

研究论文

用FTIR测定邻苯二甲酰化壳聚糖的取代度

董炎明* 王 勉 吴玉松

(厦门大学材料科学系,固体表面物理化学国家重点实验室 厦门 361005)

摘 要 从壳聚糖合成了不同取代度的邻苯二甲酰化壳聚糖作为标样,标样的取代度由 ^{1}H NMR 和元素分析确定。研究以 FT IR 作为工具测定此系列衍生物的总取代度(DS₁) 和环状酰亚胺取代的取代度(DS₂) 的方法。吸光度用基线法得到。对不同探针谱带,参比谱带和基线的多种组合进行了比较,并通过(A_{RRH}/A_{ght}) / DS 的平均相对偏差找出最佳组合。结果表明对该系列衍生物,测定 DS₁ 最合适的 A_{RRH}/A_{ght} 是 $A_{1712BL1}/A_{1391BL3}$,测定 DS₂ 最合适的 A_{RRH}/A_{ght} 是 $A_{1775BL1}/A_{1654BL1}$ 。这两种组合的工作曲线斜率分别为 2.45 和 1.20,这 2 个工作曲线只适用于脱乙酰度为 84% 的壳聚糖。但对 DS₂, $A_{1.775BL1}/A_{1468BL1}$ 可适用于全范围脱乙酰度的壳聚糖。其工作曲线的斜率为 2.63.

关键词 克聚糖,邻苯二甲酰化克聚糖,富立叶红外光谱,取代度,定量分析 中图分类号:0636.1 文献标识码:A 文章编号:1000-0518(2001)04-0259-05

壳聚糖(CS) 是甲壳素的部分或全部脱乙酰衍生物. 甲壳素由于分子内和分子间存在很强的氢键作用力, 因而不能熔融, 也不溶于普通溶剂. 壳聚糖由因其氨基能被质子化而可溶于各种稀酸. 更重要的氨基这样一个化学修饰点[1,2], 可以用以酰化, 西佛碱化, 成盐, 螯合, 水解, 还原和接枝等. 本文合成的邻苯二甲酰化壳聚糖就是在 N上取代的壳聚糖衍生物. 壳聚糖衍生物的取代度是决定其性质的重要参数. 取代度的测定有化学方法, NMR或元素分析方法等. NMR测定有化学方法, NMR或元素分析方法等. NMR测定虽然准确, 但由于壳聚糖衍生物的难溶性, 不易找到合适溶剂, 且测定费用较高, 使其应用受到限制. 通过 C、H、N、O 的组成来推断其结构式和取代度, 而壳聚糖衍生物常含结晶水或吸附水, 且壳聚糖原料的脱乙酰度往往不是 100%, 所以推算复杂.

用红外法测定壳聚糖脱乙酰度已有不少报道^[3,4],而测定取代度的报道不多^[5].本文研究邻苯二甲酰化壳聚糖衍生物取代度的红外测定方法,对探针吸收带(分析带),参比吸收带和基线的选取进行了系统比较和探讨.

1 实验部分

1.1 原料

壳聚糖,厦门第二制药厂生产,经球磨并过 0.42 mm 筛,脱乙酰度(酸碱滴定法)为84%,分 子量(粘度法)为 7.5×10^5 . 其它试剂为化学纯.

1.2 邻苯二甲酰化壳聚糖(PHCS)的合成

将 1 g 壳聚糖和邻苯二甲酸酐以摩尔比 $1.00 - 0.21 \sim 1 - 3$ 混合于 30 mL DMF 中,在 N_2 气保护下于 $125 - \text{ m热回流 } 0.5 \sim 6.5 \text{ h}$ 不等. 产物用冰-水沉淀后经乙醇反复洗净,于 $50 - \text{ 烘 T}^{[6]}$. 这样主要通过控制反应时间得 7 个不同取代度的样品 PHCS $1 \sim PHCS$ 7.

1.3 取代度的测定方法

PHCS 的总取代度 (DS_1) 由 Varian Unity 500 Hz ¹H NM R 仪(美国)测定, 氘代 DM SO 为 溶剂, 通过核磁谱图中苯环上所有质子与碳 2 质子峰面积之比换算而得. 环状酰亚胺取代的取代度(DS_2) 由 CE 1 110 CHNS-O(意大利)测定, 通过 C, H, N 的百分含量计算获得. 元素分析同时也计算出 DS_1 .

将粉末样品通过 KBr 压片法制得薄片,用 Nicolet 740(美国) 富立叶红外光谱仪测定. 在吸收光谱上,以基线法测定吸收带的强度最大值用于定量计算.

