在镉盐胁迫下用蛋白质组学技术筛选与 鉴定海兔亚口腔神经节的差异蛋白质

黄琳¹,陈东仕¹,颜 利¹,方财王¹,黄河清^{1,2,3} (1. 厦门大学生命科学学院生物化学与生物技术学系,2. 海洋与环境科学学院近海海洋 科学国家重点实验室,3. 化学化工学院化学生物学系,厦门 361005)

摘要 以蓝斑背肛海兔 (Notarcus leachii cirrosus Stimpson, NLCS)的口腔神经节 (Buccal ganglion, BG)为研究 对象,按 BG形态对称性,解剖成亚 BG(sub-BG, SBG),并分为左 SBG和右 SBG,简称为 LSBG和 RSBG 用 双向凝胶电泳 (2D-PAGE)技术优化分离 LSBG和 RSBG全蛋白质,并采用蛋白质组学和数据库比对技术筛选 与鉴定差异蛋白质.实验结果表明,LSBG和 RSBG之间的差异蛋白质主要由活性多肽的前体蛋白或降解后 大片段多肽组成,它们对维持 BG的生理功能起着重要的作用.在急性镉盐 (10µg/mL)胁迫下,NLCS的 LS-BG和 RSBG表达了由镉盐诱导的差异蛋白质,并采用蛋白质组学技术分别分离、筛选和鉴定,其主要的差 异蛋白质有下调的肌球蛋白、钙结合蛋白、上调的热休克蛋白和硫氧还蛋白.这些蛋白质可能与 BG细胞抗 镉毒性有关,部分差异蛋白质适合于监测镉盐污染且开展毒理学研究的蛋白指示物. 关键词 海兔;亚口腔神经节;蛋白质组学;镉盐;蛋白指示物

中图分类号 O629.72; Q51 **文献标识码** A **文章编号** 0251-0790 (2009) 02-0314-06

海兔 (*Aplysia*)是海洋中常见的雌雄同体动物^[1,2],其中枢神经系统 (CNS)主要由口腔神经节 (Buccal Ganglion, BG)、大脑神经节 (Cerebral Ganglion, CG)和腹部神经节 (Abdom inal Ganglion, AG)等组 成^[2],但 NLCS的 CNS却缺少 AG^[3,4].海兔 BG细胞直径位于 100~200µm之间^[5],BG是如何行使其 控制口腔及其附属器官活动;如何调控海兔的摄食活动和海兔之间的信息交流等一直是神经科学家关 注且亟待解决的问题之一.海兔吸引素是一种由 58个氨基酸残基组成的水溶性多肽^[6],主要来源于 海兔卵腺 (Egg cordons),并作为海兔之间进行信息传递与交流的物质之一^[1,6]. 然而,识别和降解吸引 素的生理功能是否与海兔 BG有关尚不清楚. Hummon等^[7]发现海兔 BG中含有酸性多肽 (Acidic peptide, AP)内切酶. 我们以 AP为探针结合 MALD FTOF质谱分析技术发现海兔 CG中含有超微量 L L 或 L-K多肽内切酶^[8]. 通过优化分离 NLCS的 BG全蛋白,并应用肽质量指纹 (Peptide mass fingeprinting, PMF)图谱和数据库比对技术鉴定了 96个蛋白质^[4],但多数蛋白质的生理功能至今尚不清楚.本文在 前期研究基础上,将 NLCS的 BG进一步分为 LSBG和 RSBG,并用蛋白质组学技术分离与鉴定 LSBG 和 RSBG之间差异蛋白质.在模拟镉盐胁迫环境下,分离筛选和鉴定 LSBG和 ESB G分别受镉盐诱导前 后的差异蛋白质,为后续连续监测流动海水中镉盐污染程度及其危害性提供蛋白指示物.

1 实验部分

1.1 仪器与试剂

REFLEX 型 MALD FTOF质谱仪 (德国 B ruker公司); 超速冷冻离心机 (Beckman公司,美国); 真空浓缩离心机 (Labconco); Investigator HT Database图像分析软件 (Genomic Solutions).

载体两性电解质 (Amersham 公司), pH = 5 ~ 8; 胰蛋白酶购自 Promega 公司; 氰 -4羟肉桂酸 (HCCA)购自美国 ICN 生物医学公司; SDS分子量标准购自 Fermentas公司; 二硫苏糖醇 (DTT)、超纯

收稿日期: 2008-06-02.

基金项目:国家自然科学基金(批准号: 40776060)和福建省高校创新研究团队基金资助.

