高 等 学 校 化 学 学 报

2000年4月

Vol 21

CHEM ICAL JOURNAL OF CHINESE UN MERSITIES

No. 4

Ba-La-O-(F)催化剂的碱性及其OCM 反应性能

翁维正 陈明树 万惠霖 方智敏

(固体表面物理化学国家重点实验室,厦门大学化学系,物理化学研究所,厦门 361005)

摘要 采用 XRD, TPD 和高温原位 R 光谱对L axO₃, B aO /L axO₃, B aF₂/L axO₃, L aOF 和B aF₂/L aOF 等催化 剂的组成、结构和 CO₂ 在催化剂上的吸附状况进行了表征,并结合催化剂性能评价结果对该系列催化剂的 碱性及其与 OCM 反应性能的关系进行了考察 结果表明,催化剂 OCM 反应性能与其酸碱性的强弱无简单 的对应关系

关键词 镧基催化剂;甲烷氧化偶联;碱性;二氧化碳吸附;原位红外光谱;程序升温脱附
中图分类号 O 643.3
文献标识码 A
文章编号 0251-0790 (2000) 04-0575-06

自 Keller 等^[1]报道了甲烷氧化偶联(OCM)的早期工作以来,对OCM 反应的研究一直是人们十分 关注的课题^[2-8]. 早期研制的OCM 催化剂大多为(或含有)碱性氧化物,如L if M gO 及稀土氧化物 等 人们发现,催化剂的碱性与其OCM 性能,特别是 C2 烃选择性具有一定的对应关系 如Baerns 等^[9]发现,硅铝酸盐、氧化铝和 SD₂ 的酸性与其 C2 烃选择性呈反平行关系; Baerns^[10,11]和M aitra 等^[12]发现,C2 烃选择性随碱土氧化物的碱性增强而提高; Sokobvskii 等^[13,14]认为,在碱土磷酸盐和掺 杂的 PbO M gO 复合氧化物催化剂上,C2 烃选择性和甲烷转化率均随催化剂碱性的增强而提高;有人 甚至认为碱性是性能优良的OCM 催化剂的必要条件^[15]. 然而近年来的研究发现,C2 烃选择性与催化 剂的碱性间无直接的对应关系^[16,17],如Lunsford 等^[17]所报道的L if M gO /CI 催化剂是一种非碱性体 系,但它表现出比L if M gO 更为优越的OCM 性能

近年来,我们报道了一系列性能优良的含氟稀土-碱土基OCM 反应催化剂^[18~21],其中摩尔分数为 10%的BaF2/LaOF 催化剂体系在770 ,GHSV = 15 000 h⁻¹和V(CH4)/V(O₂) = 6 的反应条件下,甲 烷转化率和C2 烃选择性分别达到 19.5%和 81.2%.本文采用 XRD、CO₂-TPD 和催化剂性能评价等 方法对LaO₃, BaO/LaO₃, BaF2/LaO₃, LaOF 和BaF2/LaOF 催化剂进行了考察,并结合OCM 反应温 度下 CO₂ 在催化剂上吸附的高温原位 IR 光谱表征结果对该系列催化剂的碱性及其与OCM 性能的关 系进行较详细的讨论

1 实 验

LaOF参照文献[22]制备 30% BaO/La2O₃, 30% BaF₂/La2O₃ 和 15% BaF₂/LaOF的制备采用混合 研磨法,按比例将Ba(OH)₂(C. P. 级)和/或BaF₂(A. R. 级)分别与一定量的La2O₃(99.9%)或LaOF 混 合后研磨,并加入适量蒸馏水调成糊状,于 120 烘干 4 h, 800 下煅烧 6 h, 自然冷却至室温 所得 催化剂经压片成型后磨碎,筛取 40~60目的催化剂备用

催化剂性能评价在微型石英管固定床反应器内进行. 催化剂用量 0.20 mL, 原料气组成为 $V(CH_4)/V(O_2) = 4$, 无稀释气体,反应温度 800 ,空速15 000 h⁻¹. 反应原料CH₄(99.99%)和O₂ (99.5%)在使用前未经进一步纯化 反应产物由 102 型气相色谱仪分析, H₂ 载气, 5A 分子筛柱和 GDX-102 柱分别分析O₂, CH₄, CO 和C₂H₄, C₂H₆, CO₂ 等组分.

