第8卷 第2期 2002年5月 Vol. 8 No. 2 May 2002

文章编号:1006_3471(2002)02_0195_07

择优生长 CdS 纳米微粒膜的制备和性能研究

黄怀国^{1,2},席燕燕³,郑志新³,颜佳伟³,周剑章³,吴玲玲³,林仲华^{3*}

(1. 厦门紫金科技股份有限公司, 福建 厦门 361000;

2. 福建紫金矿冶研究院 福建紫金矿业股份有限公司, 福建 龙岩 364200;

3. 厦门大学固体表面物理化学国家重点实验室化学系物理化学研究所, 福建厦门 361005)

摘要: 利用恒电流阴极还原法或电流脉冲法在聚苯胺膜、PATP 膜、Au 膜和 ITO 基体上制备了 CdS 纳米微粒膜,并对其结构和紫外_可见吸收等性质进行初步表征.结果表明基体对 CdS 微粒膜 的结构和性能具有较大的影响.

关键词: CdS; 纳米微粒膜; 制备; 性能研究

中图分类号: 0 646 文献标识码: A

纳米半导体微粒膜具有较高的光电转换效率和良好的光催化性能以及其它一些特异性 质,同时还具有易分离、易回收的特点,因此引起了人们极大的研究兴趣.CdS 是典型的 II_VI 族半导体,纳米 CdS 微粒膜既具有异于体相材料又不同于单个微粒的特殊性质.量子尺寸效 应使 CdS 能级改变、能隙变宽,吸收和发射光谱向短波方向移动,直观上表现为颜色由黄变为 浅黄.表面效应引起 CdS 纳米微粒膜表面原子输运和构型的变化,同时也引起表面电子自旋 构象和电子能谱的变化,这对于其光学、电学及非线性光学性质等都具有重要影响.因而纳米 CdS 微粒膜的制备和表征日益被人们所重视^[1~4].而在相同的制备方法和条件下,不同基体对 CdS 的结构又有较大的影响^[5.6].本文在不同基体上制备了 CdS 纳米微粒膜,并对其结构和性 质进行初步研究,以期改善性能并拓宽其在光电化学等方面的应用.

1 实 验

1.1 膜的制备

PATP 膜: Au 膜(或 ITO) 在 10 mmol/L PATP 的乙醇溶液中经过 12 h 的组装而得.

PANI 膜: 以 PATP 膜为基体, 在 0.5 mol/L 苯胺/HClO4 溶液中, 利用循环伏安法, 于电位 – 0.2~+0.7 V(本文中所示电位除另行说明外, 均相对于饱和甘汞电极), 扫速 100 mV/s, 经 扫描 100 循环而得.

基金项目: 国家自然科学基金(29833060,20023001), 教育部科技研究(99177), 福建省青年科技人才创新项目 基金(2001J031)资助项目

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www

收稿日期:2001_09_27

^{*} 通讯联系人

1.5

CdS 微粒膜: CdS 微粒膜的沉积采用恒 电流阴极还原法^[7](电流密度为1mA/ cm², 沉积时间1min)或电流脉冲法(脉冲 幅度为1mA/cm², 脉冲宽度 $\Delta t = 2$ s, 脉冲 数 n = 30). 电解槽采用两电极系统, 以 PANI/PATP/Au(ITO)、PATP/Au(ITO) 或Au(ITO)为工作电极, 铂片为辅助电极. 电解液为 0.055 mol/L氯化镉和0.19 mol/ L 单质硫的二甲亚砜(DM SO)溶液. 沉积温 度控制在 100 ℃. 电沉积得到浅黄色的 CdS 微粒膜用热的 DM SO 清洗, 再用高纯氮气 吹干备用.