联系人简介:黄河清,男,教授,博士生导师,主要从事蛋白质结构与功能及生物分析化学研究. E-mail: hqhuang@xmu edu cn

尿素 (urea)、过硫酸铵 (APS)、硫脲、诺乃洗涤剂 (Nonidet P-40, NP-40)、3[(3胆酰胺丙基)-二乙胺]-丙璜酸 (CHAPS)均购置于上海生工集团.

1.2 海兔亚口腔神经节分离

NLCS捕获于厦门市内海浅滩区域.每只 NLCS净重在 80~200 g之间,采集后置于 14 海水培养 箱内,人工养殖数天.取 30只 NLCS置于 14 海水中,按每只 NLCS体重注入等体积的氯化镁溶液 (28 mmol/L)于体内.待 NLCS组织软化后,迅速在解剖镜下分离 BG,并用蒸馏水清除 BG表面盐分和 杂质.参考 BG对称性形态结构,选用微型手术刀对 BG进行对称性解剖,并分为亚左 BG和亚右 BG, 称为 LSBG和 RSBG

1.3 海兔亚口腔神经节全蛋白制备

将 LSB G和 RSB G分别收集于 0.5 mL的离心管中,置于 4 冰浴中,加入 300 µL裂解液 [8 mol/L 尿素、40 mmol/L Tris、2 mol/L 硫脲、质量分数为 4%的 CHAPS、10 mmol/L DTT和 1 mmol/L EDTA (pH 7.4)],采用超声破碎技术振荡破碎 8~10 min,收集破碎液置于 4 冰箱中 24 h以上,或确保 海兔 BG已最大量地释放细胞内含物.将 BG内含物置于冷冻离心机内,以 100000 r/min速度超速离 心 20 min,去除离心液上层的大量脂类化合物,分离提取离心液中间层的透明澄清蛋白质样品,即为 LSB G和 RSB G的全蛋白提取液,供 2D -PA GE分离.LSB G和 RSB G蛋白质含量测定按常规的考马斯亮 蓝法分析,标准蛋白质选择纯度为 99%的牛血清白蛋白.

1.4 急性镉盐胁迫条件下海兔亚口腔神经节制备

挑选 40只体重为 160~200 g的海兔,随机分成对照组和实验组,在无污染海水小池中饲养 2 d 人工配置 10 µg/mL 的氯化镉作为污染源,构成镉盐胁迫环境且用于养殖海兔.养殖时间控制在 24~26 h内,随后立即分离 LSB G和 RSB G,收集且置于 - 70 冻存备用.按 1.3节方法制备海兔亚口 腔神经节全蛋白,海水中的氯化镉浓度用电感藕合等离子体质谱法进行监测和控制.

1.5 口腔神经节组织切片与染色

按常规组织切片技术制备海兔 BG组织切片, 然后进行脱蜡和苏木精染液染色, 置于显微镜 (400 放大倍数)下观察和拍摄.

1.6 双向凝胶电泳

参考文献 [3,9 的 2D-PAGE技术,优化分离海兔 LSBG和 RSBG全蛋白质,并用银染法进行蛋白 质斑点染色.用图像扫描仪对已染色后的全蛋白质分离胶板进行透射扫描.全蛋白质斑点图谱用 Investigator HT Database软件进行图像分析,筛选差异蛋白质.

1.7 蛋白质的原位酶解与分析

采用自制取样器,直接从分离胶上获取蛋白质斑点样品,并保存在 0.5 mL离心管中,进行酶解. 酶解和肽段提取的过程参照 Zhuo等^[10]的方法进行.

18 质谱分析

将蛋白质酶解样品与 HCCA 基质 (HCCA 溶于 40%乙腈, 0.1% TFA 溶液至过饱和)以 1 1的体积 比混合,取 1 µL 混合液点滴在不锈钢 MALD FTOF质谱点样板上,置于空气中自然风干后进行质谱分 析.质谱分析条件:高分辨率反射模式,离子源加速电压 1为 20 kV,加速电压 2为 18.85 kV,质谱信 号单次扫描累加 10次,测定正离子谱.采用外标法 (AP分子量 2961000)标定多肽质谱峰峰位.

1.9 数据库检索与蛋白质鉴定

参考 Zhu等^[11]和 Zhou等^[12]的方法进行蛋白质鉴定. 在 MASCOT检索网站 (http://www.matrixscience com)进行检索,利用 SW ISS-PORT, M SDB和 NCB I等 3个数据库对混合物肽段质量数据进行 检索和蛋白质鉴定.

