改进型铜基甲醇合成催化剂 XH401 的 DTA 研究[®]

杨意泉 张鸿斌 章乃辛 王少沧 潘章文 张 强

(厦门大学化学系)

(南京催化剂厂)

摘要 5.0 MPa 压力下活性评价结果表明,改进型四组份铜基甲醇合成催化剂 XH401(Cu-Zn-Al-M)初始活性比工业三组份铜基甲醇合成催化剂 C207(Cu-Zn-Al)提高约 27%, 耐热试验后 XH401 合成甲醇活性比 C207 高约 85%. 两种催化剂的 DTA 对比试验显示,工作态 XH401 催化剂的热稳定 性明显优于 C207 催化剂.

关键词 甲醇合成, Cu-Zn-Al 催化剂, Cu-Zn-Al-M 催化剂, DTA

中国图书分类号 O 643.3

三组份工业甲醇合成催化剂 C207 (Cu-Zn-Al)是我国甲醇生产普遍使用的催化剂,但该催化剂热稳定性较差,使用周期较短.本文在 C207 的组成中添加少量第四组份金属氧化物助剂 MO_x,研制出改进型四组份铜基甲醇合成催化剂 XH401(Cu-Zn-Al-M),并用 DTA 法表征两种 催化剂的热稳定性.

1 实 验

XH401 甲醇合成催化剂参照文献[1]由共沉淀法制备,其组成为 Cu/Zn/Al/M=45/45/x/ y(原子比).

C207 为南化公司催化剂厂的产品,其组成为 CuO 38%~42%,ZnO 38%~43%,Al₂O₃ 5% ~6%,由混合沉淀法制备.

催化剂的评价方法与文献[2]同.合成气组成为 $CO/H_2/N_2/CO_2 = 12/72.5/15/0.5(V/V)$,反应压力 5.0 MPa,空速 2×10^4 h⁻¹,催化剂还原后在 250 ℃测定其初始活性,随后升温到 400 ℃耐热处理 3 h,后降至 250 ℃测定耐热试验后活性.

DTA 测试使用北京光学仪器厂产的 LCT 精密示差热天平. DTA 量程±100 μ V,TG 量程 50 mg,测温热电偶为镍铬/镍硅,升温速率 10 ℃/min. 样品用量 2.5 mg(<100 目),以 Al₂O₃ 为 参比. 供 DTA 测试的工作态催化剂,经低 H₂(H₂/N₂=5/95,*V*/*V*)还原 16 h,后通合成气在 230 ℃反应 3 h,然后在 N₂ 气氛中降到室温过筛备用.

XRD 测试在 Rigaku Ru-200A 衍射仪上进行,以 CuKa 为辐射源.

2 结果与讨论

表 1 示出 XH401 和 C207 两种催化剂在 5.0 MPa、250 ℃的活性评价结果. 从表中可见,

① 本文 1994-03-27 收到

XH401 催化剂的初始活性(甲醇单程收率)比 C207 催化剂提高 27%左右,经 400 ℃耐热处理 3 h 后两种催化剂活性都有所下降,但 XH401 仍比 C207 高约 85%. 同种催化剂耐热处理前后 甲醇单程收率比较显示,XH401 下降幅度为 22%,C207 下降幅度达 50%,表明 XH401 热稳定 性明显优於 C207.

- 表 1 XH401 和 C207 甲醇合成催化剂活性对比
- Tab. 1 Comparison in activity between XH401 and C207 catalysts for methanol synthesis

催化剂名称 一	甲醇单程收率(g・h ⁻¹ ・g ⁻¹ cat)	
	初始活性	耐热处理后活性
XH401	1.08	0. 9
C207	0.85	0.46

1)反应条件: 压力 5.0 MPa, 温度 250 ℃, 空速 2×
 10⁴ h⁻¹, 原料气组成: CO/H₂/N₂/CO₂
 =12/72.5/15/0.5 (V/V)

2)耐热处理后活性系催化剂经400℃耐热试验3 h后降到250℃测得的活性

图 1 示出 XH401 和 C207 两种催化剂前驱 态(碱式碳酸盐或碱式硝酸盐)的 TG-DTA 图. 从 C207 的 DTA 曲线可见,348 ℃出现 ΔT 值为 -12.4 μV 的吸热峰, 而 XH401 的 DTA 曲线在 290 C最大吸热为-7.8 µV; C207 在 130 C出 现的 ΔT 值为 $-4 \mu V$, 而 XH401 则为 $-6 \mu V$; 由 此说明, XH401 前驱态在低温的分解速度比 C207 大,到 290 C基本分解完全;而 C207 前驱 态到 348 C才分解完全.由 TG 曲线也可看出, XH401 至 370 ℃已趋於稳定,而 C207 到 420 ℃才趋於稳定,温差约为 50 ℃.造成两种催化 剂前驱态分解温度不同的缘由,可能包括添加 第四组份金属氧化物 MO₄,对相应碱式碳酸盐 分解活化能的降低起有利的影响.图2示出 XH401 和 C207 两种催化剂前驱态的 XRD 谱 图. XH401 催化剂的 XRD 谱主要地显示出单 - 系列 2θ=24.02°、31.62°、32.64°、35.42°和 36. 46°可归属于孔雀石 (Malachite) 的标识峰 (ASTM10-399)^[3]. 而 C207 催化剂除了可看到 $2\theta = 23.98^{\circ}$ 、32.46°和 36.58°归属于孔雀石的

图 1 XH401 和 C207 催化剂前驱态 TG-DTA 图

图 2 甲醇合成催化剂 XH401 和 C207 前驱态的 XRD 谢

Fig. 2 XRD Patterns of the precursors of XH401 and C207 catalysts for methanol synthesis

标识峰外,也显示出强度较高 $2\theta = 27.58°$ 和 34.0°属绿铜锌矿(Aurichalcite)的特征峰 (ASTM17-743)^[3].两种催化剂前驱态相组成的差异,导致其热分解温度有所不同.

