「研究简报]

1995年2月

甲烷氧化偶联 CaF₂/Sm₂O₃ 催化剂的研究*

周水琴 龙瑞强 黄亚萍 万惠霖 蔡启瑞

(厦门大学化学系,固体表面物理化学国家重点实验室,厦门,361005)

关键词 甲烷氧化偶联,氟化钙,三氧化二钐,离子交换,氧物种

甲烷氧化偶联制乙烯是催化领域中最活跃的研究课题之一.许多金属氧化物,如碱金属 促进的碱土金属氧化物及碱土-稀土金属复合氧化物具有较好的乙烷和乙烯收率.考虑到碱 土金属氟化物和稀土金属氧化物具有较高的熔点,且稀土氧化物一般具有较好的催化活性, 我们研究了 CaF₂ 促进的 Sm₂O₃ 催化剂对甲烷氧化偶联反应的催化性能,并且用 XRD、XPS 和原位红外光谱考察了催化剂的相组成和氧在催化剂表面的吸附行为.

1 实验部分

1.1 催化剂制备及活性评价 将一定摩尔量的 CaF₂和 Sm₂O₃ 混合研磨,在 900℃下煅烧 6 h, 压碎后筛选 40~60 目备用. CaF₂ 含量为 20%、40%、60%、80%的催化剂分别简称为 SC2、SC4、SC6 及 SC8.

催化剂的活性评价在石英管式固定床反应器中进行,甲烷与氧的摩尔比为 3:1,无稀释 气; 空速 15000 h⁻¹.

1.2 催化剂和吸附氧物种表征 XRD 测定在 Rigaku Rotaflex D/Max-C 型衍射仪上完成, Cu Ka 作辐射源. XPS 分析采用 VG ESCA LAB MK I型光电子能谱仪, Al Ka 激发源. 样 品于 850℃在 O₂ 中灼烧 30 min 后自然降至室温,用氦气吹扫气相氧后封管,在常温下进行 XPS 分析.

样品先于 700℃用氢处理 20 min, 经氦气吹扫后转通氧气,并在氧气中降至室温. 然后 逐渐升温,分别在 100、300、500℃下恒定 10 min 后于 Nicolet 740 FTIR 光谱仪上摄谱. 氧 气吸附前先通过 NaOH 纯化,以除去 CO₂ 杂质.

2 结果与讨论

2.1 催化剂性能评价结果 从表 1 可以看出,在 800℃及其以下温度时, CaF₂ 没有催化活性; 而未加 CaF₂ 的 Sm₂O₃ 活性也较低.随着 CaF₂ 的加入,明显提高了甲烷的转化率和 C₂ 的 选择性,并使 CO₂ 的选择性降低,从而提高了 C₂ 收率.但 CaF₂ 含量增加到 60%和 80%时,催化剂最佳活性温度也相应提高,这可能是因在 Ca²⁺含量较高时,表面碳酸盐较易生成,因 而主反应活化能¹¹¹和"起燃"温度也随着升高;与此同时,气相非选择性氧化可能占相对优势,表现为 CO₄(特别是 CO₂)的大量生成;另一方面, CaF₂ 含量升高时,表面氧物种浓度相应降

收稿日期:1994-03-10. 修改稿收到日期:1994-07-01. 联系人:万惠霖.第一作者:周水琴,女,28岁,博士研究生. *国家自然科学基金资助课题.

低,这都会导致催化剂活性和选择性的降低.

Table 1 Effect of CaF₂ content on the performance of CaF₂/Sm₂O₃ catalysts

Catalyst	Tempt.	CH4 conv. (%)	Selectivity(%)				C2 yield
	/℃		со	CO2	C₂H₄	C₂H₅	(%)
Sm ₂ O ₃	700	28. 2	11.2	50, 3	21.7	16.8	10.9
	650	28.8	9. 2	49.4	22. 2	19.2	11.9
SC2	700	30. 1	10.7	39.2	22.9	22.2	15.1
	650	28. 9	11.1	39.5	26.7	22. 7	14.3
SC4	700	31.8	13.9	36.6	29.4	20. 1	15.8
	650	30. 0	13.9	36.4	27.9	21.8	14.9
SC6	800	31.3	14. 1	39.0	30.4	17.6	15.0
	700	12.4	18.5	49.1	9.3	23. 0	4.0
SC8	850	33.9	16.9	29. 7	38.0	15.3	18.1
	800	33.8	16.3	31.9	34. 3	17.5	17.5
	700	17.9	18.5	44.8	12.1	24.6	6.6
CaF ₂	850	14.6	40.9	7.1	29.4	12.6	6.1
	800	0	0	0	0	0	0

2.2 催化剂的结构表征 XRD 分析结果表明, 纯 Sm_2O_3 为立方型. 在 CaF_2/Sm_2O_3 催化剂 中, 当 CaF_2 含量较低时, XRD 只检测到单斜、立方 Sm_2O_3 和六方 SmOF 晶相, 而没有检测 到 CaF_2 晶相, 可能是由于 CaF_2 高度分散于 Sm_2O_3 中的缘故. 六方 SmOF 循射峰的强度随着 CaF_2 含量的增加而增大, 在 $60\%CaF_2/Sm_2O_3$ 中达到最大值, 随后又减小. 新相 SmOF 的存 在说明在催化剂的制备过程中由于 $F^-(r=0.133 \text{ nm})$ 和 $O^{2-}(r=0.135 \text{ nm})$ 离子半径相近而 发生部分交换; 在 CaF_2 含量较高时, $CaSm_2O_4$ 物相的形成也表明阴离子间的部分相互取代. 由于 F 的电负性比 O 大, 它的吸电子效应使得吸附氧物种从催化剂上获得的电荷较少, 活性 较低, 减少了 CH_4 及其临氧转化中间体的深度氧化和 CO_2 的生成, 提高了 C_2 产物的选择性. 并且氟分散于催化剂表面, 使催化剂活性中心得到分散, 也即对表面氧物种起到分离作用. 2.3 氧物种表征 Sm_2O_3 和 CaF_2/Sm_2O_3 系列催化剂的 XPS 测试结果表明, 无论在纯