2 结果与讨论

2. 1 邻苯二甲酰化壳聚糖合成反应和化学结构 邻苯二甲酰化壳聚糖合成的反应式和化学结构示意式如下:

$$\begin{array}{c|c}
CH_2OH \\
O \\
O \\
NHAc
\end{array}$$

$$\begin{array}{c|c}
CH_2O H \\
O \\
O \\
NH_2
\end{array}$$

$$\begin{array}{c|c}
p \text{ hthal ic an hydride} \\
O \\
O \\
O \\
0.84
\end{array}$$

NHAc
$$\int_{0.16}^{0.16} \int_{0.84}^{0.84} \int_{0.84$$

 $n_1 + n_2 = 0.16$, $n_3 + n_4 + n_5 = 0.84$

反应初始邻苯二甲酸酐的五元环先打开,和 壳聚糖上的氨基和(或)壳聚糖/甲壳素的一级醇 羟基(一级醇羟基的反应活性高于二级醇羟基,所 以二级醇羟基反应很少)进行反应,分别生成链状 芳香酯、芳香酰胺和同时含有链状芳香酯与芳香 酰胺的壳聚糖/甲壳素衍生物. 随反应时间的延 长,反应总取代度 DS_1 先增加,而后下降,这是由 于氧上取代产物链状芳香酯逆向分解,而氮上取 代产物链状芳香酰胺逐渐环化形成热力学上稳定

的五元环芳香酰亚胺. 因而在反应的不同阶段得 到的产物不仅总取代度 DS_1 不同, 而且环状取代 组分的取代度 DS_2 也不同(当然链状取代组分的 取代度 DS_3 也不同), 3 种不同定义的取代度的关 系为 $DS_1 = DS_2 + DS_3$. 反应到最后阶段氨基上 的环化才全部完成. 这一反应历程与文献[7] 叙 述的类似. 7个PHCS 标样的 DS_1 和 DS_2 测定结 果(NMR 和元素分析)列于表 1.

表 1 邻苯二甲酰化壳聚糖的合成条件, 取代度和溶解性

Tab. 1 The reaction condition, substitution degree and solubility of phthaloyl chitosan samples

	PHCS1	PH CS2	PHCS3	PHCS4	PHCS5	PHCS6	PHCS7
Molar ratio*	1.0 0.21	1.0 0.5	1.0 1.0	1.0 1.0	1.0 3.0	1.0 3.0	1.0 3.0
Reaction time/h	0. 5	0.5	0. 5	1.0	2. 5	4. 0	6. 5
$DS_1(NMR)$	0. 21	0.46	0.45	1.0	0.62	0.69	0.78
$DS_1(by elemental analysis)$		0.43	0.51	1.0	0.70	0.80	0.84
$DS_2(by elemental analysis)$		0.11	0.08	0.44	0.50	0.69	0.78
Solubility(in CHCl ₂ COOH)	high	h igh	high	high	moder at e	low	low

n(phthalic anhydride). DS_1 : total degree of substitution; DS_2 : degree of substitution of phthaloyl imide group.

图 1 给出 PHCS2、PHCS7 和壳聚糖的 FT IR 谱图. PHCS 的特征峰是 1 712 与 1 775 cm⁻¹双 重峰,这是二酰亚胺所特有的,是由于2个羰基相 互作用分裂而成^{®hir}对于2920 cm^{eu}的饱和 ctropic Pul成氢键,而氢键越强则伸缩振动谱带越宽,吸收强^{ki.i}

伸缩谱带, 环化程度(即 DS_2) 低的 PHCS2(图 1b) 较环化程度高的 PHCS7(图 1c) 更宽. 这是因为 未环化的取代基带有端羧基,它与羟基或氨基形

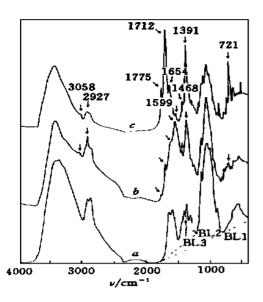


图 1 壳聚糖(a) 和邻苯二甲酰化壳 聚糖(b)、(c) 的红外光谱

Fig. 1 FTIR spectra of (a) chitosan, (b) PHCS 2 and (c) PHCS7

度越大且向低频位移,从而羟基(3 400 cm⁻¹附近)和氨基(3 250 cm⁻¹附近)向低频位移而加宽了饱和C—H振动谱带,这是存在羧酸的特征.此外,对式C=O)酰胺谱带(1 559 和1 654 cm⁻¹),环化程度低的 PHCS2 比环化程度高的 PHCS7强(见图 1).同时溶解性实验也证明了这一点,含羧端基多的标样比环化程度高的标样更易溶于二氯乙酸、甲酸或 DM SO 中(见表 1).