收稿日期: 1998-12-14

基金项目: 国家重点基础研究发展规划项目(批准号: G1999022408)、福建省自然科学基金(批准号: B97001)资助

联系人简介: 万惠霖(1938年出生), 男, 硕士, 教授, 博士生导师, 中国科学院院士, 主要从事多相催化及酶催化研究 E-mail hlwan@xmu edu cn

催化剂的体相组成和结构由 R igaku Rotaflex D /M ax-C 型 X 射线粉末衍射仪测定(40 kV × 30 mA),扫描范围 10 ° 70.°Cu Kα辐射源,石墨单色器滤波

CO₂-TPD 在自组装色谱-TPD 装置上进行 置于石英管中的催化剂样品(100 m g) 先于 750 下通 He 气(30 mL /m in) 处理 100 m in, 并在 He 气流中降温至 700 , 通入 CO₂ 处理 30 m in 后在 CO₂ 气氛 下降温至 50 , 再用 He 气吹扫除去气相 CO₂ 后在 He 气流中以 15 /m in 的速率从 50 升温至 800 或1 000 . CO₂ 脱附峰由 Perk in E m er XL 型气相色谱仪检测

催化剂上 CO₂ 吸附 ℝ 光谱表征在 Perkin Elmer Spectrum 2000 型 FT ℝ 谱仪上进行, 催化剂 (15~20 mg) 压成薄片在自制高温原位 ℝ 样品池中加热至 750 , 抽空(0.1 Pa) 处理 4 h 以除去催化 剂上的碳酸盐物种及其它吸附杂质后摄背景谱, 再放入一定压力的 CO₂, 使其吸附一定时间并在同一 温度下抽空 5~10 m in 后摄谱

2 结果与讨论

2 1 催化剂相结构的 XRD 表征

图 1 列出了各催化剂的 XRD 谱及 BaF₂(d = 3.55, 3.08, 2.18, 1.86, 1.54, 1.42, 立方)、 BaCO₃ (d = 3.68, 3.62, 2.61, 2.57, 2.13, 2.01, 正交) 等单一组分的 XRD 谱 由图 1 可见, LaO₃ 样品的组 成为La(OH)₃(d = 5.63, 3.25, 3.18, 2.82, 2.27, 1.88, 1.87, 六方)和 LaO₃(d = 3.39, 3.05, 2.96, 2.27, 1.96, 1.75, 六方), 这是因为暴露于空气中的 LaO₃极易水解生成 La(OH)₃ 之故 LaOF 的组 成为四方 LaOF(d = 3.36, 2.93, 2.90, 2.38, 2.06, 1.75). BaO/LaO₃ 样品中含有由 LaO₃ 水解产生 的 六方 La(OH)₃(d = 5.63, 3.25, 3.18, 2.82, 2.28, 1.88, 1.87)和正交 BaCO₃(d = 3.70, 3.65, 2.62, 2.13, 2.01)等物相, 其中 BaCO₃ 是由 BaO 在催化剂灼烧过程中与空气中的 CO₂ 反应产生 在 BaF₂/LaO₃ 样品中,除含有立方 BaF₂(d = 3.54, 3.08, 2.18, 1.86)、六方 LaO₃(d = 3.39, 2.27)和由 LaO₃ 水解产生的六方 La(OH)₃(d = 5.60, 3.25, 3.18, 2.81, 1.88, 1.86)等晶相外,还检测到三方 LaOF(d = 3.30, 2.87, 2.04, 2.02, 1.75, 1.73)和正交 BaCO₃(d = 2.13)等物相,说明灼烧过程中发 生了 BaF₂ 相和 LaO₃ 相间的 F⁻/O²离子交换 在 BaF₂/LaOF中只检测到立方 BaF₂(d = 3.57, 3.09, 1.86, 1.54)和四方 LaOF(d = 3.37, 2.93, 2.90, 2.38, 2.06, 1.76, 1.75)等物相

