第38卷 第4期 **厦门大学学报(自然科学版)**

1999年7月 Journal of Xiam en University (Natural Science)

固氮酶中N2和N2O结合位的一种 新的鉴定方法

张凤章	黄静伟 ²	邱雪慧	曾润颖 ³
龙敏南	张鸿图2	许良树 ¹	万惠霖2

(1 厦门大学生物学系 2 厦门大学化学系 3 国家海洋局第三海洋研究所 厦门 361005)

摘要 采用 GC 和 GC-FT R 法, 研究了N₂和N₂ 对 N 2 对固氮酶催化 CD₂ 还原活性及产物二氘 代乙烯的反式-/顺式-异构体比值的影响, 结果表明, N₂和N₂0 均抑制 CD₂ 的还原作用, 并引起反 式-/顺式-1, 2-二氘代乙烯比值的增加 这一变化规律, 与根据 C₂H₂ 还原被N₂和N₂0 抑制只发生在 固氮酶铁钼辅基(FeM oco)的笼内的假设而近似计算的结果相一致 实验结果和理论计算之间的一 致性支持 N₂和N₂0 结合在 FeM oco 的笼内, 并主要抑制在笼内的 C₂D₂ 还原的看法

关键词 固氮酶, C₂D₂ 还原, 反式-/顺式-二氘代乙烯比值, N₂ 和 N₂O 结合位

中国图书分类号 Q 554

固氮酶钼铁蛋白含有两个金属中心M-簇和P-簇 M-簇又称为 FeM o-辅基(FeM oco),它 被认为是底物结合和还原的活性部位,而P-簇则被认为是固氮酶的电子库,在固氮酶催化底 物还原时参与电子和质子的传递 根据钼铁蛋白单晶的X-射线衍射的数据提出的 FeM o-辅基 结构模型 K in -R ees 模型^[1],为设想底物在 FeM oco 上的结合和还原位点提供有力的依据 在 K in -R ees 模型中, FeM oco 是由M oFe₃S₃和 Fe₄S₃两个亚簇通过 3 个无机硫桥连而成的类双 立方烷,7 个 Fe 原子中的 6 个为三配位,包括桥 S 提供的一个配基;两个亚簇之间的辅基内侧 出现一个直径约为 4Å 的腔 3 个无机桥 S 之一可能具有不同于另两个桥 S 的微环境,当活性 酶开始向 FeM oco 输送 H⁺和 e⁻时,这个特殊的无机硫配基会被氢化并以 H₂S 形式除去,而在 FeM oco 的 2Fe 位处留下一个缺口^[2],这就打开了一些底物从笼外进入笼内的可能通道 当一 些底物共存于一个体系中且在笼内被还原时,它们会彼此竞争结合位,这就会影响底物还原活 性 在我们的实验中,以C₄D₂作为N₂和N₄O (N 4O 为N₂还原的竞争性抑制剂)还原的化学探 针,以反式-/顺式-1,2-二氘代乙烯比值的变化作为N₂或N 4O 与C₄D₂竞争结合位点而引起的 变化指数,从而推测出N₂,N 4O 和C₄D₂在 FeM oco 中的结合位

1 材料与方法

1.1 固氮菌菌体培养

棕色固氮菌(Azotobacter vineland ii OP)菌种购自美国菌种中心,采用改进的Burks培养

本文 1998-12-15 收到; 国家"八・五 "攀登课题资助项目(无编号)和国家自然科学基金资助项目 (39470165) ② © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 基三级发酵培养, 菌体在自制的 50L 发酵罐中生长, 对数生长后期离心收集菌泥, 于-70 下冷冻保存备用

1.2 固氮酶组份蛋白钼铁蛋白和铁蛋白的分离

按先前的方法^[3]分离MoFe-蛋白和 Fe-蛋白 第一次柱层析洗脱的MoFe-蛋白溶液经超 滤浓缩(膜截留值MW = 100 000),浓缩液用 0 025 mol \pounds Tris-HCl缓冲液(pH7. 2)稀释后, 再经DEs2柱(4 cm × 20 cm)层析提纯 第一次柱层析收集的 Fe-蛋白经二次DEs2柱(2 cm × 20 cm)层析提纯 所有的操作均在无氧条件下进行 收集的MoFe-蛋白溶液和 Fe-蛋白溶液存于 液氮中备用 以考马斯亮蓝 G-250 法^[4]测定蛋白浓度,以牛血清白蛋白为标准蛋白

