	ž	
--	---	--

第34卷第9期 2010年9月

JOURNAL OF FISHERIES OF CHINA

Vol. 34, No. 9 Sep. ,2010

文章编号:1000-0615(2010)09-1354-09

DOI: 10. 3724/SP. J. 1231. 2010. 06963

坛紫菜遗传连锁图谱的构建

 $_{\rm All}$ $_{\rm All}$, 谢潮添² , 陈昌生² , 纪德华² , 高亚辉^{1*} 徐

(1. 厦门大学生命科学学院 福建 厦门 361005;

2. 集美大学水产学院 福建 厦门 361021)

摘要: 以野生型坛紫菜纯系(♀)和红色型坛紫菜纯系(♂)作为杂交亲本 ,结合四分子分析法 及单个体细胞克隆的丝状体途径,创建了由157个株系组成的坛紫菜 DH 作图群体,并用经过 筛选的 24 对 SRAP 引物和 16 对 SSR 引物对父母本及作图群体各株系进行双标记分析,获得 了 224 个多态性标记,其中 157 个标记符合孟德尔分离规律。根据标记间的连锁规律,首次构 建了坛紫菜的分子遗传连锁图谱,所构建的遗传图谱由包含124个标记(含 SRAP标记104 个 SSR 标记 20 个) 的 5 个连锁群组成 ,总长度为 879.2 cM ,平均标记间隔为 7.09 cM ,各个连 锁群长度为 134.2~213.6 cM, 包含标记 18~31 个。最后采用 3 种不同方法计算得到坛紫菜 的估计基因组长度平均为 955.3 cM,由此得到坛紫菜遗传连锁图谱的基因组覆盖率为 92.0% 。

关键词:坛紫菜;遗传连锁图谱;相关序列扩增多态性;简单重复序列;DH 作图群体 中图分类号: S 917 文献标识码:A

坛紫菜(Porphyra haitanensis) 是我国紫菜人 工养殖的两个主要种类之一,为我国特有的暖温带 种类 其产量约占全国紫菜总产量的 75% 左右 是 南方沿海传统大宗的养殖对象 经济效益可观[1]。 但由于坛紫菜养殖业中品种的提纯、复壮、种质改 良等研究工作相对滞后 缺乏经过人工选育的具有 优良性状的新品种 生产多以野生体为亲本进行苗 种繁殖、无法保证苗种的质量,且多年自养、自留、 自用 导致坛紫菜种质退化 生产效益受到了极大 影响 严重影响沿海渔民的经济收入和坛紫菜养殖 业的健康发展^[2]。因此,对坛紫菜进行种质改良, 以培育优质、高产、抗逆的新品种,来保证坛紫菜养 殖业的健康持续发展势在必行。

植物基因组学的发展为植物育种提供了许多 新的工具 分子遗传连锁图谱就是其中最为重要 的一个,它是基因定位、基因克隆、比较基因组研 究以及分子标记辅助育种的基础^[3]。自从 1987 年第一张 RFLP 分子遗传连锁图谱发表以来,各 种生物的分子遗传图谱相继出现 特别是在陆生

经济作物方面,据不完全统计,已有近30种农作 物的分子遗传连锁图谱发表^[4]。而水生生物方 面 虽然起步较晚,但是出于"蓝色农业"发展的 需要,目前也取得了很大进展。美国农业部在 1997年就启动了为期5年,以构建水产经济动物 分子遗传连锁图为首要任务的基因组研究计 划^[5]。随后,挪威、法国、丹麦、英国和日本等也 相继开展了类似的基因组计划 ,并发表了多张水 产养殖动物的分子遗传图谱^[6]。我国虽然至今 没有设立国家级的水产养殖生物基因组研究计 划 但也相继开展了鱼、虾、贝等的遗传图谱构建 工作,并已取得很大进展^[6]。在大型经济海藻方 面 遗传连锁图谱的构建工作进行得很少 月前只 见 Li 等^[7] 根据"双向拟侧交"策略 利用 AFLP 标 记构建了两种海带的中等密度遗传连锁图谱。紫 菜一直被认为是大型藻类分子生物学研究的理想 模式生物^[8] 但迄今为止未见遗传图谱构建的相 关报道。