2 结果与讨论

2.1 海兔口腔神经节显微图

图 1(A)为 NLCS口腔神经节的显微图谱. 可以看出, BG具有对称的形态结构, 根据图示的对称

解剖线进一步分解为 LSB G和 RSB G 图 1(B)为在镉盐胁迫下,NLCS 口腔神经节的显微图.可以看 出,海兔受镉盐胁迫后,LSB G中心区域含有相对较大面积的斑点聚合体,说明了 LSB G组织受急性镉 盐损伤后,造成斑点聚合体现象.从比较正常的 B G显微形态图 [图 1(A)]可发现,图 1(B)中的 RSB G 组织显微形态图与图 1(A)中的 RSB G极为相似,均未受到急性镉盐的创伤.为了证实这一实验现象, 选用铅盐 (10 µg/mL)作为急性污染源,其污染 NLCS时间长达 24 h,所观察到的实验现象与图 1极为 相似.由此看来,海兔 B G 可进一步分为亚 B G,其中 LSB G 和 RSB G 可能执行不同的生理功能;LSB G 易受各类重金属污染物的侵袭,并造成器官组织受创伤现象,而 RSB G 却具有天然的抗重金属创伤的 屏障,因此可认为 RSB G 和 LSB G 之间存在细胞结构上的差异性.

Fig 1 Modalm icrography of sub-buccal ganglion in Aplysia under the stress of cadm ium chloride (A) Normal buccal ganglion; (B) the buccal ganglion under the stress of cadm ium chloridde at 10 µ g/mL.

2.2 RSBG和 LSBG之间的差异蛋白

分别制备 RSB G和 LSB G全蛋白样品,其 2D-PA GE 图谱如图 2所示. 经过 Investigator HT Database 软件统计图 2(A)和 (B)中均含有约 300个蛋白质斑点,其中蛋白质斑点和亚基分子量的分布规律较 为相似,说明在 RSB G和 LSB G之间的多数蛋白均是同类蛋白质,并同步执行着许多相似的生理功能. 参考图 2结果,并与前期有关 NLCS的 BG全蛋白的 2D-PA GE 图谱相比可见,其蛋白质分布规律也存 在着较高的相似性^[4]. 经统计分析发现,RSB G和 LSB G之间存在着 15个差异蛋白质斑点,其中 LSB G 有 9个差异点,RSB G有 6个差异点.选用 PMF技术分别对这 15个蛋白质差异点进行逐一鉴定,获得 9张较为理想的 PMF谱图,鉴定成功率约为 60%以上;部分蛋白质斑点匹配率不是很高,主要是一些 糖蛋白、膜蛋白、假定蛋白和酶类.

Fig 2 2D-PAGE map of sub-buccal ganglion proteome in NLCS (A) LSBG; (B) RSBG

2 3 在镉盐胁迫下亚口腔神经节的差异蛋白质

图 1结果已显示,流动海水中的镉盐能够胁迫 NLCS,并使亚 BG组织发生病变,最后由急性重金 属中毒而引发死亡(48~54 h).针对这一实验现象,选用 10µg/mL镉盐作为污染源,镉盐暴露时间为 24 h 用蛋白质组学技术分离、筛选和鉴定在镉盐胁迫(暴露)前后,NLCS口腔亚神经节的差异蛋白 质.图 3为 NLCS受镉盐胁迫(暴露)前后,其 LSBG全蛋白质的 2D-PAGE图谱.经过 Investigator HT Database软件统计,在图 3(A)和(B)中均含有约 300个的蛋白质斑点.虽然两图中所显示的斑点和蛋 白质亚基分子量分布规律较为相似,但还是存在着一定的差异蛋白.这说明了 NLCS受镉盐胁迫(暴 露)前后,它的 LSBG组织或细胞结构不仅受损,而且还表达了由镉盐诱导的应激(差异)蛋白质.

用蛋白质组分析软件对图 3(A)和 (B)进行分析发现, 经镉盐诱导后, LSBG和 LSBG_{cd}共产生了 25 个差异蛋白质, 其中包括 9个下调蛋白和 16个上调蛋白.采用 PMF技术鉴定这些差异蛋白质, 获得了

Fig 3 2D-PAGE maps of sub-buccal ganglion proteom e(LSBG) in NLCS under the stress condition of cadm ium chloridde at 10 µg/mL

(A) LSBG; (B) LSBG_{cd} in the stress of cadmium chloridde.

19个鉴定结果,鉴定成功率为 76%.