13 固氮酶活性测定

在一系列带反口橡皮塞的反应瓶中,加入反应系统^[5](CP, CK, ATP-2Na和MgCl₂)0 4 mL,反复抽气充Ar或充N₂气,然后注入一定量的MoFe-蛋白和Fe-蛋白及01mL04 mol/LNa₂S₂O₄,反应瓶以注射针筒扎针放气至1 atm 后,注入C₂D₂及N₂O,在30 水浴中 振荡反应30 m in,注入01mL7%(W/V)三氯乙酸终止反应以103型气相色谱仪(氢火焰 离子化检测器,AlO₃柱,固定相为硅油,03 cm × 200 cm,载气为N₂)测量生成的C₂H₄以 102G型气相色谱仪(5A分子筛柱,以Ar为载气,热导池检测器)检测生成的H₂

用微量扩散法收集生成的NH₃, 以Nessler s 试剂比色测定NH₃ 生成量^[6].

1.4 红外光谱测定

用 GC-FT IR 联用仪测量二氘代乙烯 CHD = CHD 的红外光谱 将反应体系的气体混合物 注入 PE-2000 型光谱计配置的色谱柱(GDX-502 柱, 0 3 cm × 250 cm), 以 He 气为载气, 在 45 下层析分离, 然后以 PE-2000 型 FT IR 光谱仪测量 CHD = CHD 在 1 130~770 cm⁻¹区的 红外光谱, KB r 棱镜, M CT 检测器 从红外光谱图中的 988 cm⁻¹和 843 cm⁻¹处的特征峰的峰 面积积分值, 计算反式-/顺式-1, 2-二氘代乙烯的比值

2 结 果

2.1 反应条件及产物氘代乙烯检测方法的选择

在重水体系中固氮酶能催化 C₂H₂ 还原产生 1, 2-二氘代乙烯^[7]. Craw ford 等^[8]和 Hardy 等^[9]认为反应后的气体混合物,其红外光谱中的 988 cm⁻¹和 843 cm⁻¹处的特征峰分别为反式 -1, 2-二氘代乙烯和顺式-1, 2-二氘代乙烯的振动吸收 在不同反应条件下两个特征峰的面积的 相对变化已被用来计算反式-/顺式-1, 2-二氘代乙烯比值的变化^[10]. 虽然固氮酶是在重水体系 中催化底物乙炔还原的,但由于体系中含有痕量的H₂O,故反应中仍有 C₂H₄ 产生,这样,反应 后的气体混合物的红外光谱中的 988 cm⁻¹的峰将作为 C₂H₄ 特征峰(949 cm⁻¹处)的伴峰(见图 IA),结果反式-/顺式-异构体比值就不能精确计算,所以选择 C₂H₄ 在重水体系中还原是不适 宜的 选择 C₂D₂ 作为固氮酶底物,在H₂O 体系中反应虽然可以消除 C₂H₄ 的影响,但在反应 后的气体混合物的红外光谱中, C₂D₂ 的 1020 cm⁻¹特征峰尾部(图 1C)与 CHD = CHD 的 988 cm⁻¹处特征峰发生交盖,亦干扰反式-/顺式-异构体比值的正确计算 为了解决这个问题,在实 验中我们先用 GC 柱(GDX-502 柱)分开 C₂D₂ 和 CHD = CHD,然后只对 CHD = CHD 的红外 光谱进行观测