1.2 仪器与实验

电化学实验用 CHI_660 型综合测试 (义; 形貌表征用美国 DJ 公司的 NANOSCOPE IIIa 扫描探针显微镜; X 射 线衍射测定用日本理学公司 D/MAX_RC 多晶转靶 X 射线衍射仪; 紫外可见吸收测 量用日本 KYOTO 公司的 2100 型紫外_可 见分光光度计; 荧光光谱测量用日本 HF TACHI 公司的 F_4500 型荧光光谱仪; 光电 化学实验利用我们自行设计的测量系统进 行^[8], 所测光电流均不包含暗态电流. 利用 带有 RkP576a 探针的 Rk_5710 光功率测试 仪测量入射光强, 光斩波器频率为 18 Hz. (因为电极表面上的入射光斑光谱分布的

1.0 0.5 0.5 0 0.50 1.00 1.50 0.50 1.00 1.50 uM μM (A) (B) 1.0 0.7 1.0 0.5 0.2

图 1 由恒电流法在 Au 膜(A)和 PANI 膜(B)上制备 CdS 微粒膜以及由电流脉冲法在 PANI 膜(C) 和 PATP 膜(D)上制备 CdS 微粒膜的 AFM 图 象

2.00 0

μM

1.00

(C)

0.25

0.50

(D)

0.75

1.00 µM

Fig. 1 AFM images of CdS particle film prepared on Au (A), PANI film(B) by the method of constant current and on PANI film(C), PATP film (D) by current impulse method with tapping mode

功率绝对值较难测量,本文中光电转换效率 (b)的值正比于实际光电转换效率). 除非特别说明,实验均在室温下进行.

2 结果与讨论

图 1(A)和(B)分别是利用恒电流电沉积法在Au 膜和 PANI 膜上制备 CdS 微粒膜的 AFM 图象. 对照图 A 和 B,可以看出两种膜上的 CdS 微粒在排列、晶粒尺寸(~ 60 nm)和粒径分布 均很相似.图 1(C)和(D)是利用电流脉冲法在 PANI 膜和 PATP 膜上得到 CdS 微粒膜的 AFM 图象.与图 B 相比,图 C 膜的厚度较薄,晶粒尺寸较小(大约 45 nm),粒径分布也比较均匀.不 过,AFM 观察到的实际上是由 CdS 纳米微粒堆积且尚未团聚形成的集合体,以下光谱实验出 现的量子尺寸效应将证明这一点.从图 D 可知,在 PATP 膜上电沉积生成的 CdS 晶粒并非呈 粒状,而是棒状分布(棒的直径大约 50 nm,棒长大约,250 nm),CdS 晶粒沿着垂直于基体的方 向生长,生长方向十分有序.脉冲宽度越小,晶 粒生长方向越有序;在脉冲宽度相同时,棒长 随着脉冲数的增加而增长(图未给出).因此, 可以认为 CdS 在 PAT P 膜上的生长可以分为 两个过程:1.在特定的位置形成晶粒分布;2. 在分布晶粒的基础上沿一定的方向继续生长.

图 2(A)、(B) 和(C) 分别是利用电流脉冲 法在 ITO、PANI/PATP/ITO 和 PATP/ITO 基体上得到 CdS 微粒膜的 X 射线衍射图. 其 中图(A)和(B)除出现 ITO 的衍射峰^[9~12].还 出现 CdS 的(100)、(002)、(101) 等多个衍射 峰、表明了所制备的 CdS 微粒膜在本质上为多 晶结构. 图 2(A) 中 $2\theta = 26.8^{\circ}$ (晶面间距为 3.34 Å)的强峰代表 α CdS 六方纤锌矿晶型的 (002) 面衍射, 表明了 ITO 虽具有无规则晶体 取向的粗糙表面,但CdS 微晶仍然主要趋向于 垂直基体的 c 轴择优取向^[6,11,13],这是由于 c 面的表面能最小,当晶粒生长速度足够快时, 纤锌矿的六方晶粒趋向于沿 c 轴取向^[11].对 照图 2(B) 和(A) 中 ITO 的衍射峰, 可见(B) 的 ITO 的衍射峰虽其峰位不变,但相对强度却分 别有所减小、这也证实了 ITO 衍射峰归属的正 确性. 图 2(B) 中, 在 2θ= 28.5°处还出现了与 CdS(101)衍射峰交叠的衍射峰,这可归属为还 原态 PANI 晶型衍射峰^[3],表明在电沉积 CdS 时,同时有部分 PANI 被还原. 与图 2(A) 和 (B) 不同, 图 2(C) 中 CdS 的(100)、(101)、 (102)、(110)和(103)衍射峰基本上消失,只出 现(002)衍射峰,因此PATP 基底上的 CdS 微 粒膜具有更有序的晶型取向.图中2θ= 26.8℃ 的强峰同样表明了在 PATP 基体上. CdS 微晶

