文音编号 · 0253-9837 (2005) 02-0148-05

第26卷第2期

催化学报

Vol. 26 No. 2

Chinese Journal of Catalysis

2005 年 2 月 February 2005

研究论文: 148~152

错促进纳米氧化镍催化剂的制备及其对乙烷 氧化脱氢制乙烯的催化性能

操小栋, 陈 铜, 吴 瑛, 张晋芬, 翁维正, 万惠霖 (厦门大学化学系物理化学研究所固体表面物理化学国家重点实验室,福建厦门 361005)

摘要:用尿素均匀沉淀法制备了不同含量锆促进的纳米氧化镍催化剂,并考察了其对乙烷氧化脱氢制乙烯的催化性能.结果 表明,纯纳米氧化镍在优化条件下的最高乙烯收率为 21.7%;而锆促进的纳米氧化镍催化剂对乙烯选择性和高温抗乙烷裂 解性能都有明显改善.15%ZrO₂-NiO表现出最佳的催化性能,在 410 下,乙烷转化率为 61.5%,乙烯选择性为 68.6%,乙烯 收率为 42.2%;该催化剂在 420 经 36 h 反应,乙烯收率仅下降约 4%,粒子没有发生明显的团聚,表现出较好的稳定性. XRD 结果表明,锆促进的纳米氧化镍粒子较纯纳米氧化镍粒子小,平均粒径为 5~7 nm;助剂锆以无定形的 ZrO₂ 形式存在. O₂-TPD-MS 结果表明,锆的加入提高了催化剂中较高温度下脱附的氧物种量,降低了较低温度下脱附的氧物种量.H₂-TPR 结果显示,锆促进的纳米氧化镍催化剂较纯纳米氧化镍难以完全还原. **关键词**:乙烷,氧化脱氢,乙烯,锆促进纳米氧化镍催化剂,尿素均匀沉淀法 **中图分类号**:O643 **文献标识码**:A

Preparation of Zr- Promoted Nano-NiO Catalyst and Its Catalytic Performance for Oxidative Dehydrogenation of Ethane to Ethylene

CAO Xiaodong, CHEN Tong^{*}, WU Ying, ZHANG Jinfen, WENG Weizheng, WAN Huilin^{*} (State Key Laboratory of Physical Chemistry for the Solid Surfaces, Institute of Physical Chemistry, Department of Chemistry, Xiamen University, Xiamen 361005, Fujian, China)

Abstract : The nano-ZrO₂-NiO catalyst was prepared by the urea homogeneous precipitation method, and its catalytic performance for oxidative dehydrogenation of ethane to ethylene was studied. The highest $C_2 H_4$ yield over pure nano-NiO was 21.7% under the optimized reaction conditions, while ZrO₂-NiO catalyst not only showed higher selectivity for $C_2 H_4$, but also improved the cleavage-resistance. Among the samples, 15% ZrO₂-NiO exhibited the best performance in $C_2 H_6$ oxidative dehydrogenation to $C_2 H_4$. The highest yield was 42.2% at 410 with $C_2 H_6$ conversion of 61.5% and $C_2 H_4$ selectivity of 68.6%. In addition, the catalyst 15% ZrO₂-NiO also showed high stability without agglomeration of nano-particles. The nano-NiO size decreased after doping with Zr and the average size of ZrO₂-NiO was about 5 ~ 7 nm, while ZrO₂ turned to be amorphous. After doping with Zr, the amount of oxygen species desorbed at higher temperature increased, while it decreased at lower temperature. The ZrO₂-NiO catalyst was hard to be reduced than pure nano-NiO.