2 2 催化剂的 CO₂-TPD 谱

由 CO₂-TPD 结果(图 2)可知, L a_2O_3 上存在位于 355 和 957 的两个 CO₂ 脱附峰,其中低温脱附峰很弱,而高温脱附峰则很强 30% B $aO/L a_2O_3$ 的 CO₂-TPD 谱中也有两个脱附峰,分别位于 517 和 975 ,峰强度与L a_2O_3 的相当,但低温峰的峰温比L a_2O_3 的高 162 ,高温峰则比L a_2O_3 的高 18 ;

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

在 30% B aF₂/L a₂O₃ 的 CO₂-TPD 谱上也观察到两个脱附峰,其中位于 940 的高温峰峰温比L a₂O₃ 上 的相应峰温低了 17 ,而低温峰(480)的峰温则比L a₂O₃ 的高了 125 ,但脱附峰的总强度要低于 L a₂O₃; L aOF 的 CO₂-TPD 谱峰很弱,其最强脱附峰出现在 365 ,在 425 和 480 处还有两个较弱的 肩峰; 15% B aF₂/L aOF 的 CO₂-TPD 谱在 380 和 652 处出现两个脱附峰,其中位于 380 处的脱附 峰较弱,而位于 652 处的脱附峰较强

 $L acO_3 在 25$ 和> 450 下暴露于 CO₂ 气氛中将分别生成单齿配位的碳酸盐物种^[23]和L acO₂CO₃ 物种^[24]. Rosynek 等^[23]通过 R 实验发现,在加热至 250 并抽真空的条件下,部分单齿配位的碳酸盐 物种逐渐从表面脱附,而另一部分则转化为双齿配位的碳酸盐物种。当温度升至 350 时,两种碳酸 盐 物种均从表面消失 Eyring 等^[24]通过热重实验发现,Ln₂ (CO₃)₃ 在 450~ 550 下将转化为 Ln₂O₂CO₃(I),温度进一步升高(> 552),La₂O₂CO₃(I)则进一步转化为L a₂O₂CO₃(II),这两种 La₂O₂CO₃ 均在 900 以上分解

我们认为,在LaO₃,30% BaO /LaO₃和30% BaF₂/LaO₃等样品的CO₂-TPD 谱中出现的脱附峰均 来自于与La³⁺有关的碳酸盐物种的分解,其中低温和高温脱附峰可能分别对应于La₂(CO₃)₃的转化和 LaO₂CO₃的分解 虽然XRD 实验发现,在30% BaO /LaO₃和30% BaF₂/LaO₃等样品中还存在BaCO₃ 物相,但其分解温度在1000 以上^[25],已超出本实验的检测范围 由于在CO₂-TPD 实验中所用的样 品量均为100 mg,可算出LaO₃,30% BaO /LaO₃和30% BaF₂/LaO₃等样品中La 的含量分别为0.61, 0.50和0.50 mmol,结合图 2*a*, 2*b*和 2*c*等脱附曲线的峰温和峰的相对强度可以看出,样品的碱性按 30% BaF₂/LaO₃<LaO₃<30% BaO /LaO₃ 顺序递增 这表明在LaO₃ 中加入BaO 后,样品的碱性显著 增强,而加入BaF₂ 后,样品的碱性显著减弱 考虑到BaF₂ 是一种非酸非碱性的化合物,故其对LaO₃ 酸碱性的影响主要来自催化剂制备过程中发生的BaF₂ 晶相与LaO₃ 晶相间的氟氧离子交换,导致 LaOF和BaO 等新相的形成,从而影响催化剂的碱性 XRD 实验已证实催化剂中存在LaOF 物相 虽 然在 XRD 谱中未直接检测到BaO 相,但检测到了BaO 与CO₂反应所生成的BaCO₃物相 由于LaOF 的碱性非常弱,它的生成将有助于降低催化剂的碱性 但BaO 是强碱性化合物,它的存在又将使催化 剂的碱性增强 两种对立因素的共同作用造成30% BaF₂/LaO₃的低温和高温脱附峰温分别高于和低于 LaO₃上的相应脱附峰温,但总体看来,30% BaF₂/LaO₃的碱性还是比LaO₃弱一些