由于 2 个羰基对苯环的共轭使 $\mathcal{Y}(C\longrightarrow H)$ 从一般情况下的 750 cm^{-1} 位移至 721 cm^{-1} 且强度大为增加. C—N 倍频和苯环上伸缩振动共同出现在 3 058 cm^{-1} 处. 壳聚糖和邻苯二甲酰化壳聚糖的 FTIR 谱图中各主要谱带的归属列于表 2.

2.2 邻苯二甲酰化壳聚糖总取代度的测定

PHCS 系 列 的 FT IR 谱 图 中 1712 和 1775 cm⁻¹处的一对谱带是环状酰亚胺上 2 个相 邻羰基相互作用分裂而成的. 因而如果是 2 个不相邻的羰基(芳酰胺、 芳香酯或芳香酸) , 其峰不会 发生分裂,而不会出现 1775 cm⁻¹高频峰. 芳酰胺、 芳香酯和芳香羧酸的羰基都在较低频,共同组成了1712 cm⁻¹的吸收谱带. 因而1712 cm⁻¹可用作 DS_1 的探针谱带. 此外 721 cm⁻¹谱带是邻位 双取代的苯环上 Y(C—H) , 也可选取作为 DS_1 的探针谱带. 由于 1391、1654、1559、1468 和

表 2 壳聚糖和邻苯二甲酰化壳聚糖的 主要红外谱带的归属

Tab 2 Assignments of major bands in FTIR spectra of chitosan and phthaloyl chitosan

		1 ,			
Wavenum ber/cm ⁻¹		Assignment			
CS	PHCS	Assignment			
3 374	3 444	ν(O—H) (incl. ν(N—H) at about 3300)			
	3 058	v(C—H) (benzene ring)			
2 920,	2 927,	ν(C—H)			
2 875	2 856				
	1 775,	ν (C=O) (imide)			
	1 712				
1 655	1 654	ν (C=O) (amide band)			
1 596	1 559	δ (N—H) (incl. A mid e band, at			
		about 1550, i. e. ν (C—N)+ δ (N—H))			
1 419	1 468	δ ($ ext{CH}_2$)			
1 379	1 391	$\delta_{\!\scriptscriptstyle 8}({ m CH_3})$			
1 317	1 296	ν (C—N) + δ (N—H) (amide band)			
1 155	1 111	$v_{as}(C-O-C)$			
1 071	1 069	ν(C—O in 〈 CHOH)			
1 030	1 028	v(C—O in —CH 2OH)			
898	896	$v_{ m ring}$			
	721	γ (C—H) (benze ne rin g)			

作为参比谱带. 基线主要有 BL_1 和 BL_2 两种作法. 由于1 391 cm $^{-1}$ 谱带受到酰胺 谱带的影响, 其基线作法另取为 BL_3 即相邻峰谷的连线(以上三种基线作法示于图 1). 于是可以得到探针谱带, 参比谱带和基线作法的多种组合.

本文将不同组合 A_{RH}/A_{SH} (即 A_{PB}/A_{RB}) 与取代度之商定义为 x, 计算出测量值 x 的相对偏差 $RD = x_i - \bar{x}/\bar{x}$, 其中 $x_i = (A_{PB}/A_{RB})/DS, \bar{x}$

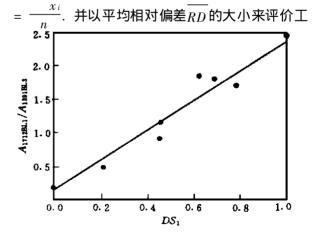


图 2 邻苯二甲酰化壳聚糖的 A 1712BL1 / A 1391BL3 对 DS 1 作图的曲线(DS 1 由 1 H NM R 确定)

Fig. 2 The plot of $A_{1712BL1}/A_{1391BL3}$ vs DS_1 value for phthaloyl chitosan

2 927 k964-50个谱带与化学变化无关识所以可选nic Publishing House. All rights reserved. http://www.cnk

262

作曲线的线性关系的好坏. PHCS 的 7 个标样的 分析结果列于表 3. 结果可见, 以 1 712 cm⁻¹为探 针谱带是合适的, 而参比谱带以 1 391 cm⁻¹为最 好. 这样最佳的工作曲线为 A 1 715BL1 / A 1 391BL3 对 DS₁ 的曲线(图 2). 图 2 包括了 CS 和 7 个 PHCS 样品的结果.