Key words: ethane, oxidative dehydrogenation, ethylene, zirconium-promoted nano-nickel oxide catalyst, urea homogeneous precipitation method

乙烷氧化脱氢制乙烯(ODE)是低碳烷烃优化利用的重要研究课题之一,在催化剂研制、反应机理和

反应活性氧物种方面已有较广泛报道^[1,2].但是,由于乙烷分子是仅次于甲烷的稳定烷烃分子,其活化

收稿日期: 2004-05-24. 第一作者: 操小栋, 女, 1976 年生, 硕士. 联系人: 陈 铜, 万惠霖. E-mail: tchen @sript.com.cn, hlwan @xmu.edu.cn. 基金项目: 国家重点基础研究发展规划(G1999022408)和福建自然科学基金(E0210002)资助项目. 与转化需要高活性的催化剂才有可能在较低温度下进行.前期的研究发现,纯氧化镍有好的低温乙烷氧化脱氢制乙烯的性能,反应温度一般为300~420

^[3,4]. 在 NiO/ -Al₂O₃ 和 NiO/ TiO₂-Al₂O₃ 催化剂 上^[5,6],载体与活性相的相互作用使乙烯的选择性 大为改善,乙烯的单程收率进一步提高.

纳米尺寸的超细粒子具有较大的表面与体相原 子比,作为一种新型材料在包括催化科学和技术在 内的许多领域中都受到了越来越多的关注^[7~11]. 近期研究结果表明,用柠檬酸络合法制备的纳米氧 化镍催化剂在 ODE 反应中较常规尺寸 NiO 的低温 催化性能好,且该纳米材料经反应 24 h 后,乙烷转 化率和乙烯选择性几乎不变,表现出较高的稳定 性^[11].用柠檬酸络合法制备的锆掺杂纳米氧化镍 催化剂在 ODE 反应中表现出更加优良的催化性能, 但催化剂制备步骤较为繁杂,需要控制的因素较多, 且制备周期长.本文以尿素为沉淀剂^[12,13],用相对 简单、快速的均匀沉淀法制备了不同含量氧化锆促 进的纳米氧化镍催化剂,考察了其低温下对 ODE 的 催化性能及稳定性,并对锆含量的影响和锆的促进 作用作了初步探索.

1 实验部分

1.1 催化剂的制备

将不同计量比的六水合硝酸镍(Ni(NO₃)₂. 6H₂O,AR,上海恒信化学试剂有限公司生产),五水 合硝酸锆(Zr(NO₃)₄ 5H₂O,AR,中国医药(集团)上 海化学试剂公司生产)及尿素(CO(NH₂)₂,AR,中国 医药(集团)上海化学试剂公司生产)配制成水溶液 并置于锥形瓶中,加塞密封,在100 下中速搅拌, 反应16h后将锥形瓶移至冷水中冷却10 min,然后 进行分离洗涤.所得沉淀物在75 烘干后于450

焙烧4h,即得不同含量氧化锆掺杂的纳米氧化镍 催化剂.

1.2 催化剂的表征

催化剂的体相结构用日本理学公司 D/max-C 型 X 射线粉末衍射仪测定,扫描速度为 7 9 min. O₂-TPD-MS 实验在 Balzers Omnistar OMS200 型四极 质谱仪上进行. 催化剂在空气中以 10 /min 的速 率升温至 450 ,吸附 30 min 后冷却至室温,用 He 吹扫,再以 15 /min 的速率升温至 630 ,用在线 质谱记录 O₂ 的脱附峰. H₂-TPR 实验在自制的色谱 仪上进行. 装样量为 5 mg,样品在 5 % H₂-95 % Ar 混 合气中程序升温还原,升温速率为10 / min,热导 检测.

1.3 催化剂的催化性能评价

催化剂的性能评价在内径为 5 mm 的玻璃管反 应器中进行,催化剂用量为 100 mg. 将催化剂与 200 mg 石英砂充分混合后装入反应器中,热电偶紧 贴于催化剂床层外部.反应在常压下进行,反应气 为 C₂H₆,O₂ 和 N₂(稀释气).产物由在线气相色谱 分离,热导检测,结果按色谱峰面积归一化法计算. Porapak-Q 柱用于分离 CH₄,CO₂,C₂H₄ 和 C₂H₆; 5A 分子筛柱用于分离 O₂,N₂,CH₄ 和 CO.