LaOF的CO₂-TPD 脱附峰及 15% BaF₂/LaOF的低温脱附峰也可能对应于类似La₂(CO₃)₃物种的 分解,而 15% BaF₂/LaOF的CO₂-TPD 高温脱附峰可能主要来自催化剂上生成的与Ba²⁺有关的碳酸盐 物种的分解 从脱附峰温和峰强度来看,15% BaF₂/LaOF的碱性比LaOF强得多,说明在LaOF中加 入少量BaF₂后,明显增强了样品的碱性,其原因亦源于催化剂制备过程中所发生的BaF₂ 晶相与LaOF 晶相之间一定程度的氟氧离子交换,即在催化剂中生成了类似于BaO的—O—Ba—物种,但在该催化 剂体系中的Ba²⁺周围除O²⁻外还存在F⁻,由于F的电负性比O的高,必将削弱与Ba²⁺相连的O²⁻的 碱性,故15% BaF₂/LaOF的碱性比LaO₃、30% BaO/LaO³和 30% BaF₂/LaO³等的弱得多 催化剂的 碱性中心(碱性位)实质上就是这些阳离子价态不变的氧化物或氟氧化物表面的晶格氧物种 吸附氧分 子的物种逐步还原活化与上述表面晶格氧的相对碱性强弱,即提供电子的难易密切相关

2 3 CO₂ 在催化剂上吸附的高温原位 IR 光谱表征

为进一步研究OCM 反应温度下 CO₂ 在催化剂表面的吸附及其对反应的影响,采用 R 光谱法在 750 下考察了 CO₂ 在L a₂O₃, 30% B aF₂/L a₂O₃, L aOF 和 15% B aF₂/L aOF 上的吸附行为 图 3(A)谱 线 *a* 为L a₂O₃ 在 750 下暴露于 6.5 × 10³ P a CO₂ 气氛中 5 m in 后的 R 光谱,在 843, 863, 1 043, 1 060和1 080 cm⁻¹等处出现的 R 吸收峰可归属为L a₂O₂CO₃(I)和L a₂O₂CO (II)等表面碳酸盐物 种^[26],抽空 5 m in 后上述 R 峰的强度变化不大[图 3(A)谱线 *b*).

图 3(B) 谱线 *a* 为 30% B a F₂/L a₂O₃ 在 750 下暴露于 6.5 × 10³ P a CO₂ 气氛中 5 m in 后的 R 光谱 图, 位于 847, 867, 1 046, 1 061和1 076 cm⁻¹等处的吸收峰也可归属为催化剂表面生成的L a₂O₂CO₃ 物种. 但样品在 750 下抽空 5 m in 后[图 3(B) 谱线 *b*]上述 R 峰强度有所减弱

Fig 3 IR spectra of CO₂ adsorption over La₂O₃(A) and 30% BaF₂/La₂O₃(B)

a Exposed to 6.5×10³ Pa of CO₂ at 750 for 5 m in; *b* Evacuated at 750 for 5 m in after *a* 上的吸附非常弱,仅观察到一个位于 856 cm⁻¹处的表面碳酸盐吸收峰,且抽空 5 m in 后[图 4(A)谱线 *b*]该峰的强度进一步减弱,这表明CO₂ 对L *a*OF 的影响很小 图 4(A)谱线 *a* 中位于1 088和1 040 cm⁻¹ 等处的 ℝ 峰在抽空过程中很快消失,表明它们可能来自气相中的杂质吸收

Fig 4 IR spectra of CO₂ adsorption over LaOF(A) and $15\% BaF_2/LaOF(B)$

a Exposed to 0.1 M Pa of CO₂ at 750 for 5 min; *b* Evacuated at 750 for 5 min after *a* 图 4 (B) 谱线 *a* 为 15% B aF₂/L aOF 在 750 下暴露于 0.1 M Pa CO₂ 气氛中 5 m in 后的 R 光谱 该 图中位于 856 和1 054 cm⁻¹处的吸收峰可归属为催化剂表面生成的碳酸盐物种,该碳酸盐物种的 R 谱 峰位置,尤其是两峰的相对强度显然不同于其它催化剂上所生成的L a₂O₂CO₃ 物种,而与B aCO₃ 的 R 谱峰(KB r 压片,图 4 中插图) 十分相似,因而可将其归属为催化剂上生成的类似于B aCO₃ 的物种,但 由于 B a²⁺ 周围除O²⁻ 外还存在电离势很高的 F⁻,故该物种的热稳定性较纯B aCO₃ 的低得多,经750 抽空 5 m in 后[图 4(B) 谱线 *b*]该碳酸盐物种的 R 谱峰迅速减弱,表明其大部分已分解,因此在OCM 反应温度下,CO₂ 对 15% B aF₂/L aOF 的影响也很小

