}l\sigma_{g}^{2}2\sigma_{g}^{2}l\delta_{g}^{2}$. 最新的实

^{*} E-mail: linmh@xmu.edu.cn; Fax: 0592-2184708. Received December 30, 2004; revised May 26, 2005; accepted July 22, 2005. 国家自然科学资金(Nos. 90206038, 20373053)和福建省重大项目基金(No. 2002F010)资助项目.

验^[26]得到 Nb₂ 基态的键长为 0.207 nm, 振动频率为 424.9 cm⁻¹, 与以前理论计算的结果基本一致^[4,20,25,27]. 本文采用 B3PW91 方法计算得到的 Nb₂ 基态也是³ Σ_{g}^{-} , 平衡核间距与振动频率与实验较接近. 对于 Rh₂, 前人 计算的基态各不相同, 多数近期计算都认为其基态为 ⁵ $\Sigma_{u}^{[11,12,17]}$, 而 Balasubramanian 等^[14]得出 Rh₂的基态为 ⁵ Δ_{g} , 他们计算的平衡核间距与振动频率与实验基本一 致. 也有人认为基态是⁵ $\Sigma_{g}^{+}^{[15]}$ 和 ⁵ $\Delta_{u}^{[16]}$.本文得到 Rh₂ 的基态为 ⁵ Σ_{u}^{+} , 键长是 0.230 nm, 频率是 301.2 cm⁻¹, 与实验值较吻合.

对于异核双金属 NbRh, 各个多重度的计算结果如 表1所示. 计算结果表明多重度越大, NbRh 的键长越长,

除了单重态以外,能量随着多重度的增加而升高.其中 三重度的能量最低, 文献[5]中NbCo也是三重态最稳定, 这可能预示前后过渡金属混合簇在自旋多重度较小时 更稳定.

2.2 Nb₂Rh 和 Rh₂Nb

对于纯金属团簇,前人用局域自旋密度近似得到 Nb₃的稳定构型是底为 0.240 nm 和边为 0.225 nm 的等 腰三角形^[4]; Chien 和 Estela^[17]用 LDA 计算出 Rh₃ 的稳 定构型是键长为 0.220 nm 的线型. 我们计算了不同多重 度的 Nb₂Rh 和 Rh₂Nb 的相关参数(见表 2),并做了频率 分析,比较得到 Rh₂Nb 二重态的折线形较稳定, Nb₂Rh 四重态的三角形能量最低.

	Table 1 Comparison of energy and frequency for various dimers Nb2, Rh2 and NbRh								
	2S+1	State	$R_{\rm e}^{\ a}/{\rm nm}$	$E^{b}/a.u.$	ω_e /cm ⁻¹				
Nb ₂	1	$^{1}\Sigma_{g}^{+}$	0.212	-112.5024	480.2				
	3	$^{3}\Sigma_{ m g}^{-}$	0.212	-112.5155	479.5				
	5	${}^5\Sigma_{ m g}^+$	0.226	-112.4816	389.6				
	3	Expt.	0.207 ^[26] 0.210 ^[27] (CAS)		424.9 ^[26]				
Nb ₂	3	${}^{3}\Sigma_{g}^{-[19,21\sim24,26]}$	0.215 ^[4] (GGA)		420.5 ^[25]				
					421 ^[20]				
	1	$^{1}\Sigma_{g}^{+}$	0.247	-218.9443	231.4				
Rh ₂	3	$^{3}\Sigma_{g}^{-}$	0.249	-218.9660	218.9				
	5	${}^{5}\Sigma_{u}$	0.230	-219.0053	301.2				
	5	${}^{5}\Delta_{\rm u}$ [16]	0.267(CI) ^[16]		238 ^[16]				
	5	${}^{5}\Delta_{g}^{[14]}$	$0.228(CI)^{[14]}$		266 ^[14]				
Rh ₂	5	$5\Sigma_{g}^{+[15]}$	0.286(CI) ^[15]		118 ^[15]				
	5	$5\sum_{u}[11,12]$	0.231(LDA) ^[13] , .256(GGA) ^[12] , .233(GGA) ^[17]		333 ^[13] , 191 ^[12] , 282 ^[17]				
	5	Expt.	0.228 ^[3]		267 ^[3]				
	1	$^{1}\Gamma$	0.212	-165.7653	421.7				
NbRh	3	$^{3}\Delta$	0.217	-165.7718	337.3				
	5	5Σ	0.225	-165.7681	290.5				
	7	$^{7}\Pi$	0.259	-165.7338	186.2				
	9	⁹ ∑	0.276	-165.6638	139.4				