2 2 不同条件下 C₂D₂ 的还原活性及 CHD = CHD 的反式/顺式比

在固氮酶的生理底物 N₂ 的存在下, C_{D2} 的还原受N₂ 的竞争性抑制,其结果示 于表 1 和图 2 特征峰的面积是面积积分仪 自动积分获得的,由此计算反式-/顺式-1, 2-二氘代乙烯的比值,其数值亦列于表 1 中. 从表 1 可见,在A r 气氛下,C₂D₂ 的还原 活性随 C₂D₂ 的分压 (Pc₂D₂) 的降低而呈线 性下降,而反式-/顺式-比值增大 其最大可 能是放 H₂ 作用增强并主要影响低 Pc₂D₂ 下 的 C₂D₂ 在笼内的还原 当用 N₂ 气代替A r 气作为反应气氛时, C₂D₂ 的还原活性下 降,而反式-/顺式-比值升高,且 C₂D₂ 还原 活性的降低和反式-/顺式-比值的增大的幅 度要比A r 气氛下 Pc₂D₂降低引起的同样变 化的幅度大

2 3 在不同条件下底物的还原和反 式-/顺式-1,2-二氘代乙烯比值

N $_{2}$ 0 $_{2}$ 0 $_{2}$ 0 0 $_{2}$

比较在 N_2 存在下的情形, C_D_2 还原 活性, $\dot{M}H_2$ 和 NH_3 生成均降低, 而反式-/ 顺式-比值则因 N_O 和 N_2 的存在而增大 结果表明, N_O 抑制 C_D_2 还原, $\dot{M}H_2$ 及 N_2 的还原 这与Liang 和RiveraOrtizm 的 结果一致^[14,15]. 在 N_O 和 N_2 同时存在下的 总电子流分配亦低于无 N_O 存在下的总电 子流分配, 这可能是因 N_O 还原需要电子.

图 1 C₂H₄(A), C₂H₂(B)和C₂D₂(C)的红外光谱 Fig. 1 IR spectra of C₂H₄(A), C₂H₂(B) and C₂D₂(C)

图 2 产物二氘代乙烯的红外光谱 (A)Ar-1.5% C₂D₂; (B)Ar-0.7% C₂D₂; (C)N₂-1.5% C₂D₂; (D)N₂-0.7% C₂O₂

子流分配 这可能是因NAO 还原需要电子,即一些电子用于HAO 的形成

Tab 1 The C ₂ D ₂ reduction activity and the trans/cis of CHD = CHD under different conditions							
		(反式/顺式)/(%)					
气 相	C ₂ D ₂ 还原活性"	实验值。	计算值的				
A r-1. 5% C ₂ D ₂	676 0	09	0 9 ^e				
A r-0 7% C 2D 2	316 6	1. 8	1. 9				
N 2-1. 5% C 2D 2	220 1	3 0	2 7				
$N_{2} = 0.7\% C_{2} D_{2}$	151 8	4.2	3 9				

表 1 不同条件下氘代乙炔还原活性及反式-/顺式-1, 2-二氘代乙烯的比值^{a)}

 N 2-0 7% CD2
 151.8
 4.2
 3.9

 a)A vl, 0 68 mg; A v2, 2 68 mg; A vl 比活性, 1360 nmole C2H4 生成/min · mg prot b)单位: nmol C2H3D2

 thrt ()

生成/m in · mg prot c)数值得自图 2 中反式-和顺式-1, 2-二氘代乙烯特征峰的峰面积积分比值 d)数值见 文中所述的近似计算 e 此值为实验值,作为计算同系列反式-/顺式-1, 2-二氘代乙烯比值的起始点

表 2 不同条件下底物还原和反式-/顺式-1, 2-二氘代乙烯的比值。"

Tab. 2	The substrates	reduction and	the tran	s/cis ratio	of CHD=	CHD	under different	conditions

	C ₂ D ₂ 还原活性 ^{b)}	放Η₂ 活性 [©]	N 2 还原活性 ^{d) —}	(反式/顺式)/(%)		
气 相				实验值	计算值的	
A rgon-10% C ₂ D ₂	123 5	150 4	0	0 6	0 6 ^g	
N 2-1% C 2D 2	21.8	161.8	25.6	3 3	3 3	
N 2-1% C 2D 2-5% N 2O	19.2	149 1	24.1	39	3 8	

a)Av1, 1.00mg; Av2 1.75mg, Av1比活性, 1360 C₂H₄ 生成/m in ·mg prot; b)比活单位: nmo1C₂H₂D₂ 生成/m in ·mg prot; c)比活单位: nmo1H₂ 生成/m in ·mg prot; d)比活单位: nmo1NH₃ 生成/m in ·mg prot; e)数值得自图 3 的反式-/顺式-1, 2-二氘代乙烯的特征峰面积积分比值; f)数值按文中所述的近似 计算获得; g)此值为实验值, 作为计算同系列反式-/顺式-1, 2-二氘代乙烯比值的起始点