由于 IR 实验中所用的样品量相近,从各谱图中碳酸盐物种的 IR 峰强度可以看出,在 750 下, L a O_3 , B a F_2 /L a O_3 , B a F_2 /L a O_F 和 L a O_F 等样品上生成的表面碳酸盐量按 L a O_3 > B a F_2 /L a O_3 > B a F_2 /L a O_F 的顺序递减,这与 CO₂-TPD 实验所得出的催化剂碱性顺序一致

2 4 催化剂的OCM 反应性能及其与催化剂酸碱性的关系

各催化剂在 800 下的OCM 反应性能列于表 1. 从表 1 可见,在 800 及 $V(CH_4)/V(O_2) = 4/1$, GHSV = 15 000 h⁻¹条件下,La₂O₃和LaOF上的C2 烃得率仅分别为 6.6%和 9.8%.在La₂O₃中分别添加 30% BaO 或 BaF₂后,催化性能有所提高,C2 烃得率分别增至 13.4%和 14.2%,而在 15% BaF₂/LaOF上,C2 烃得率高达 18.7%,说明在La₂O₃和LaOF中加入一定量的BaO 或 BaF₂后催 化剂的OCM 性能得到明显改善,且BaF₂调变体系(BaF₂/La₂O₃)的OCM 性能优于BaO 调变的体系 (BaO/La₂O₃). 但从各催化剂的碱性强弱来看,30% BaF₂/La₂O₃ 的碱性比La₂O₃和 30% BaO/La₂O₃的弱,而 15% BaF₂/LaOF 的碱性则比LaOF 的强,说明催化剂碱性的强弱与其OCM 性能的优劣并无直

接的对应关系

Table 1 The OCM performance of the catalysts									
Catalyst	t/	Conv. (%)		Selectivity(%)					C2 Yield
		CH ₄	O 2	CO	CO 2	C_2H_4	$C_{2}H_{6}$	C2	(%)
L a ₂ O ₃	800	27.7	86 4	36 2	40 1	15.5	8 2	23 7	66
30% B aO /L a2O 3 * *	800	25. 3	97. 2	4.0	43.2	29. 2	23.6	52 8	13.4
30% B aF 2/L a2O 3 * *	800	26 4	95.0	8 0	38 2	34.3	19.5	53.8	14.2
L aO F	800	24.9	97.5	14.5	46 3	23.6	15.6	39. 2	9.8
15% B aF $2/L$ aO F $*$ *	800	31. 0	91.7	4.9	34.8	37. 3	23. 0	60.3	18 7

* $V(CH_4)/V(O_2) = 4$ 1, GHSV = 1 5 000 h⁻¹. The data were obtained after 30 m in on stream. * * In molar fraction

对于阳离子价态不变的OCM 催化剂体系,其碱性增强固然有利于O₂的还原活化,并因而有利于 CH₄分子中C—H 键的活化,但催化剂本身也极易与OCM 反应中生成的 CO₂作用,生成稳定且具有 较差OCM 活性的表面碳酸盐物种 该物种的生成有助于分隔催化剂表面的活性氧物种,从而改善催 化剂的选择性,但催化剂的活性下降,此时若要维持催化剂的OCM 活性,就必须提高反应温度 因此 适当降低催化剂的碱性,如在LaO₃中加入一定量的BaF₂或用BaF₂取代BaO 反而有助于减少 CO₂对 催化剂的毒化,提高催化活性,这与Lunsford 等^[17]所报道的 CI 在Li⁺M gO-CI 体系中的作用十分类 似 此外,分散于催化剂表面的氟化物 (BaF₂) 也将起到表面碳酸盐所起的对催化剂表面活性氧物种的 分散作用,因而有利于改善催化剂的选择性 含F 催化剂体系 (LaOF, BaF₂/LaO₃)的OCM 性能优于 相应的非含氟体系 (LaO₃, BaO/LaO₃)的另一个原因是由于 F 的电负性比O 的大,因而有利于生成带 有较少负电荷氧物种O₂^[27],该物种的反应活性较O⁻,O² 等氧物种低,所以具有较高的选择性 从 表 1 的数据还可看出,含Ba 的催化剂体系 (BaO/LaO₃, BaF₂/LaO₅)的OCM 反应性能分别优于相应 不含Ba 的体系 (LaO₃, LaOF),这可能是由于具有较大离子半径的Ba²⁺与O₂物种之间存在着较强的 单电荷-诱导偶极相互作用势,因而有利于稳定具有较高反应选择性的O₂物种.