	表1	Nb ₂ , Rh ₂ 和	INbRh 的名	种异构体的	能量及频率	国比较	
1. 1	<u> </u>		1 С			NIL D1	

^{*a*} R_e is equilibrium distance. ^{*b*} *E* is sum of electronic and zero-point energies.

	表 2	Nb ₂ Rh 和 Rh ₂ Nb 的结构与自旋密度
Table 2	Structure	and total atomic spin density of Nb ₂ Rh and Rh ₂ Nb

	Structure	2G + 1	Bond length /nm		Angle/(°)		Total atomic spin density		
		23 + 1	Rh—Nb	Nb—Rh	Rh—Nb—Rh	Nb—Rh—Nb	Nb	Rh	Nb or Rh
		2	0.221	0.221	80.5		1.13	-0.07	-0.07
Rh ₂ Nb	Folded line (1)	4	0.246	0.221	71.8		2.19	-0.36	1.17
		6	0.242	0.237	67.5		3.12	0.48	1.40
	Folded line (2)	2	0.216	0.216	99.4		-0.14	0.57	0.57
		4	0.225	0.225	112.2		1.66	0.67	0.67
		6	0.258	0.220	140.1		2.81	1.94	0.26

									续表
		2C + 1	Bond length /nm		Angle/(°)		Total atomic spin density		
	Structure	23+1	Rh—Nb	Nb—Rh	Rh—Nb—Rh	Nb—Rh—Nb	Nb	Rh	Nb or Rh
	Straight line	2	0.221	0.221		180.0	0.76	-0.53	0.76
		4	0.223	0.223		180.0	2.16	-1.32	2.16
NIL DI		6	0.225	0.225		180.0	3.02	-1.05	3.02
Nb ₂ Kh	Triangle	2	0.233	0.224		52.6	1.29	0.44	-0.74
		4	0.229	0.227		56.6	2.58	0.79	-0.37
		6	0.231	0.266		58.2	3.06	0.78	1.16

对于 Rh₂Nb, 二重态的两种折线形对称性都为 C₂, 但两者之间有较大的差异. 从表 2 中可以看出, 多重度 为 2 时, 折线型(1)的夹角为 80.5°, 随着多重度的增大, 键角减小; 而折线型(2)的角度为 99.4°, 随着多重度的 增大, 键角却是增大的. 这些差异可以用原子自旋密度 的差异解释(见表 2). 多重度为 2 时, 对于折线型(1), 单 电子几乎完全定域在 Nb 原子上, 两个 Rh 原子上自旋密 度基本为零; 对折线型(2), 一个自旋向上的单电子平均 分布两个 Rh 上, Nb 上面反而没有电子, 所以相较于折 线型(1)的二重度, 它的角度要大一些, 能量也要高一 些. 而当多重度升高时, 折线型(2)的 Nb 原子上自旋密 度也随着升高, 导致角度∠Rh-Nb-Rh 不断增大.

对于 Nb₂Rh,随着多重度的升高,Nb 上的自旋极化 也升高,但是中间 Rh 原子总是取自旋相反的方向.四 重态的直线形比较特殊,多重度为4并不意味着只有3个 单电子.在这里,2个 Nb 上分别有2个自旋向上的电子, Rh 上却有1个自旋向下的电子,这种情况在文献[5]和 [28]中都有出现,此特殊的电子自旋态在 Mn 团簇中常 见,故我们推测在某些 Nb 和 Rh 的混合簇中有类似的反 铁磁^[5,28]现象存在.

对于金属团簇 Rh₂Nb 的直线型和 Nb₂Rh 的 V 形结构, B3PW91 方法计算结果表明, 这些构型都不如已经得到的结构稳定.