表 3 不同 DS_1 的邻苯二甲酰化壳聚糖其 $A_{\mathbb{R}^{\pm 1}}/A_{\text{det}}$ 不同组合的相对偏差

Tab. 3 Relative deviation (RD) of A_{PB}/A_{RB} ratio of different combination for phthaloyl chitosan with different DS₁

$A_{\mathrm{PB}}/A_{\mathrm{RB}}^{*}$	PHCS1	PHCS2	PHCS3	PHCS4	PHCS 5	PHCS6	PHC S7	
	0. 21* *	0. 45* *	0. 46* *	0. 62* *	0. 69* *	0. 78* *	1. 00* *	RD
A 1 712B L1 / A 1 391 BL3	0. 04	0. 17	0. 01	0. 22	0. 07	0.11	0. 02	0. 09*
A 1 712B L2 / A 1 391 BL3	0. 09	0. 23	0. 03	0. 25	0.08	0.11	0.05	0.12
A 721/A 1 391BL 3	0. 15	0. 25	0.02	0.32	0. 16	0. 28	0.03	0. 15
$A_{1.712BL1}/A_{1.391BL1}$	0. 16	0.32	0. 18	0. 24	0. 14	0.03	0.11	0.17
A 1 712B L2 / A 1 391 BL2	0. 20	0.36	0. 24	0.42	0. 12	0.03	0.10	0.19
A 721/A 1 391BL 1	0.18	0. 28	0.09	0. 15	0. 27	0.09	0. 15	0.17
A 721/A 1 391BL 2	0.18	0. 26	0. 15	0. 13	0. 24	0.18	0. 14	0.19
A 721/A 1 654BL 1	0. 20	0. 28	0. 51	0.01	0. 37	0.38	0.07	0. 26
A 721/A 1 468BL 1	0.31	0. 34	0.60	0. 20	0.35	0. 52	0.06	0.35
A 721/A 1 559BL 1	0. 50	0.72	0.81	0.01	0. 37	0.38	0.07	0.63
$A_{721}/A_{2\ 927}$	0. 21	0.45	0.43	0. 17	0. 27	0. 34	0. 11	0. 29
A 1 712B L1/A 1 654BL1	0.18	0.39	0.48	0.08	0.11	0. 15	0. 59	0. 27
$A_{1.712 \mathrm{B}\mathrm{L}2} / A_{1.654 \mathrm{B}\mathrm{L}2}$	0. 22	0. 32	0. 50	0.09	0. 12	0.10	0.71	0.31
A 1712BL1/A 2927	0. 33	0. 59	0.86	0. 28	0.38	0.70	0.09	0.46
A 1712BL2/ A 2927	0. 35	0. 59	0.87	0. 28	0.38	0.68	0.11	0.47

^{*} The digits in subscripts represent the wave number of infra-red band. PB: probe band in IR spectra; RB: ref band; BL1, BL2, BL3; base lines see Fig. 1. ** DS1 obtained from NMR.

2.3 环状邻苯二甲酰化壳聚糖取代度的测定 在图 1 中随 PHCS 环化程度 DS_2 的提高, 1775 cm⁻¹也随之显著增长. 未成环的取代基不 存在 1 775 cm⁻¹的羰基峰. 因此本文采用 1.775 cm^{-1} 谱带作为PHCS 系列分取代度 DS_2 的 探针谱带,仍然选取1391、1654、1559、1468和 2 927 cm⁻¹这 5 条谱带作为参比谱带, 从中选 7 种组合,结果列于表4.所得最佳工作曲线为 $A_{1775BL1}/A_{1654BL1}$ 与 DS_2 的曲线, 示于图 3. 由于 1.468 cm^{-1} 是 CH_2 变形的振动, 与壳聚糖脱乙酰

邻苯二甲酰化壳聚糖的合成反应机理和产物 结构虽然复杂,但其总取代度 DS_1 和环化部分的 取代度 DS_2 都可以根据本文提供的工作曲线作

度无关, 所以线性较好的 A_1 775BL1/ A_1 1468BL1与 DS_2

的曲线(见表4)适用于其它脱乙酰度的场合.