3 讨 论

实验结果表明, N₂ 和N₂O 会抑制 C₂D₂ 的还原, 并引起反式-/顺式-1, 2-二氘代乙烯比值 的增大 这些结果是否反映了固氮酶作用的内在规律, 特别是固氮酶中N₂ 的结合位方面的信 息 为了解释这些实验结果及其它们的固有规律, 首先必须提出 3 个假设

1) 根据固氮酶 FeM o-辅基的 K-R 模型和已知的事实, 即固氮酶催化的 $C_{2}H_{2}$ 还原和 N_{2} 还 原之间的竟争性和非竟争性的关系^[15]. 在固氮酶中 $C_{2}H_{2}$ 可能有两个结合位, 即笼内和笼外 (缺口处的 2Fe 位).

2) 根据已知的实验事实^[9,16], 即CH CH和CH₃C CH在D₄O 中被固氮酶催化时其结合 强度和顺式-1, 2-二氘代乙烯选择性有很大的差异, C₂H₂ 还原氘化产物几乎都是顺式-1, 2-二 氘代乙烯, 而 CH₃C CH 的还原氘化产物顺式-/反式-1, 2-二氘代丙烯比值约为 64/36 乙炔 还原作用似乎在笼内发生, 只有很少的 C₂H₂ 在缺口处的 2Fe 位被还原: 在笼内, C₄D₂ 的还原 产物为 100% 顺式 1, 2-二氘代乙烯, 在笼外, C₄D₂ 的还原产物为 50% 顺式-1, 2-二氘代乙烯和 © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

第4期

50% 反式-1, 2-二氘代乙烯

3) 笼内的C₂H₂ 还原作用被N₂ 和N₂O 所抑制

从表 1 可见,在 Ar 气氛和 $P_{C_2P_2}$ 为 0 015 atm 下,反式-/顺式-1,2-二氘代乙烯 比值约为 0 9%,这就是说约有 98 2% C₂D₂ 在笼内还原,它们都被还原为顺式-1, 2-二氘代乙烯;约有 1.8% C₂D₂ 在笼外还 原,只有 0 9% 被还原为反式-1,2-二氘代 乙烯 当 $P_{C_2P_2}$ 降低到 0 007 atm 时,C₂D₂ 还 原活性降低至约 46 8%.根据我们的假设, 只有约 46 8% × 98 2% C₂D₂ 在笼内还原, 它们均被还原为顺式-1,2-二氘代乙烯,而 在笼外,仍然约有 0 9% 顺式-1,2-二氘代 乙烯和 0 9% 反式-1,2-二氘代乙烯生成; 产物中的反式-/顺式-1,2-二氘代乙烯的比 值为 0 9/(0 468 × 98 2+ 0 9)= 1 9%.用 同样的方法,可以从不同条件下C₂D₂ 还原

- 图 3 不同反应气相下产物二氘代乙烯的红外光谱 (A)Ar-10% C₂D₂; (B)N₂-1%C₂D₂; (C)N₂-1%C₂D₂-5%N₂O
- Fig. 3 \mathbb{R} spectra of product CHD = CHD

活性的降低近似计算反式-/顺式-CHD = CHD 比值(见表 1 和 2). 很明显,从比较实验和由假 设而近似计算的反式-/-顺式-比值,反映了我们假设的合理性,这些结果直接支持N $_2$ 和N $_2$ O 都结合在 FeM o-辅基的笼内,并主要是抑制笼内的 C D_2 还原的观点