基本上沿着垂直基体的 c 轴择优取向. X 射线衍射图结果与 A FM 图结果基本一致.

图 3 示出 CdS 微粒膜在 ITO(a) 和在 PANI 膜(b)上的紫外_可见吸收光谱.可以看出在 ITO 和 PANI 膜上, CdS 微粒膜的起始吸收分别为 465 nm 和 455 nm(粒子尺寸 4~ 5 nm),相 对 CdS 体相材料起始波长兰移了 50 nm 和 60 nm(室温下 CdS 体相带隙为 515 nm 左右^[1,2]), 表现出量子尺寸效应. 陡削的吸收谱带边缘表明粒子尺寸分布较窄, 两者的吸收谱带均有离 散,说明某电子结构已分裂为离散的量子化能带. 426(423), nm 处吸收峰对应于量子微粒的

学

1.5

0.5

0.0

200

300

1s 1s 跃迁^[1], 362 nm 处的吸收峰可能对应于 2.0 1d 1d 电子跃迁的吸收^[14]. 由于 PANI 的作 用.图 3 谱线 b 的 233 nm 和 305nm 处吸收峰 位置相对于 a(240 nm 和 288 nm) 有所偏移, 而 且在 550 nm~ 800 nm 范围还出现了与 PANI 🗳 I.0 有关的吸收峰.

图4 是 CdS 微粒膜在 IT O(a) 和在 PANI 膜(b)上的荧光光谱的初步结果. 对照它们相 应的吸收光谱(图3)可知,400 nm 附近的荧光 谱带可能为激子发光,因其两者的激子荧光谱 带位置相同,可认为 CdS 微粒具有相同的禁带 宽度(即相同的颗粒尺寸),这和前面所述的 AFM 和紫外 可见吸收光谱结果一致. 而 480 nm 附近的荧光谱带可以归属为 CdS 微粒的缺 陷发光^[4, 15, 16].图4b中,由于基底 PANI的光 吸收及能量转移导致其激子发光和缺陷发光 明显比 CdS 微粒膜强, 而基底 PANI 中胺基基 团与 CdS 颗粒的较低能量陷阱键合^[3],导致 CdS_PANI 复合膜的缺陷荧光谱带比 CdS 微 粒膜的缺陷荧光谱带有较大的兰移.同时.由 于 PANI 膜的保护作用, 使得 PANI 膜上的 CdS 微粒膜表面具有较少的悬空健和缺陷[4]. 因而缺陷发光强度相对于激子发光强度有所 减小.

图 5 中 a 和 b 分别是 PAN I 膜和 Au 膜上 CdS 微粒膜在 0.05 mol/LK3Fe(CN)6/K4Fe (CN)。溶液中的光电流谱. 在 0.6 V 的极化电 位下,曲线 a 在 755 nm~ 300 nm 波长范围处 有两个阳极光电流谱带. 755 nm~ 380 nm 处 光电流谱为 PANI 物种光电流谱带^[17~21].475 nm~ 300 nm 处光电流谱为 CdS 微粒光电流 谱带(对照曲线 b). CdS 微粒膜光电流谱带的 阈值能(475 nm,禁带宽度为 2.6 eV) 与块体

λ/nm 图 3 IT O 上(a)、PA NI 膜上(b) CdS 微粒膜的紫

500

600

400

外 可见吸收光谱

图 4 IT O 上(a)、PANI(b) CdS 微粒膜的荧光光谱 (激发波长为 325 nm)