2 结果与讨论

2.1 催化剂的组成及结构

图 1 是不同含量的 Zr 促进的纳米 NiO 催化剂 的 XRD 谱. 可以看出,图 1(2)~(5) 各样品除了在 2 = 37°,43°,62°,75 和 79 处具有 NiO 的特征衍射 峰外,在 2 = 25°~35 有一个较宽的衍射峰,其中以 15%ZrO₂-NiO 和 20%ZrO₂-NiO 催化剂的衍射峰最 强. 该峰可归属于无定形 ZrO₂. 还可以看出,经 Zr 改性后,催化剂的 NiO 特征衍射峰明显宽化,峰强 度降低. 根据 Scherrer 公式计算可得,纯 NiO 粒子 的粒径约为 10 nm,而 ZrO₂-NiO 催化剂中 NiO 粒子 的粒径约为 5~7 nm. 可见,尿素均匀沉淀法可制 备粒径小于 10 nm 的 NiO.

図 1 个问召重的 Zr 促进的外末 NuO 恒化 加的 XkD 谙 Fig 1 XRD patterns of nano-ZrO₂-NiO catalyst with different Zr contents (1) 0, (2) 5 %, (3) 10 %, (4) 15 %, (5) 20 %, (6) 100 %

2.2 催化剂对 ODE 反应的催化性能

2.2.1 错掺杂量对催化性能的影响

图 2 给出了不同含量的 Zr 促进的纳米 NiO 催 化剂对 ODE 反应的催化性能.可以看出,随着反应 温度的升高,各样品上乙烷转化率逐渐提高.当 Zr 含量为 15 %时,锆促进 NiO 催化剂对 ODE 反应表 现出最佳的催化性能.还可以看出,当反应温度从 300 升至 325 时,纳米 NiO 催化剂上乙烷转化 率迅速升高.若再升高反应温度,乙烷发生裂解,产 物中未检测到乙烯.该现象与文献[4,5]的结果一 致.这是因为在低氧分压条件下,NiO 中晶格氧参 与反应,高价镍基本上被还原成零价镍,而发生氧化 脱氢反应生成 CO_x. 但是,在锆促进的纳米 NiO 催 化 ODE 反应中,325 下氧的消耗量低于 30%. 因 此,随着反应温度的升高,乙烷转化率和乙烯收率均 逐渐升高,而乙烯选择性仅在很小的范围内变化. 当反应温度为 360 时,在 15%ZrO₂-NiO 催化剂上 乙烯收率为 30.7%. 随着反应温度的进一步提高, 乙烷发生裂解反应. 此时,产物中检测不到乙烯,但 仍能检测到剩余氧. 纳米 NiO 催化剂与锆促进的纳 米 NiO 催化剂在乙烷裂解反应中表现如此不同,有 关研究正在进行中.

图 2 不同含量的 Zr 促进的纳米 NiO 催化剂对 ODE 反应的催化性能

Fig 2 Catalytic performance of nano-ZrO₂-NiO catalyst with different Zr contents for the oxidative hydrogenation of ethane (ODE) (a) C_2H_6 conversion, (b) C_2H_4 selectivity, (c) C_2H_4 yield; (1) 0, (2) 5%, (3) 10%, (4) 15%, (5) 20% (Reaction conditions: $V(C_2H_6) V(O_2) V(N_2) = 1 1 4$, GHSV = 30 L/ (g-h), $q_V(C_2H_6 + O_2) = 8.3$ ml/min, $q_V(N_2) = 33.3$ ml/min)

2.2.2 烷氧比对锆促进的纳米 NiO 催化剂性能的 影响

表 1 为不同烷氧比对催化剂性能的影响.可以 看出,随着烷氧比的降低,乙烷的转化率逐渐升高,

表 1	烷氧比对 15 %	6ZrO2- NiO	催化剂性能的影响
-----	-----------	------------	----------

Table 1 Effect of C_2H_6/O_2 ratio on catalytic performance of 15 %ZrO₂-NiO for ODE