图 3 示出 XH401 和 C207 两种工作态催化剂在 N₂ 气氛中的 DTA 图. 从图 3 可见,C207 在 100 ℃出现吸热峰,175 ℃又产生放热峰,尔后 DTA 曲线略呈弧形;而 XH401 DTA 曲线在 130 ℃出现吸热峰,随后则趋於平坦. C207 在 175 ℃处出现的放热峰,可能是催化剂表面部分 Cu+ 被氧化所致.这和下文图 4 显示的结果是一致的. 由此表明,在 N₂ 气氛中 XH401 工作态催化剂热稳定性比 C207 工作态催化剂好.

- 图 3 XH401 和 C207 工作态催化剂在 N2 气氛中 的 DTA 图
- Fig. 3 DTA Patterns of the functioning XH401 and C207 catalysts in N_2 atmosphere
- 图 4 XH401 和 C207 工作态催化剂在空气中的 DTA 图
- Fig. 4 DTA Patterns of the functioning XH401 and C207 catalysts in air

图 4 示出 XH401 和 C207 两种工作态催化剂在空气中的 DTA 曲线. 由图 4 可见,C207 在 175 ℃出现急剧上升的放热峰,271 ℃出现较小的放热峰;XH401 在 209 ℃出现伴有 184 ℃肩 峰的放热峰,295 ℃出现较小放热峰. XH401 催化剂在 209 ℃处的放热峰和 C207 催化剂在 175 ℃处放热峰可能是催化剂表面活性位 Cu²-Cu⁺被氧化的放热峰;C207 催化剂 270 ℃和 XH401 295 ℃处两个放热小峰可能是工作态催化剂进一步被氧化的放热峰. XH401 DTA 曲线 两个放热峰比 C207 相应的两个放热峰滞后 20~30 ℃,表明 XH401 抗氧化能力优于 C207.

图 5 为 XH401 和 C207 两种 H₂-预还原催化剂在 CO/H₂/N₂/CO₂ 为 12/72.5/15/0.5 合成 气气氛中的 DTA 图. 图中展现,C207 催化剂在 187 ℃出现 ΔT 值为 34 µV 的放热峰,随后保持 ΔT 值约 1~2 µV 平稳上升,270 ℃之后 DTA 曲线 ΔT 值急速下降,400 ℃为-9 µV,450 ℃为-13 µV. XH401 催化剂的 DTA 曲线上,197 ℃出现 ΔT 值为 26 µV 的放热峰,随后 DTA 曲线 ΔT 保持在 -1~ -2 µV 之间,400 ℃为 -1 µV,450 ℃ 为 -2 µV. C207 DTA 曲线 187 ℃处放热峰和 XH401 197 ℃处放热峰,可能系产生自于催化剂表面由予还原态过渡 到稳定工作态的热效 应. 前者 ΔT 值较后者高 8 µV,说明 C207 催化剂由予还原态过渡到稳定工作态所放出热量较 大,暗示 C207 低价铜位较不稳定,易于被氧化或聚集,这可能是导致 C207 初始活性低於 XH401 的重要原因. 当温度高於 270 ℃之后,C207 催化剂 DTA 曲线急剧下降,表明随着温度 上升催化剂快速失活;而 XH401 的 DTA 曲线直到 450 ℃仍保持平稳. 随着温度的上升,在合 成气气氛中 C207 催化剂活性中心 Cu+容易 被深度还原为 Cu°,达 270 ℃之后,合成甲醇 的活性中心 Cu+有较大部分被还原为 Cu°而 失活,表现在 C207 DTA 曲线急剧吸热而下 降.XH401 催化剂,因添加金属 M°+(n>2) 离子溶入 ZnO 晶格之中,部分占据了原为 Zn²⁺占据的格点位置,相应地在 ZnO 晶格表 面形成相当数量正一价阳离子缺位,以达到 电价补尝,使催化剂保持电中性. 落位于这些 表面正一价阳离子缺位上的 Cu+于是得到稳 定化,较难被深度还原,使 XH401 催化剂的 DTA 曲线直到 450 ℃仍保持平稳.由此,可 解释 XH401 催化剂经 400 ℃耐热 3 h 后合成 甲醇活性何以能保持 1.85 倍於 C207 的高水 平.

参考文献

- Gus S et al. Catalysts for low-temperature methanol synthesis. J. Catal., 1985,95:120~127
- 2 杨意泉等.改进型铜基甲醇合成催化剂的制备研究.厦门大学学报(自然科学版),1994,33(4).
 477~480
- 3 蔡俊修等.共沉淀制备法及铜基催化剂组成对合成甲醇活性的影响.分子催化,1990,4(2):139~ 144

DTA Study of XH401 and C207 Copper-based Catalysts

for Methanol Synthesis

Yang Yiquan Zhang Hongbin

(Dept. of Chem. Xiamen Univ.)

Zhang Naixin Wang Shiaocang Pan Zhangwen Zhang Qiang (Nanjing Catal. Plant)

Abstract The experimental results showed that under the reaction condition of 5.0 MPa and 250 °C, the catalytic activity for methanol synthesis over XH401 catalyst, prepared by adding small amount of the metal oxide MO_x to the industrial catalyst C207, was about 20% higher initially and about 87% higher after undergoing a heat-treatment at 400 °C for 3 h than that over C207. DTA-comparative test of both catalysts XH401 and C207 showed that the heat-stability of XH401 was obviously better than that of C207.

Key words Methanol synthesis, Cu-Zn-Al catalyst, Cu-Zn-Al-M Catalysts, DTA