因此 本研究以野生型坛紫菜纯系(♀) 和经

收稿日期:2010-05-11 修回日期: 2010-06-25

资助项目: 国家自然科学基金项目(40806065); 国家"八六三"高技术研究发展计划(2006AA10A413); 国家"十一五"科技支撑计划 项目(2007BAD07B03); 公益性行业(农业) 科研专项项4 目(200903030); 福建省科技平台建设项目(2007N2011)

通讯作者: 高亚辉 E-mail: ctxie@126.com

过人工诱变选育的红色型坛紫菜纯系(*δ*)作为 杂交亲本 结合四分子分析法及单个体细胞克隆 的丝状体途径创建坛紫菜的 DH 永久作图群体, 并采用简单重复序列(simple sequence repeat, SSR)和相关序列扩增多态性(sequence-related amplified polymorphism, SRAP)双标记技术进行 基因型分析 构建坛紫菜的永久高密度分子遗传 连锁图谱,以为坛紫菜的分子标记辅助育种提供 技术平台,加快坛紫菜的育种进程。

1 材料与方法

1.1 坛紫菜 DH 作图群体的构建

采用集美大学坛紫菜种质改良与应用实验室 保存的坛紫菜野生型纯系 YS III(\mathfrak{Q})和经过人工 诱变选育的红色型坛紫菜纯系 RTPM(δ)作为 杂交亲本构建了由 157 个株系组成的坛紫菜 DH 作图群体。亲本及作图群体各株系丝状体的培养 条件 为(20 ± 1) °C,光照强度 50 ~ 60 μ mol photons/(m² • s),光周期为 12L: 12D。

DH 作图群体的构建过程如下:

(1) 2007 年 3 月分别促使两亲本纯系丝状体放散壳孢子,收集壳孢子于培养瓶中培养以获得亲本叶状体;

(2) 培养叶状体 2 个月后,选择健康的红色型坛紫菜雄性叶状体和野生型雌性叶状体作为亲本,进行杂交实验;

(3) 以1:1 的比例进行雌雄叶状体的混合培养 2 周后去掉雄性叶状体,保留雌性叶状体进行 单棵培养,直至果孢子放出为止;

(4)将收集到的果孢子单个培养于试管中, 使其萌发成杂合丝状体,当丝状体藻落生长到一 定大小时,用粉碎机将其打碎,继续培养,培养方 法及条件同其他丝状体的培养方法;

(5) 用充气加速水流刺激法促使成熟的杂合 丝状体释放壳孢子,收集到的壳孢子经筛绢网 (网孔 50 μm)过滤后,置于培养皿中培养,以获 得 F₁代叶状体;

(6) F₁代叶状体培养 3 周后,挑出叶状体,于 解剖镜下仔细观察,采用四分子分析法,用剪刀剪 下各个色快进行体细胞酶解,然后通过单个体细 胞克隆的丝状体途径^[9] 促使直接发育形成二倍 体的丝状体,即获得了杂交的双单倍体群体(DH 群体)。 1.2 基因组 DNA 的提取及检测

收集培养液中培养的 DH 群体各株系的自由 丝状体用滤纸吸干后,取 0.5 g 置于微型匀浆机 (Ultra-turrax T8,IKA)中进行高速匀浆,然后采 用传统的 CTAB 法^[10]稍作改良后进行 DNA 的提 取和纯化,在 1.0% 的琼脂糖凝胶电泳中检查所 提取 DNA 的完整性,并在 Beckman DU-600 核酸 蛋白紫外分析仪上测定 DNA 浓度。

1.3 SRAP 和 SSR 标记分析

SRAP 标记分析采用 Li^[11]设计的成套 SRAP 引物,分别选取正向和反向引物 10 条随机组合进 行引物筛选,SSR 标记分析则采用 Xie 等^[12]和 Zuo 等^[13]设计的共 39 对坛紫菜 SSR 引物进行筛 选,PCR 扩增的反应体系和程序以本实验室经正 交实验优化过的反应体系和扩增程序进行^[12,14]。