2.3 Nb₂Rh₂

在以上结果的基础上,我们计算了混合金属团簇 Nb₂Rh₂的各种构型,同时作了频率分析,以确定这些结 果均为稳定构型.由于过渡金属团簇能级混杂的现象较 为严重,当自旋多重度和原子数均相同时,往往存在多 个能级极为相近的稳定构型.我们得到的结果中也有此 现象,所以只选择其中能量相对较低的构型进行讨论. 图 1 中列出计算得到的 9 种稳定构型(参数见表 3).

在 Nb₂Rh₂ 的 9 种稳定构型中, 立体构型有 3 种, 分别是构型 2 的四面体形和 2 个不同多重度的蝶形. 四面体构型是所有结构中能量最低的, 其 Rh 和 Rh 的重叠集居只有 0.092, Rh—Rh 键很弱, 可将它看成是二面角为

68.1°的蝶形. 从表 3 中的数据可以看到, 当蝶形的二面 角增大时, 其对应构型的能量也升高, 所以 Rh 和 Rh 有 相互靠近而形成更稳定的四面体构型的趋势. 我们从此 变化趋势可见, Nb—Nb 键和 Nb—Rh 键相对稳定, 只有 Rh和 Rh之间成键在变化, 这在一定程度上可以说明 Rh 原子间成键能力较弱.

另有4种平面结构是构型1,3,7分别对应的梯形、 不规则四边形、矩形和构型 9 的菱形, 梯形是平面结构 中能量最低的. 从图 1 可知, 三个四边形的 Nb-Rh 键 和 Rh—Rh 键的键长变化不大, 但 Nb—Nb 键则有差异. 在矩形中 Nb-Nb 键和 Rh-Rh 键的键长相等, 均为 0.260 nm, 比构型1,3的Nb-Nb键键长大很多, 这可用 重叠集居的变化规律来解释. 三个四边形中, Nb—Nb 的 重叠集居最大, Rh—Rh 的重叠集居最小, 而 Nb—Rh 居 中. 梯形中 Nb—Nb 间的重叠集居是 Rh—Rh 间的 4 倍, 在不规则四边形中变为3倍,而在矩形中则是2倍,矩 形的 Nb-Nb, Nb-Rh, Rh-Rh 的重叠集居在三个四边 形中都是最小的,其大小也很接近,这导致 Nb-Nb 键 在矩形中较长. 图 2 为矩形结构的分子轨道图: 轨道 17 中四个原子的轨道重叠在一起,形成一个离域分子轨 道, 轨道 18 中分子轨道则定域在 Nb-Nb 键和 Rh-Rh 键上, 轨道 23 中只有 Nb—Nb 键上有 π键. 说明在矩形 中, Nb—Nb 键较强, Rh—Rh 键较弱. 构型 9 的菱形结构 是所有平面结构中能量最高的,对称性也是最高的,处 在对角线方向成键的是两个 Nb 原子, Nb—Nb 间的重叠 集居达到 0.866, 成键很强. 四个 Nb—Rh 键的集居都是 0.164、故其对应的四个边长相等.

比较单个原子的电荷净集居,可以看到平面结构的 Nb 原子的电荷净集居在 12.091~12.387 之间变化, Rh 原子的电荷净集居则在 16.808~16.855 之间,而立体构 型的 Nb 原子的电荷净集居都小于 12, Rh 原子的电荷净 集居均大于 17,这说明在平面结构中金属键有定域的趋 势,而立体构型的金属键则比较平均,基本是离域键.