从已检索的结果可获悉,LSB G_{cd} 15 蛋白斑点匹配率较高,检索分值为 80,超过高匹配率 76 的分 值限度,鉴定为硫氧还原蛋白质 (Thioredoxins).将其它一些匹配率较高 (60分值以上)的蛋白质鉴定 为假定蛋白 (Hypothetical protein XCC4211,LSB G8)、1,5 二磷酸核酮糖 羧化酶 加氧酶的亚基 (Ribubse-1,5-bisphosphate carboxylase/oxygenase large subunit,LSB G9)、类似 KAA0614蛋白 (Similar to KAA0614 protein, partial,LSB G_{cd} 1)、甲羧基 四氢 叶酸水解酶 (Formylte-trahydrofolate hydrolase, LSB G_{cd} 3)、未知蛋白 (Unknown protein,LSB G_{cd} 6)、含氮还原酶 (Azoreductase,LSB G_{cd} 8)等.这些蛋白 质来源于 LSB G和 LSB G_{cd}之间的差异蛋白质,推测均为镉盐诱导的结果,是 NLCS在抗镉盐毒性过程 中产生的应激蛋白质,显示出上调或下调现象,也可能存在研究 NLCS中枢神经系统毒理学和监测流 动海水中镉盐污染程度及危害性的蛋白标志物.为提高蛋白鉴定的可信度,对全球各大文献信息库与 数据库进行检索和比对发现,在这 19个差异蛋白质点中,已有 2个蛋白质参与由镉盐诱导神经致毒途 径的报道 ^[13,14].采用 LOC tree数据库对这 2种差异蛋白质进行亚细胞定位,结果见表 1.

Table 1	Differential proteins	loca ted with LOC tree	database(Cd pollution) i	n tissue cell
---------	-----------------------	------------------------	--------------------------	---------------

Spot	Description	Previous reports(Cd response)	Reference	Subcellular localization
BCL _{Cd} 14	Heat shock protein	Heat shock protein	[13]	Cytop lasm ic
BCL _{Cd} 15	Thiol-disulfide isomerase and thioredoxins	Thioredoxins	[14]	Nuclear

热休克蛋白 (Hsp)的主要生理功能是辅助蛋白质折叠、去折叠、维持细胞蛋白质结构稳定性及防 止蛋白的变性. 昆虫 Aedes albopictus C6/36细胞系细胞对 Cd的吸收、防御机制及细胞启动防御机制主 要表现为诱导热激蛋白表达^[15],从而抵抗蛋白质变性或凝集.

硫氧还蛋白质 (Thioredoxin, Trx)与硫氧还蛋白还原酶 (Thioredoxin reductase, TrxR)和 NADPH-起构成硫氧还蛋白系统 (Trx系统),并在调节细胞内氧化还原平衡中发挥重要作用^[16]. Trx不仅可激 活氧化还原酶的活性,而且可发挥活性氧 (ROS)的清除剂作用. Trx通过巯基氧化还原调节 NF B^[17] 和丝裂原活化激酶 (MAPK)的活性,并影响细胞内的分子通道. 不同金属离子对 Hela细胞中 Trx的氧 化作用表明镉盐对 Trx的作用尤其明显;随着镉盐浓度的增加, Trx的氧化还原作用速率明显下降^[18]. 表明 Trx对镉盐浓度呈正对应的关系,可认为 NLCS的 BG中 Trx蛋白质表达量与流动海水中的镉盐污 染程度存在对应关系,从而推测 Trx蛋白质可作为监测流动海水镉盐污染程度的蛋白质标记物之一.

图 4为 NLCS受镉盐胁迫 (暴露)前后, RSBG[图 4(A) 和 RSBG_{cd} [图 4(B)]全蛋白质的 2D-PAGE 图谱. 经过 Investigator HTD atabase软件统计发现, 图 4(A)和 (B)中含有约 300个蛋白质斑点, 其中斑 点和蛋白质亚基分子量分布规律较为相似, 但还是存在着一定量的差异蛋白. 说明 NLCS受镉盐胁迫 (暴露)前后, 其 RSBG组织或细胞结构可能发生了轻微损伤, 并表达了由镉盐诱导的应激 (差异)蛋白 质.

对图 4进行剖析同样可以发现,NLCS经急性镉盐诱导前后,NLCS的 RSBG共产生 21个差异蛋白 质,其中有 8个下调蛋白,13个上调蛋白.采用 PMF技术对 21个差异蛋白质进行鉴定,共获得 15张

Fig 4 2D-PAGE maps of buccal sub-ganglion (RSBG) proteome in NLCS under the stress condition of cadmium chloridde at 10 µg/mL

(A) RSBG; (B) $RSBG_{cd}$ in the stress of cadmium chloridde.