$V(C_2H_6)$		$X(C_2H_6)$	$X(O_2)$	S (C ₂ H ₄)	$Y(C_2H_4)$
V (O ₂)		%	%	%	%
2.0	300	6.1	13.6	81.3	4.9
	350	22.4	50.5	81.2	18.2
	400	37.5	83.8	81.6	30.6
	410	38.3	86.3	81.2	31.1
1.0	300	8.5	10.2	76.4	6.5
	350	31.2	40.2	73.8	23.1
	400	59.8	81.6	69.3	41.5
	410	61.5	88.4	68.6	42.2
0.5	300	10.5	7.3	72.0	7.6
	350	45.5	37.4	65.9	30.0

Reaction conditions : m (cat) = 0. 1 g , m (quartz sand) = 0. 2 g , q_V (N₂) = 30 ml/ min , q_V (C₂H₆ + O₂) = 10 ml/ min. 而乙烯的选择性逐渐降低. 当烷氧比为 0.5 时,反 应过于剧烈,放出大量的热致使表观反应温度为 360 从而发生乙烷裂解,此时乙烯的选择性为零. 经综合考虑认为,烷氧比为 1 时催化剂有较好的催 化性能. 如在 410 下,乙烯收率可达 42.2%. 而 在该条件下,325 时纯 NiO 上乙烷转化率和乙烯 选择性分别为 44.1%和 49.1%,最优收率为 21.7%.

2.2.3 错促进的纳米 NiO 催化剂的稳定性

考察了反应时间对 15 %ZrO₂-NiO 催化剂性能 的影响,结果示于图 3. 可以看出,在 420 下反应 24 h后,乙烷转化率由 58.3 %降至 50.0 %,乙烯选 择性则由 70.5 %升至 75.1 %,乙烯产率由 41.3 % 降至 37.5 %. 此后,乙烷转化率和乙烯选择性基本 保持不变.反应前后催化剂的比表面积分别为 162 和 141 m²/g. 由图 4 可以看出,反应前后催化剂的 XRD 谱没有明显变化,表明该催化剂经反应后没有

第2期

图 3 纳米 15 % ZrO₂ NO 催化剂的稳定性 Fig 3 Stability of nano-15 % ZrO₂-NiO catalyst for ODE (1) $X(C_2H_6)$, (2) $S(C_2H_4)$, (3) $Y(C_2H_4)$ (Reaction conditions: $V(C_2H_6)$ $V(O_2)$ $V(N_2) = 1$ 1 8, GHSV = 30 L/(g h), = 420)

图 4 纳米 15 %ZrO₂⁻ NiO 催化剂反应前后的 XRD 谱 Fig 4 XRD patterns of nano-15 %ZrO₂⁻ NiO catalyst before (1) and after ODE (2)

发生明显的团聚.因此,比表面积的减小可能是由 于催化剂部分微孔被积碳堵塞所致.由于纳米粒子 具有较大的比表面积,粒子之间存在很强的吸附力, 粒子易发生团聚,从而限制了其在催化领域中的应 用.该催化剂在反应 36 h 后,粒子没有发生明显的 团聚,具有较好的稳定性.由此看来,纳米氧化锆对 纳米氧化镍起到了结构稳定化作用.

2.3 不同含量的 Zr 促进的纳米 NiO 对氧的活化 能力

图 5 为不同含量 Zr 促进的纳米 NiO 催化剂的 O₂-TPD-MS 曲线.可以看出,ZrO₂ 在实验温度区间 内无脱氧峰,而其他各样品上均出现两个脱氧峰. 所不同的是纳米 NiO 的低温脱氧峰比较明显,而其 高温脱氧峰的面积明显较小.