本研究还得到直线和折线型 2 种线型结构. 当尝试 其它可能的线型结构时,发现尝试的构型不比已得到的

图 1 Nb₂Rh₂ 异构体几何结构示意图[Mulliken 原子净集居加下划线, 键角 *A*, 二面角 *D*, 两原子之间的数字表示键长(nm)] **Figure 1** Geometry structures of various Nb₂Rh₂ clusters (Mulliken completely populations with underline have been shown, bond angles *A*, dihedral angles *D*, other numbers denote bond lengths/nm)

Figure 2 Diagrams for several bonding molecule orbitals of the rectangle of Nb₂Rh₂

	表3 不同构型的 Nb ₂ Rh ₂ 的能量和电荷集居比较
Table 3	Comparison of energy and Mulliken overlap populations for various Nb ₂ Rh ₂ clusters

			Summetry	<i>E</i> /2 11	AF/aV	Mulliken overlap populations			
		25 + 1	Symmetry	<i>E</i> /a.u.	$\Delta L/CV$	Nb—Nb	Nb—Rh	Rh—Rh	
1	Trapezium	1	C_{2v}	-331.6828	1.6680	0.904	0.566	0.222	
2	Tetrahedron	1	C_1	-331.7074	1.9836	0.948	0.356	0.092	
3	Trapezium	3	C_1	-331.6754	1.3959	0.766	0.644	0.248	
4	Butterfly	3	C_2	-331.6943	1.6789	0.876	0.414	0.016	
5	Straight-line	5	$C_{\infty v}$	-331.5390	1.9455	1.252	0.288	0.452	
6	Butterfly	5	C_s	-331.7018	1.6462	0.692	0.120	0.020	
7	Rectangle	5	C_{2v}	-331.6571	1.6127	0.636	0.434	0.346	
8	Folded-line	5	C_s	-331.6582	1.7140	0.052	0.976	-0.072	
9	Rhombus	5	D_{2h}	-331.3867	1.8669	0.866	0.164	0.126	

构型稳定.对于构型5,从左至右 Nb—Nb, Nb—Rh, Rh— Rh 的重叠集居分别是 1.252, 0.288 和 0.452,呈明显的强 弱键交替现象.构型8 的三个 Nb—Rh 键也有强弱键交 替现象,从上至下 Rh—Nb, Nb—Rh, Rh—Nb 的重叠集 居分别是 0.976, 0.388, 0.558. 折线形的4个单电子全部 在 Nb 原子上,而 Rh 上没有电子.上端的 Nb 原子的自 旋密度为 1.255,原子集居是 11.835,它与两个 Rh 原子 连接,对成键贡献很大;而下端的 Nb 原子的自旋密度 为 3.370,比上面的 Nb 原子多,它只与一个 Rh 原子成 键,故它的原子集居要大一些,达到 12.491.

3 小结

由于前过渡金属价层 d 电子少, 后过渡金属价层 d 电子多, 所以前过渡金属原子易相互吸引成键, 而后过 渡金属相互排斥不易成键. 在过渡金属混合簇 Nb_mRh_n (*m*, *n*≤2) 中就表现在 Nb 原子间成键能力较强, Rh 原子 间成键能力较弱, 而 Nb 和 Rh之间的成键能力则介于两 者之间. 纯过渡金属团簇原子间以典型的金属键相连, 而混合簇不仅有金属键, 在线型结构中还有强弱交替的 定域键. Nb₂Rh₂的各种构型在自旋多重度较小时稳定.

References

- 1 Lombardi, J. R.; Davis, B. Chem. Rev. 2002, 102, 2431.
- 2 Alonso, J. A. Chem. Rev. 2000, 100, 637.
- 3 Gingerich, K. A.; Cocke, D. L. J. Chem. Soc., Chem. Commun. 1972, 1, 536.
- 4 Kumar, V.; Kawazoe, Y. Phys. Rev. B 2002, 65, 125403.
- 5 Wang, X.; Lin, M.-H.; Zhang, Q.-E. Acta Chim. Sinica 2004, 62, 1689 (in Chinese).
 (王娴, 林梦海, 张乾二, 化学学报, 2004, 62, 1689.)
- 6 Wang, Y.-P.; Gu, Y.-B.; Lin, M.-H.; Zhang, Q.-E. Chem. J. Chin. Univ. 2002, 23, 543 (in Chinese).
 (王艺平,顾勇冰,林梦海,张乾二,高等学校化学学报, 2002, 23, 543.)
- 7 Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
- 8 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- 9 Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533.
- 10 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.

E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Gaussian, Inc., Pittsburgh PA, 1998.