PMF谱图,差异蛋白质鉴定成功率为 71.4%.

从检索结果中可以获悉,差异蛋白 RSBG1的蛋白点匹配率较高,分值为 102, 超过高匹配率 76的 分值限度,鉴定为肌球蛋白(Tropomyosin).其它一些匹配率较高(60分值以上)的蛋白质为尚未命名 蛋白 (Unnamed protein product, RSBG7)、类似 KAA0614蛋白 (Similar to KAA0614 protein, RSBGcd 6)、 甲羧基四氢叶酸水解酶 (Formyltetrahydrofolate hydrolase, RSBGcd3)、未知蛋白 (Unknown protein, RSB-Gra4)、含氮还原酶 (Azoreductase, RSB Gra11)、类似人血清白蛋白 (Similar to human albumin, RSB Gra 8)和 PRO蛋白 (PRO2619, RSB G_{ca}9). 在这 15个差异蛋白质中, RSB G有些上调和下调蛋白与 LSB G 相同,其中有 3个下调蛋白,即虾红素类型金属蛋白酶 (A stac in-type metallop rotease, LSB G2, RSB G2)、 假定蛋白 (Hypothetical protein, LSB G4, RSB G4)、GTP结合蛋白 (Predicted GTP-binding protein, LSB G5, RSBG5); 而共同发生上调的蛋白有 5个, 其中为假定蛋白 (Hypothetical protein DDB0219224, LSBG-a 2, RSBGcd 2)、类似 KIAA0614蛋白 (Similar to KIAA0614 protein, LSBGcd 1, RSBGcd 6)、甲羧基四氢叶 酸水解酶 (Form ylte trahydrofolate hydrolase, LSB Grd 3, RSB Grd 3)、未知蛋白 (Unknown protein, LSB Grd 6, RSBG_{cd}4)和含氮还原酶 (Azoreductase, LSBG_{cd}8, RSBG_{cd}11), 这些蛋白可能属于 BG中结构特性相对 稳定的功能蛋白质. 为提高鉴定差异蛋白的可信度, 对这 15个差异蛋白进行文献检索比对发现, 仅有 肌球蛋白 (Tropomyosin, RSBG1)与钙结合蛋白 (分子量为 16000的 Calcium-binding protein, RSBG3)可 作为镉盐致毒机理研究的蛋白指示物^[18,19].把已鉴定的差异蛋白质经 LOC tree软件归类后发现,这些 蛋白质均属于细胞质蛋白质,说明了镉盐在 RSBG组织细胞中也能产生毒害作用,其发生场所主要是 细胞质.

本文结果表明,BG受镉盐污染后,海兔的 RSBG和 LSBG表现出差异蛋白质(例如:硫氧化还原 蛋白、热休克蛋白、肌球蛋白以及钙结合蛋白),从某种程度上解释了镉盐的神经致毒途径.将部分差 异蛋白质用于环境污染监测,可拓展环境污染生物监测新技术领域中蛋白质标记物的应用;另外,重 金属铜盐、镉盐和锌盐均能引起肝脏或肾脏中金属硫蛋白的高表达^[20],但这一现象尚未在海兔 BG中 发现.可见,蛋白质组学技术是筛选与鉴定中枢神经系统中重要蛋白质的有效手段之一^[21,22].

参考文献

- [1] Huang H. Q., Lu Y. J., Lin Q. M., et al. Chin J. Anal Chem. [J], 2007, 35: 1105-1110
- [2] Kandel E R. Bioscience Reports [J], 2001, 21: 565-611
- [3] FENGLi-Jian (冯丽剑), HUANGLin (黄琳), ZHUO Hui-Qin (卓慧钦), et al. Chin J. Anal Chem. (分析化学) [J], 2008, 36: 577—582
- [4] CHEN Dong-Shi(陈东仕), HUANG He-Qing(黄河清), WU Han-Zhi(吴韩志), et al. Chem. J. Chinese Universities(高等学校化 学学报)[J], 2006, 27(7): 1257—1261
- [5] Cummins S. F., Degnan B. M., Nagle G. T. Peptides [J], 2008, 29: 152-161
- [6] Akalal D. B. G., Cummins S. F., Painter S. D., et al. Peptide [J], 2003, 24: 1117-1122
- [7] Hummon A. B., Huang H. Q., Khley W. P., et al. J. Neurochem. [J], 2002, 82: 1398-1405