图 5 不同含量的 2 促进的纳米 NiO 催化剂的 O₂- TPD-MS 曲线 Fig 5 O₂- TPD-MS curves of ZrO₂-NiO with different Zr contents (1) 0, (2) 5%, (3) 10%, (4) 15%, (5) 20%, (6) 100%

对各催化剂样品的 O₂-TPD-MS 曲线进行了双 峰拟合,结果列于表 2. 可以看出,纯 NiO 样品低温 峰的起始脱氧温度略低,而其高温峰的峰顶温度略 高. 表 2 定性地描述了锆掺杂量对催化剂脱氧峰位 及脱附量的影响.对于 Zr 促进的纳米 NiO 催化剂, P_L 与 P_H 的峰温随锆含量的增加越来越接近. 当 w(Zr) 15%时, PL 和 PH 的面积随锆含量的增加而 增大; 如 w (Zr) > 15 % 时, PL 和 PH 的面积迅速下 降. 以具有较高活性的 15 % ZrO2-NiO 催化剂为例, 其低温峰的中心位置与 NiO 催化剂的相近 ; 而高温 峰的中心位置则比纯 NiO 低约 20 . 因此,15 % ZrO₂-NiO 催化剂两峰中心之间的温差减小. 根据 前期在 NiO 和 NiO/ $-Al_2O_3$ 催化剂上的实验结果, 较低温度下脱附的氧物种为乙烷氧化脱氢的高活性 氧物种 ,但它只有较低的乙烯选择性 ,而较高温度下 脱附的氧物种具有高的乙烯选择性^[14,15]. 这与我 们在 Zr 促进的 NiO 催化剂体系上观察到的结果一

表 2 不同含量的Zr促进的纳米NiO催化剂的O₂ TPD-MS拟合结果 Table 2 O₂- TPD-MS results of nano-ZrO₂-NiO catalysts

			_			_			
	st/			top/		Relative area (%)			
Catalyst	P_{L}	\mathbf{P}_{H}		P_L	\mathbf{P}_{H}		P_L	\mathbf{P}_{H}	
NiO	234	344		353	465		1.00	1.00	
5 %ZrO ₂ -NiO	269	346		348	444		0.23	1.29	
10 %ZrO2-NiO	271	343		350	445		0.25	1.32	
15 %ZrO ₂ -NiO	272	343		352	443		0.40	2.00	
20 %ZrO ₂ -NiO	272	343		352	440		0.15	1.29	

st Start temperature , $_{top}$ Top temperature , P_L Lower temperature peak , P_H Higher temperature peak

致. 添加 ZrO_2 之后,可能由于 Zr^{4+} 对邻近 O^{2-} 并进 而对 Ni^{2+} 的诱导作用,提高了催化剂对氧的吸附能 力,从而提高了催化剂在较高温度下的脱附的氧物 种量;由于 ZrO_2 对 NiO 的分散作用,降低了在较低 温度下脱附的氧物种量,从而表现出高的乙烯选择 性. 此外,对比图 5 及图 2 相应催化剂的催化性能 可以看出,催化剂活性与脱氧量有较好的对应关系. 由图 5 可以看出,15 % ZrO_2 -NiO 催化剂的高温 O_2 脱附峰最大,故其催化性能最佳.

2.4 不同含量的 Zr 促进的纳米 NiO 催化剂的还 原性

图 6 为不同 ZrO₂-NiO 催化剂样品的 H₂-TPR 曲线.可以看出,各样品都有两个较为明显的还原 峰,且 ZrO₂-NiO 催化剂较纯纳米 NiO 催化剂难还 原,其起始还原温度较后者高 20 左右;其完全还 原温度比纯纳米 NiO 催化剂高约 100 .该完全还 原温度和乙烷的裂解温度能较好地关联.由此可 见,由于锆的添加导致催化剂较难完全还原,故催化 剂表现出较好的抗乙烷裂解性能.