参考文献

- 1 Keller G. E., Bhasin M. M. J. Catal [J], 1982, 73: 9-19
- 2 Amenomiya Y., Birss V. I, Goledzinow ski M. et al. Catal Rev. Sci Eng [J], 1990, 32: 163-227
- 3 Lunsford J. H. Angew. Chem. Int Ed Engl [J], 1995, 34: 970-980
- 4 Zhang Z , Verykios X. E , Baerns M. . Catal Rev. Sci Eng [J], 1994, 36: 507-556
- 5 ZHEN Kai-Ji(甄开吉), LISen-Zi(李森梓), BIYing-Li(毕颖丽) et al. Chem. J. Chinese Universities(高等学校化学学报)[J], 1994, 15: 891-894
- 6 WU Bo(吴 波), YUAN Song-Yue(远松月), YU Zuo-Long(于作龙). Chem. J. Chinese Universities(高等学校化学学报)[J], 1995, 16: 432-436
- 7 ZHOU ShuirQ in (周水琴), LONG RuirQ iang (龙瑞强), HUANG Ya-Ping (黄亚萍) et al. Chem. J. Chinese Universities (高等学校 化学学报) [J], 1995, 16: 290-292
- 8 LONG Rui Q iang(龙瑞强), WAN Hui Lin (万惠霖), LA I Hua Long (赖华龙) et al. Chem. J. Chinese Universities (高等学校化学学报) [J], 1995, 16: 1796-1797
- 9 Bytyn W., Baerns M. App1 Catal [J], 1986, 28: 199-207
- 10 Carreiro J. A. S. P., Baerns M. J. Catal [J], 1989, 117: 258-265
- 11 Carreiro J. A. S. P., Baerns M.. React Kinet Catal Lett [J], 1987, 35: 349-360
- 12 Maitra A. M., Campbell I, Tyler R. J. Appl Catal A: General[J], 1992, 85: 27-46
- 13 Sokobvskii V. D., Aliev S. M., Buyevskaua O. V. et al. Catal Today [J], 1989, 4: 293-300
- 14 Buevskaya O. V., Sulein anov A. I, Aliev S. M. et al. React Kinet Catal Lett [J], 1987, 33: 223-227
- 15 Dubios J. L., Cameron C. J. Appl Catal [J], 1990, 67: 49-71
- 16 Wang D., Rosynek M. P., Lunsford J. H. J. Catal [J], 1995, 155: 390-402
- 17 Lunsford J. H., Hinson P. G., Rosynek M. P. et al. J. Catal [J], 1994, 147: 301-310
- 18 Zhou S, Zhou X, W an H. et al. Catal Lett [J], 1993, 20: 179-183
- 19 Zhou X. P., Zhang W., W an H. et al. Catal Lett [J], 1993, 21: 113-122
- 20 Zhou X. P., Zhou S. Q., Zhang W. D. et al. Preprints, Div. Petro. Chem. Inc [J], 1994, 39: 222-225
- 21 Wan Huilin, Chao Zisheng, Weng Weizheng et al. Catal Today [J], 1996, 30: 67-76
- 22 Zhou X. P., Chao Z. S., Luo J. Z. et al. Appl Catal, A: General[J], 1995, 133: 263-268