感谢翁维正、陈明树博士和严兴国、周明玉、杨茹老师在实验中给予的热情帮助

参考文献

- Kin J, Rees D C. Structural models for the metal centers in the nitrogenase molybdenum-iron protein Science, 1992, 257: 1 677~ 1 682
- 2 T sai K R, W an H L. On the structure-function relationship of nitrogenase M -cluster and P-cluster pairs J. Cluster S ci., 1995, 6: 485~ 501
- 3 许良树, 曾定, 林清木等. 棕色固氮菌钼铁蛋白的结晶及其氧化还原电位的研究. 厦门大学学报(自然科学版), 1979, 18(4): 89~96
- 4 Bradford M M. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *A nal. B iochem.*, 1976, 72: 247~ 254
- 5 曾定, 许良树, 林清木等, 固氮酶铁钼辅基模拟物的生物活性, 厦门大学学报(自然科学版), 1980, 19(4): 78~84
- 6 LiJL, Burris R H. Influence of pN 2 on HD formation by various nitrogenase Biochemistry, 1983, 22: 4 472~ 4 480
- 7 Dilworth M J. Acetylene reduction by nitrogen-fixing preparations from *Clostridium pasteurianum*. Biochim. Biophys Acta, 1996, 129: 285~ 294
- 8 Craw ford B L, Lancaster J E, Inskeep R G The potential function of ethylene J. Chem. Phys , 1953, 21: 678~ 686
- © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- 9 Hardy R W F, Holstm R D, Jackson et al The acetylene-ethylene assay for N₂ fixation: laboratory and field evaluation Plant Physiol, 1968, 43: 1 185~ 1 207
- 10 黄静伟, 陈灿和, 张凤章等, 氮结合在固氮酶M-簇笼内的一个可能证据 高等学校化学学报, 1996, 17: 760~763
- 11 Mozen M M, Burris R H. The incorporation of ¹⁵N-labelled nitrous oxide by nitrogen fixing agents Biochim. Biophys A cta, 1996, 17: 577~ 578
- 12 Hardy R W F, Kinght J E. Reduction of N₂O by biological N₂-fixing system. Biochem. Biophys Res Commun, 1966, 23: 409~ 414
- 13 Jensen B B, Burris R H. N D as a substrate and as a compective inhibitor of nitrogenase Biochemistry, 1983, 25: 1 083~ 1 088
- 14 L iang J H, Burris R H. Interactions among N₂, N₂O and C₂H₂ as substrates and inhibitors of nitrogenase from *A zotobacter vineland ii* Biochem istry, 1988, 27: 6726~6732
- 15 Rivera Ortizm J M, Burris R H. Interactions among substrates and inhibitors of nitrogenase J. Bacteriol, 1975, 123: 537~ 545
- 16 M cKenna C E, M ckenna M C, Huang CW. Low stereo selectivity in methyl-acetylene and cyclop ropene reductions by nitrogenase Proc N atl A cad Sci USA, 1979, 76: 4 773~ 4 777

A New Method Identifying the Binding Site of N 2 and N 20 in N itrogenase

Zhang Fengzhang¹ Huang Jingwei² Qiu Xuehei¹ Zeng Runying³ Rong Minnan¹ Zhang Hongtu² Xu Liangshu¹ Wan Huilin² (¹Dept of Biol, Xiam en Univ., ²Dept of Chem., Xiam en Univ., ³The 3rd Inst of Ocean, SOA, Xiam en 361005)

Abstract The effects of N₂ and N₂O on C₂D₂ reduction activity and ratio of trans-/ cis-1, 2-dideutroethylene in products catalyzed by nitrogenase have been studied using GC and GC-FT IR measurements The results showed that N₂ or N₂O can inhibit the C₂D₂ reduction, and result in the increase of the trans-/cis-ratio in CHD = CHD. The changes of the trans-/cis-ratio in 1, 2-dideutroethylene are in line with the results from approximate calculations based on the hypothesis that the inhibition of C₂H₂ reduction by N₂ or N₂O takes place practically only inside the cage The consistency between the experimental results and the approximate calculation supports the suggestions that N₂ and N₂O bound to inside the cage and mainly inhibit the C₂D₂ reduction inside the cage

Key words N itrogenase; C_2D_2 reduction, T rans-/cis-1, 2-dideutroethylene, B inding sites of N 2 and N 20