 Sm_2O_3 上,还是在含 CaF₂的 Sm₂O₃上,都存在 3 种不同的氧物种,其O₁结合能分别位于 528.8、530.5和532.0 eV 左右,可分别指认为晶格氧 O²⁻、O²(或O⁻)和 O⁻₂物种^[2,3]. 与纯 Sm₂O₃相比, CaF₂/Sm₂O₃催化剂上的 O²⁻₂(或O⁻)物种峰向高结合能方向移动 0.5 eV. 随着 CaF₂的加入,晶格氧在氧物种中的相对含量减少,而吸附氧物种,特别是 O⁻₂的含量明显增 加,这一结果与从表 1 中所看到的相应 CaF₂/Sm₂O₃催化剂对 C₂ 经选择性的提高是定性对应 的,并隐含着 O⁻₂ 是活性氧物种的可能性.

图 1 为 Sm₂O₃ 上吸附氧物种随温度变化的 FTIR 谱图. 从图中可以看出,常温时,在 890、1103、1408 和 1509 cm⁻¹处出现 4 个吸附峰,其中 1103 cm⁻¹处的峰锐而强,是吸附 O₂⁻ 的特征峰,而 893 cm⁻¹处的峰可指认为 O₂^{2-13~51},由于实验中排除了 CO₂ 的干扰,因而 1408、 1509 cm⁻¹两处的吸收峰可能为处于不同吸附位的弱吸附 O₂²⁻ 吸收峰^[51]. 随着温度升高,表征 为吸附氧物种的峰强度逐渐变低. 当温度上升到 500℃时, Sm₂O₃ 表面上已经看不到吸附氧 物种谱峰的存在,这可能是因为立方 Sm₂O₃ 是含 1/4 氧缺位的 CaF₂ 型结构,O₂ 吸附在这种 缺位上时,因结构的规整性,特别是温度的升高可能形成电荷分布对称而其简正振动无红外 活性的双氧物种.

图 2 为 20%CaF₂/Sm₂O₃ 上吸附氧物种峰随温度变化的 FTIR 谱图. 在常温时,该催化 剂上也存在着 O²⁻ 和 O⁻₂ 吸附态氧的吸收峰,分别位于 932 和 1100 cm⁻¹. 与 Sm₂O₃ 的 IR 谱 — 291 —

© 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Fig. 1in situ FTIR spectra of oxygen species onFig. 2in situ FTIR spectra of oxygen species onSm2O3 at different temperaturesCaF2/Sm2O3 at different temperatures

图相比, $O_2^{\circ-1}$ 的吸收峰位置蓝移约 40 cm⁻¹, 这与其 O_1 ,结合能比 Sm₂O₃ 的约高 0.5 eV 的 XPS 结果一致. 当温度升高到 500°C时,只有在 1100 cm⁻¹处存在一个吸收峰,说明在该温度下,催化剂表面上仅存在 $O_2^{\circ-1}$ 物种,这可能与 CaF₂/Sm₂O₃ 比 Sm₂O₃ 的催化性能好有关. 关于在反应温度下未观测到吸附氧物种谱峰的研究工作正在进行中.

参考文献

- 1 Coulter K., Goodman D. W.; Catal. Lett., 1993, 20: 169
- 2 Dubois J.L., Bisianx M., Cameron C. J.; Natural Gas Conversion, 1991; 109
- 3 Baddorf A. P., Itchkawitz B. S. ; Surf. Sci., 1992, 264; 73
- 4 Dubois J. L., Bisiaux M., Mimoun H., Cameron C. J.; Chem. Lett., 1990; 967
- 5 Ferdos A. M., Norman S.; J. Chem. Soc., Faraday Trans. 1, 1982, 78: 986

Oxidative Coupling of Methane over CaF₂/Sm₂O₃ Catalysts

ZHOU Shui-Qin, LONG Rui-Qiang, HUANG Ya-Ping, WAN Hui-Lin^{*}, TSAI Khi-Rui (Department of Chemistry, State Key Laboratory for Physical Chemistry of the Solid Surface, Xiamen University, Xiamen, 361005)

Abstract The results showed that, with the addition of CaF₂ to Sm₂O₃, the catalytic properties for OCM were apparently improved. XRD analysis of the fresh catalysts revealed the existence of SmOF in 20%—80% CaF₂/Sm₂O₃. XPS and IR spectra of O₂-pre adsorbed CaF₂/Sm₂O₃ samples taken at room temperature indicated the presence of O_2^{2-} and O_2^{-} species. O_2^{-} species could also be detected over 20%CaF₂/Sm₂O₃ at 500°C *in situ* IR spectroscopy, but it vanished over the Sm₂O₃ at the same temperature.

Keywords Methane oxidative coupling, CaF₂, Sm₂O₃, Ionic exchange, Oxygen species (Ed. : Y, X)

-292 -