纳米 NiO 和纳米 ZrO₂-NiO 催化剂的 H₂-TPR 曲线的双峰拟合结果见表 3. 以具有较好催化性能 的 15 %ZrO₂-NiO 催化剂为例,其较难还原氧的含量 较纳米 NiO 催化剂中多,而较易还原的氧较纳米 NiO 催化剂中的少. 这表明催化剂对乙烷氧化脱氢 的活性与其还原性二者间有较好的对应关系,即前 者具有较好的相对高温活性,而后者则表现出较好 的低温活性.

表 3 不同 Zr 含量促进的纳米 NiO 催化剂的 H-TPR 结果

Table 3 H₂-TPR results of ZrO₂-NiO catalyst with different Zr contents

	st	top/		end	Relative area (%)	
Catalyst		P_L	P_{H}		P_L	$P_{\rm H}$
NiO	260	300	326	357	1.00	1.00
5 %ZrO ₂ -NiO	280	321	361	445	0.21	1.36
10 %ZrO ₂ -NiO	278	317	355	445	0.26	1.49
15 %ZrO ₂ -NiO	278	321	364	457	0.31	1.69
20 %ZrO ₂ -NiO	278	373	499	>600	0.29	2.90

参考文献

- 1 Zhang XJ, Gong YQ, Yu G, Xie YCh. J Mol Catal A, 2002, **180**(1/2): 293
- 2 Zhong W, Dai H X, Ng C F, Au C T. Appl Catal A, 2000, 203(2): 239
- 3 Ducarme V, Martin GA. Catal Lett, 1994, 23(1/2):97
- 4 Chen T, Li W Zh, Yu Ch Y, Jin R Ch, Xu H Y. Stud Surf Sci Catal, 2000, **130B**: 1847
- 5 陈铜,李文钊,于春英.催化学报(Chen T, Li W Zh, Yu Ch Y. *Chin J Catal*), 1998, **19**(1): 37
- 6 张新杰,敬怡,隗罡,谢有畅.催化学报(Zhang XJ, Jing Y, Yu G, Xie Y Ch. *Chin J Catal*), 2000, **21**(1): 82
- 7 Adair J H, Li T, Kido T, Havey K, Moon J, Mecholsky J, Morrone A, Talham D R, Ludwig M H, Wang L. *Mater Sci Eng R*, 1998, 23 (4-5): 139
- 8 Mahajan D, Gutlich P, Stumm U. Catal Commun, 2003, 4(3): 101
- 9 Hair L M, Owens L, Tillotson T, Froeba M, Wong J, Thomas G J, Medlin D L. J Non-Cryst Solids, 1995, 186: 168
- 袁艳萍,翁维正,李建梅,陈铜,廖远琰,万惠霖. 厦 门大学学报(自然科学版)(Yuan Y P, Weng W Zh, Li J M, Chen T, Liao Y Y, Wan H L. J Xiamen Univ (Natur Sci)), 2003, 42(2): 208
- 11 Wu Y, Chen T, Cao X D, Weng W Zh, Wan H L. Chin J Catal (催化学报), 2003, 24(6): 403
- 12 郭学益,黄凯,张多默,刘志宏.中南工业大学学报 (Guo X Y, Huang K, Zhang D M, Liu Zh H. J Cent South Univ Technol), 1999, **30**(3): 255
- 郭学益,黄凯,张多默,刘志宏. 中南工业大学学报 (Guo X Y, Huang K, Zhang D M, Liu Zh H. J Cent South Univ Technol), 1999, 30(4): 378
- 14 陈铜,李文钊,于春英. 化学学报(Chen T, Li W Zh, Yu Ch Y. Acta Chim Sin), 1999, **57**(9): 986
- 15 陈铜,李文钊,于春英. 物理化学学报(Chen T, Li W Zh, Yu Ch Y. Acta Phys-Chim Sin), 1999, **15**(7): 613

(Ed WGZh)