- [8] LNQingMei(林庆梅), HUANGHui-Ying(黄慧英), HUANGHe-Qing(黄河清), et al. Chin J. Anal Chem. (分析化学)[J], 2006, 34: S95—S99
- [9] WANG Ya-Dong(王亚冬), WU Jin-Dao(吴金道), JAN Zhong-Li(江中立), et al. Chem. J. Chinese Universities(高等学校化学 学报)[J], 2007, 28(11): 2065—2072
- [10] ZHOU Huirqin, HUANG Herqing, JN Hongwei, et al. Chem. Res Chinese Universities [J], 2008, 24(1): 84-91
- [11] Zhu J. Y., Huang H. Q., Bao X. D., et al. Aquatic Toxicobgy[J], 2006, 78: 127-135
- [12] Zhou H. Q., Huang L., Feng L. J., et al. Anal Biochem. [J], 2008, 378: 151-157
- [13] Lee M. S., Lee S. B., Park C. H., et al. Chemosphere [J], 2006, 65: 1074-1081
- [14] Hansen J. M., Zhang H., Jones D. P. Free Radical Biology & Medicine [J], 2006, 40: 138-145
- [15] Feder M. E , Hofmann G E . Annu Rev. Physiol [J], 1999, 61: 243-282
- [16] Blazejczyk M., Wojda U., Sobczak A. Biochim. Biophys Acta (BBA) Molecular Basis of Disease [J], 2006, 1762: 66–72
- [17] Hansen J. M., Zhang H., Jones D. P. Free Radical Biology & Medicine [J], 2006, 40: 138-145
- [18] Silvestre F., Dierick J. F., Dumont V.. Aquatic Toxicology[J], 2006, 76: 46-58
- [19] Miyado K , Kimura M. , Taniguchi S . Biochem. Biophys Res Comm. [J], 1996, 225: 417-435
- [20] ZHAO Rui(赵锐), JIJian-Guo(纪建国), YUAN Hong-Sheng(袁洪生), et al. Chem. J. Chinese Universities(高等学校化学学报) [J], 2002, 23(6): 1086—1090
- [21] DONG Lei(董雷), JANG Ning(蒋宁), ZHOU Wen-Xia(周文霞), et al. Chem. J. Chinese Universities(高等学校化学学报)[J], 2007, 28(2): 274—277
- [22] YE Neng-Sheng(叶能胜), ZHANG RongLi(张荣利), LUO Guo-An(罗国安), et al. Chem. J. Chinese Universities(高等学校化学 学报)[J], 2006, 27(10): 1881—1886

D ifferential Proteins of Sub-buccal Ganglions Selected and Identified with Proteom ic Techniques in Aplysia Under the Stress Condition of Cadmium Chloride

HUANG Lin^{1,2}, CHEN Dong-Shi¹, YAN Li¹, FANG Cai-Wang^{1,3}, HUANG He-Qing^{1,2,3*}

(1. Department of B iochemistry and B iotechnology, School of Life Sciences,

State Key Laboratory of Marine Environmental Science, College of Oceangraphy and Environmental Science,
Department of Chemical Biology, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China)

Abstract The buccal ganglion (BG) was symmetrically divided into two sub-BG (SBG) in *Aplysia* (*Notarcus leachii cirrosus* Stimpson, NLCS) with reference to its ganglion shape, called left SBG (LSBG) and right SBG (RSBG). The whole proteins both LSBG and RSBG were optimally separated *via* two-dimensional polyacrylam ide gel electrophoresis(2D-PAGE), respectively. The differential proteins were further selected and identified by proteom ic and comparison database techniques. The experimental results indicate that these differential proteins between LSBG and RSBG are identified to be the precursor proteins or the large segments of active peptides, which both proteins may play the important role in maintaining the physiological function of BG Both LSBG and RSBG in NLCS can express the differential proteins were effectively separated, selected and identified with proteom ic techniques, indicating that these proteins were considered to be the down-regulated proteins such as ropomyosin and $M_w = 16000$ calcium-binding, and the up-regulated proteins such as heat shock protein and thioredoxin. We suggest that these proteins be tightly connected with mithridatism of cadmium in BG cells and, as protein markers in part, be suit for monitoring pollution level of cadmium and developing the research focused on toxicology.

Keywords Aplysia; Sub-baccual ganglion; Proteomics; Cadmium chloride; Protein marker

(Ed : H, J, Z)