- Goursot, A.; Papai, I.; Daul, C. A. Int. J. Quantum Chem. 1994, 52, 799.
- 12 Harada, M.; Dexpert, H. J. Phys. Chem. 1996, 100, 565.
- 13 Yang, J.; Toigo, F.; Wang, K. Phys. Rev. B 1994, 50, 7915.
- Balasubramanian, K.; Liao, D. W. J. Phys. Chem. 1989, 93, 3989.
- Shim, I. Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 1985, 41, 147.
- 16 Illas, F.; Rubio, J.; Canellas, J.; Ricart, J. M. J. Chem. Phys. 1990, 93, 2603.
- 17 Chien, C. H.; Estela, B. B.; Mark, R. P. Phys. Rev. A 1998, 58, 2196.
- 18 Morse, M. D. Chem. Rev. 1986, 86, 1049.
- 19 Lombardi, J. R.; Benjamin, D. Chem. Rev. 2002, 102, 2431.
- 20 Moskovits, M.; Limm, W. Ultramicroscopy 1986, 20, 83.
- 21 Goodwin, L.; Salahub, D. R. Phys. Rev. A 1993, 47, R774.
- 22 Sohn, K. S.; Lee, S.; Bylander, D. M.; Kleinman, L. Phys. Rev. B 1989, 39, 9983.
- Klyagina, A. P.; Fursova, D. F.; Levin, A. A.; Gutsev, L. G. J. Struct. Chem. 1987, 28, 31.
- 24 Salahub, D. R. Adv. Chem. Phys. 1987, 69, 447.
- Hu, Z.; Shen, B.; Deosaran, S.; Lombardl, J. R.; Lindsay, D.
 M. SPIE 1991, 65, 1599.
- 26 James, A. M.; Kowalczyk, P.; Founier, R.; Simard, B. J. Chem. Phys. **1993**, 99, 8504.
- 27 Walch, S. P.; Bauschlicher, C. W. In Comparison of ab initio Quantum Chemistry with Experiment for Small Molecules, Ed.: Bartlett, R. J., Reidel, Dordrecht, 1985.
- 28 Majumdar, D. J. Chem. Phys. 2001, 115, 885.

(A0412308 SONG, J. P.; ZHENG, G. C.)

YAO, Ya-Li; ZENG, Zuo-Xiang*; XUE,

Investigation of Microstructure of Colloi-

Acta Chimica Sinica 2005, 63(21), 1939

Wei-Lan; HUANG, Shun-De

dal Liquid Aphrons

The relation between the molar fraction of LC state molecules x_c and the reduced molecular area A_r has been investigated. The curves of x_c versus A_r for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine DPPC monolayer at different temperature are linear and every line gets across the same spot, so that the relation expression of x_c and A_r can be obtained.

<u>о.2 µт</u>

YAN, Yong-Li^{*}; ZHANG, Ning-Sheng; QU, Cheng-Tun; LIU, Li; LI, Bian-Qin

Acta Chimica Sinica 2005, 63(21), 1944

The microstructure of colloidal liquid aphrons (CLA) composed of polyoxyethylene 3 dodecyl ether/*n*-decane/sodium dodecyl sulphate/water was visualized by freeze fracture transmission electron microscopy. The freeze fracture of the CLA presented many spherical or close to spherical (reversed) micelles or O/W microemulsions in oil-rich and water-rich phases, respectively. The thermal behavior of CLA was analysed by differential scanning calorimetry both on freezing the liquid samples and upon their heating.

0.1 um

2.0 Study on the Visible Light Photochrom-1.2 ism of Molybdenum Oxide-Titania Com-0.8 1.6 posite Films Absorbance 1.2 40 80 120 160 t/mi 0.8 0.4 WANG, ZHANG, Guang-Jin; Jing; 0.0YANG, Wen-Sheng; YAO, Jian-Nian* 400 600 800 1000 Acta Chimica Sinica 2005, 63(21), 1951 Wavelength/nm Density Functional Theory Study of

MoO₃•H₂O-TiO₂ composite thin films prepared by sol-gel method show visible light photochromism (λ 420 nm). The Mo—O—Ti bond formed at the interface of MoO₃•H₂O and TiO₂ was responsible for the visible light photochromism of the composite films.