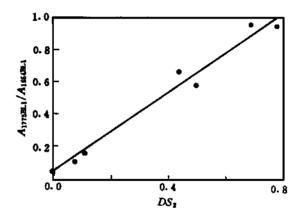


图 3 邻苯二甲酰化壳聚糖的

A_{1775BL1}/A_{1654BL1}对DS₂作图

Fig. 3 The plot of $A_{1.775BL1}/A_{1654BL1}vs$ DS 2 value for phthaloyl chitosan

表 4 不同 DS_2 的邻苯二甲酰化壳聚糖其 $A_{\text{Ret}}/A_{\text{det}}$ 不同组合的相对偏差

Relative deviation (RD) of $A_{\rm PB}/A_{\rm RB}$ ratio of different combination for phthaloyl chitosan with different DS_2 Tab. 4

A PB/ A PR	PHCS2	PHCS3	PHCS4	PHCS 5	PHCS6	PHCS7	\overline{RD}
A 1 775BL 1/A 1 654BL1	0.04	0. 04	0. 07	0. 15	0. 11	0.06	0.08
A 1775BL 2/A 1 654BL2	0. 14	0.04	0.11	0. 27	0.09	0. 12	0.13
A 1775BL 1/A 1 468BL1	0.08	0.38	0.04	0.00	0.01	0.42	0.16
A 1 775BL 1/A 1 559BL1	0.51	0.65	0.02	0. 67	0.50	0.02	0.39
A 1775BL 2/A 1 559BL2	0.68	0.79	0. 12	1. 16	0.53	0.09	0.56
A 1775BL 2/A 1 468BL2	0. 24	0.56	0.05	0.07	0.00	0. 67	0.26
A(17711011) A 231713	China0Acac	lemic ^{0.} 155urna	LElectronic P	ublishi290 Ho	use 9.64rioht	s reserved	http: 9-32

快速的评价. 对 DS_1 , 最佳 $A_{\text{IRH}}/A_{\text{sht}}$ 是 $A_{\text{1712BLI}}/A_{\text{1391}}$,工作曲线的斜率为 2. 45; 对 DS_2 ,最佳 $A_{\text{IRH}}/A_{\text{sht}}$ 是 $A_{\text{1775BLI}}/A_{\text{1654BL1}}$,工作曲线的斜率为 1. 20, 以上 2 个工作曲线只适用于脱乙酰度为 84%的壳聚糖. 而对 DS_2 , $A_{\text{1775BLI}}/A_{\text{1468BL1}}$ 可适用于全范围脱乙酰度的壳聚糖, 其工作曲线斜率为 2. 63.

参考文献

- 1 JIANG Ting-Da(蒋挺大)Chief-Ed. Chitin(甲壳素). Beijing(北京):Chinese Environmental Science Press(中国环境科学出版社), 1999:117
- 2 YANG An-Le(杨安乐), CHEN Chang-Chun(陈长春), SUN Kang(孙康), et al. Xiandai Huagong (现代化工), 1999, **19**(4): 50

- 3 Sannan T, Kurita K, Ogura K, et al. Polymer, 1978, **19**: 458
- 4 Ferreira M C, Duarte M L, Marvao M R, et al.

 Proceedings of the Third Asia-Pacific Chitin and Chitosan Symposium (Chen R H, Chen H C, Ed.)

 Taiwan, 1998: 123
- 5 JIANG Ting-Da(蒋挺大), LU Fu-Dao(卢福道).

 Int J Biol Macromol, 1987, 9:54
- 6 Shimura S N, Kohyo O, Kurita K, et al. Mac + o-mol, 1991, 24: 4745
- 7 Kurita K, Ichikawa H, Ishizeki S, et al. Macromol Chem, 1982: 1163
- 8 SHEN De-Yan(沈德言)Chief-Ed(主编). Application of IR in Polymeric Studies(红外光谱在高分子中的应用). Beijing(北京): Science Press(科学出版社),1982:67

Determination of Degree of Substitution for Phthaloyl Chitosan by FTIR

DONG Yan-Ming*, WANG Mian, WU Yu-Song

(Department of Materials Science and State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005)

Abstract The FTIR spectrometry was used to determining the total degree of substitution (DS^1) of phthaloyl chitosans (PHCS) and degree of substitution of phthaloyl imide groups (DS^2) . The probe bands, reference bands and baselines in IR spectra were investigated for the determination. The DSs were also determined by 1H NMR and elemental analysis for comparison. Based on the average relative deviations of (A probe band/A ref band) to DS in FTIR spectra the most suitable A PB/A RB) was found to be A 1712BL1/A 1391BL3 for DS^1 calculation, and A 1775BL1/A 1654BL1 for DS^2 , where BL1, BL2 and BL3 are the baselines in IR spectra (Fig. 1).

Keywords chitosan, phthaloyl chitosan, degree of substitution, quantitative determination, FTIR