CdS 材料(禁带宽度为 2.42 eV, 阈值能约为 515 nm^[1,2,14])相比, 兰移大约 40 nm, 表现出量子 尺寸效应.由于基底 PANI的作用,CdS 微粒膜的光电流谱强度有所增大,并且谱带兰移. PANI 膜上 CdS 微粒膜在波长 380 nm 和 550 nm 处的光电转换效率 IPCE 分别为 16,12% and 60.35%(没有其他光吸收和反射校正),虽然纳米 CdS 微粒的 IPCE 较之相同条件下 TiO2微

800

粒的 IPCE^[19, 20]小,但由于光激发下 CdS 纳米 微粒和 PANI 均能够引起光电效应,而导电态 下的 PANI 链又有利于浅陷阱态或深陷阱态 上光生电荷的传输,因此与相同条件下制备的 单一 PANI 膜或 CdS 微粒膜相比, PANI 膜上 的 CdS 微粒膜具有更广的光谱响应范围. 据 此,如能优化制备条件并改善 CdS 的光稳定 性,则可望在光电化学方面得到应用.

3 结 论

基体对 CdS 微粒膜的结构和性能具有较大的影响. 在 Au 膜和 PANI 膜上的多晶结构 CdS 微粒呈粒状分布, 而在 PATP 膜上却呈单 晶结构和有序的棒状分布. IT O 和 PANI 膜上 CdS 微粒膜的紫外_可见吸收谱带具有分裂结 构, 并且起始吸收波长相对于体相 CdS 有兰 移. 由于 PANI 的作用, CdS 微粒膜的部分吸 收峰峰位有所偏移, 同时其缺陷荧光谱带有较 大的兰移, 较之激子发光, 强度有所减小, 但其

- 图 5 PANI 膜(a) 和 Au 膜(b) 上 CdS 微粒膜在 0. 05 mol/L K₃Fe(CN) 6/K₄Fe(CN) 6溶液中光 电流谱,极化电位:+0.6 V
- Fig. 5 Spectra of photocurrent for CdS particle film on ITO(a), PANI film(b) in 0. 05 mol/ L K₃Fe(CN)₆/K₄Fe(CN)₆ solution. Biased potential: + 0. 6 V

激子发光和缺陷发光比 ITO 上的 CdS 微粒膜均有所增强.

The Preparation and Characterization of Growing Preferentially CdS Nanopartile Film

HUANG Huai_guo^{1, 2}, XI Yan_yan³, ZHENG Zhi_x in³, YAN Jia_w ei³, ZHOU Jian zhang³, WU Ling ling³, LIN Zhong hua^{* 3}

(1. Xiamen Zijin Science and Technology Co., LTD. Xiamen 361000, China;
2. Fujian Zijin Research Institute of Minning

and Metallurgy, Fujian Zijin Mining Industry Co., LTD., Longyan 364200, China;

3. State Key laboratory for Physical Chemistry of the Solid Surface, Department of Chemistry, Institute of Physical Chemistry, Xiamen University, Xiamen 361005, China)

Abstract: CdS nanoparticle films were prepared on the PANI film, PATP film, Au film and ITO respectively by constant current deposition or current impulse method, and their structure and

character were also studied. The results show that the substrates influence the structure and character of CdS particle film.

Key words: CdS, Nanoparticle film, Preparation, Characterization

References:

- [1] Salata O V, Dobson P L, Hull P J, et al. Fabrication of nanoparticles embedded in a polymer by gas_aerosos reative electrostatic deposition technique[J]. Thin Solid Films, 1994, 251:1.
- [2] Wang B H, Wang D J, Cui Y, et al. Light_induced aggregation of nanocrystalline CdS as photoelectrodes in photoelectrochemical cells(PECs) [J]. Synth. Met., 1995, 71: 2 239.
- [3] Pethkar S, Patil R C, Kher J A, et al. Deposition and characterization lof CdS nanoparticled polyaniline composite films[J]. Thin Solid Films, 1999, 349: 105.
- [4] Sun L D, Fu X F, Wang M W, et al. Synthesis of CdS nanocrystal within copolymer[J]. J. Lumin., 2000, 87_ 89: 538.
- [5] Balakrishnan K S, Rostogi A C. Electrodeposition technique and properties of semiconducting cadmium chalcogenide thin films from aprotic electrdytes[J]. Thin Solid Films, 1988, 163: 279.
- [6] Edamura T, Muto J. Preparation and properties of electrodeposited ternary CdSxSe_{1-x} and ZnCd_{1-x}S films
 [J]. Thin Solid Films, 1993, 226: 135.
- [7] Baranski A S, Fawcett W R, MacDonald A C, et al. The structural characterization of cadmium sulfide films grow by athedic electrodeposition [J]. Electrochem. Soc., 1981, 128:963.
- [8] Luo J, Lin X H, Wu L L, et al. In situ electronic spectroscopic techniques for interfacial electrochemistry[J]. Chem. Research in Chinese Univ., 1996, 12: 270.
- [9] Sasikala G, Dhanasekaran R, Subramanian C. Electrodeposition and optical characterisation of CdS thin films on ITO_coated glass[J]. Thin Solid Films, 1997, 302: 71.
- [10] Yamaguchi K Y, Yoshida T, Sugiura T., et al. Anovel approach for CdS thin_film deposition electrochemically induced atom_by_atom growth of CdS thin films from acidic chmical bath[J]. J. Phys. Chem. B, 1998, 102: 9 677.
- [11] Nishino J, Chatani S, Uotani Y, et al. Electrodeposition method for controlled formation of CdS folms from aqueous solutions[J]. J. Electroanal. Chem., 1999, 473: 217.
- [12] Yoshida T, Yamaguchi K, Kazitani T, et al. Atom_by_atom growth of cadmium sulfide thin films by electroreduction of aqueous Cd²⁺_SCN⁻ complex[J]. J. Electroanal. Chem., 1999, 473: 209.
- [13] Routkevitch D, Bigioni T, Moskovits M, et al. Electrohemical fabrication of CdS nanowire arrays in porons anodic aluminum oxide templates[J]. J. Phys. Chem., 1996, 100: 14 037.
- [14] Ma G H, Liu Y, Zhang X T, et al. Study on photoluminescence of the organized CdS nanoparticles system
 [J]. Chemical researches., 1999, 10(4): 13.
- [15] Wang Y, Herron N. Photoluminescenece and relaxation dynamics of CdS superclusters in zeolites[J]. J. Phys.
 Chem. 1988, 92: 4 988.
 Chem. 2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www

- [16] Chestnoy N, Harris T D, Hull R, et al. Luminescenece and photophysics of CdS semiconductor clusters the nature of the emitting electronic state[J]. J. Phys. Chem., 1986, 90:3-393.
- [17] Luo J, Huang H G, Zhang H P, et al. Studies on photoelectrochemistry of nano_particulate TiO₂/ PANI/ PATP film on Au electrodes[J]. J. New Mat. Electrochem. Systems, 2000, 3: 249.
- [18] Huang H G, Luo J, Zhang H P, et al. The photoelectrochemistry of Au/PATP/ PANI film electrode and Au/ PATP/ PANI/T iO₂film electrode[J]. Chem. J. Chinese Universities, 2000, 21: 283.
- [19] Huang H G, Zheng Z X, Luo J, et al. The photoelectrochemistry of T iO₂-polyaniline composite film[J]. Chinese Journal of Electrochemistry, 2001, 7(1): 102.
- [20] Huang H G, Zhang H P, Zheng Z X, et al. The effect of preparation condition on the photoelectrochemical performance of both the PANI film and TiO₂_PANI composite film on Au[J]. Chinese Journal of Electrochemistry, 2001, 7(2): 155.
- [21] Huang H G, Zheng Z X, Luo J, et al. Internal photoemission in polyaniline revealed by photoelectrochemistry
 [J]. Synth. Met., 2001, 123/2: 321.