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- 23 Rosynek M. P. , Magnuson D. T. . J. Catal [J], 1977, 48: 417-421
- 24 Turcotte R. P., Sawyer J. O., Eyring L.. Inorg. Chem. [J], 1969, 8: 238-246
- 25 Maitra A. M., Campbell I, Tyler R. J., Appl Catal A: General, 1992, 85: 27-46
- 26 Van T. L., Che M., Tatibouet J. M. et al. J. Catal [J], 1993, 142: 18-26
- 27 Weng Weizheng, Chen Mingshu, Wan Huilin et al. Catal Lett [J], 1998, 53: 43-50

Basicity of Ba-La-O-(F) Catalysts and Their Catalytic Performances for the OCM Reaction

WENGWei-Zheng, CHENMing-Shu, WANHui-Lin^{*}, FANGZhi-Min

(State Key Laboratory of Physical Chemistry for Solid Surfaces, Department of Chemistry, Institute of Physical Chemistry, Xiam en University, Xiam en 361005, China)

Abstract The structure and surface basicity of a series of lanthanum based catalysts (L a2O 3, B aO /L a2O 3, B aF 2/L a2O 3, L aOF, B aF 2/L aOF) were characterized by XRD, CO 2⁻TPD and high temperature *in situ* FT **R** spectro scopy of CO 2 adsorption. Both the results of CO 2⁻TPD and *in situ* FT **R** spectra of CO 2 adsorption indicate that the basicity of the catalysts decreases in the sequence B aO /L a2O 3> L a2O 3> B aF 2/L aOF. The experiments of catalytic performance evaluation of the catalysts performed at 800 under the conditions of V (CH 4) /V (O 2) = 4 and GHSV = 15 000 h⁻¹ indicate that the B aF 2 modified L a2O 3 and L aOF demonstrate a better OCM performance compared to the corresponding L a2O 3 and L aOF. These observations suggest that the surface basicity is not always a requisite attribution for a good OCM catalyst

Keywords Lanthanum based catalysts; Oxidative coupling of methane; Basicity; CO_2 adsorption; in situ \mathbb{R} ; TPD (Ed : Y, X)

(上接 534 页)

2

- (2) Urbanski J., Czerwinski W., Janicka K. *et al*; Translated by CHEN Ben Ming (陈本明), ZHANG De-He (张德和). The Handbook of Synthetic Polymer and Plastic Analysis (合成聚合物与塑料分析手册) [M], Beijing: Chemical Industry Press, 1982: 39_55
- (3) XN Q in (辛 勤). Proceedings of the 7th Chinese Symposium on Catalysis (第七届全国催化会议论文集) [C], Dalian: Dalian University of Technology Press, 1994: 164_166
- 263 专利 按作者、专利名称、专利号、年顺序书写,如:
- (1) KonishiM. JP 04 235 971[P], 1992
- 2.6.4 学位论文 按作者、学位名称、单位名称、年顺序书写,中文在英文后并加括号,如:
- (1) TENG YouWei(腾有为). Master Dissertation, Chem. Dept Sichuan Univ. (四川大学化学系硕士学位论文) [D], 1999

2 7 第一页地脚注明联系人简介: 姓名, 出生年, 性别, 学位, 职称(博士导师, 中国科学院院士等); 基金资助项目类 别及批准号。

所有稿件均要求间行打字(若通知录用,请用 Email(cjcu@mail jlu edu cn)传送,亦可寄软盘,但二者均需寄修改 稿样本),字迹务必清晰。一式 3 份,标明二级学科、联系人及其电话号码和 Email 地址。

2 8 向本刊投稿者需同时交纳审理费,出版前需交纳发表费,汇款时务请注明稿件编号和联系人姓名及通信地址;有 机化学及生物化学方面的稿件及其审理费请寄天津市南开大学本刊分编辑部(邮编: 300071);其它学科稿件的审理费 和全部发表费请寄长春市吉林大学内本刊编辑部(邮编: 130023),帐号:吉林大学 00314424238- 101(长春市工商银行 人民广场办事处)。

29 来稿一经受理并在收到审理费后一周内寄回执,4个月内函告作者审理结果,若不采用,原稿不再奉还,请作者 自留底稿。稿件由专家和本刊编辑委员会审定,本刊有权对拟刊用的稿件进行必要的修改,修改稿2个月内不返回者, 按自行退稿处理。作者若无特殊声明,将视为同意被各种文摘刊物和文献数据库摘引。