1.4 数据统计

DH 作图群体的基因型均为纯和基因型 AA 或者 aa,在进行 SRAP 和 SSR 标记分析时,其表 型分为片段的有(对应基因型 AA) 和无(对应基 因型 aa) 两种,因此在记录标记分析结果时,找 出只一个亲本中出现,而在后代中呈分离状态 的清晰、稳定条带进行记录,每一标记位点中, 与父本相同纯和带型记为"1",与母本相同纯和 带型记为"0"缺失或模糊不清记为"—"。各遗 传标记采用"引物代号—扩增片段分子量"的形 式命名,如位点 E1M7-290 是指由 SRAP 引物 EM1 和 ME7 组合扩增出的分子量为 290 的扩 增片段,位点 Phes 09-210 是指由 SSR 引物对 Phes 09 扩增出的分子量为 210 的扩增片段。最 后应用卡方 (χ^2) 检验各分离的标记位点是否符 合1:1 的分离规律 找出符合孟德尔分离比的遗 传标记(P≥0.05)用于遗传连锁图谱的构建, P < 0.05 的分离位点记为偏分离位点,不作为构 图位点。

1.5 坛紫菜分子遗传连锁图谱的构建

将所有符合孟德尔分离比的 SSR 和 SRAP 标记位点用 MAPMAKER/EXP 3.0 软件进行连 锁分析,首先按软件要求对原始的"1"'0"数据进 行转换,位点连锁采用多点连锁分析,并采用 "Group"(LOD≥3.0 标记间最大图距为50 cM) 命令对所有分离位点进行分群,对少于8 个标记 的连锁群直接用"Compare"命令进行标记排序, 对多于8 个标记的连锁群采用"Three point"命令 将连锁群分为几个亚群,对每个亚群分别进行排 序后 再确定亚群之间的顺序。当连锁群中的标 记序列排好之后 用"Map"命令进行图距运算 标 记间图距以实际图距(cM)记录。对于应用以上 命令还未能定位的标记,采用"Try"命令进行定 位 用"Ripple"命令来检验排序的可靠性。最后 将连锁标记名称及对应标记间图距输入到 Mapdraw 软件^[15]中进行遗传连锁图谱绘制。

1.6 基因组预期长度及图谱覆盖率的计算

首先计算标记平均间隔(S),其值为图谱总 长度除以间隔总数(标记总数减去连锁群数)。 采用3种方法来计算基因组预期长度:(1) G_{el} : 参考文献[16]的方法。每个连锁群的长度加上 标记平均间隔的两倍 ,来补偿连锁群最末端的标 记和端粒距离。(2) G_{a} :参考文献[17]的方法。 每个连锁群的长度乘以系数(m+1)/(m-1),m 为每个连锁群所包含标记的数目。(3) G_{a} :参考 文献[17-18]的方法。每个连锁群的长度乘以 系数 N(N-1) X/K N 为每个连锁群所包含标记 的数目 X 为各个连锁群中的最大标记间隔 K 为

LOD≥3.0 的连锁标记对数。将3种方法的平均 值作为坛紫菜基因组预期长度 G_e。

遗传图谱的实际长度分两个方面,一为框架 图谱的长度 G_a, 二为所有连锁群的总长度,即包 括三联体及连锁对在内的所有连锁群的总长度 $G_{aa}^{[18]}$ 。相应的框架图覆盖率为 $C_{af} = G_{af}/G_{e}$,总 的图谱覆盖率 $C_{oa} = G_{oa} / G_{e}$ 。

2 结果与分析

2.1 SRAP 和 SSR 标记分析

用 100 对 SRAP 引物组合对亲本及 5 个子代 株系进行了引物筛选 结果有 24 对引物组合扩增 出了只一个亲本中出现,且在子代中呈分离状态 的清晰、稳定条带。将筛选出来的 24 对 SRAP 引 物对 DH 作图群体中的 157 个株系进行了遗传分 析 洪扩增出 872 个位点 其中 190 个位点在亲本 中表现为多态性,并在子代中产生了分离(表1), 即平均每对引物组合扩增出了 36.33 个位点,其 中有 7.92 个位点为多态性位点 多态位点百分率 为 21.8%。

表1	SRAP 和	SSR 标记分析结果	
----	--------	------------	--

标记类型	引物组合	总位点数	多态位点数	多态位点百分率(%)
marker type	primer combination	no. of total loci	no. of polymorphic loci	percentage of polymorphic loci
	ME1/EM5	34	8	23.5
	ME1/EM7	37	7	18.9
	ME1/EM9	29	9	31.0
	ME2/EM1	41	8	19.5
	ME2/EM5	37	10	27.0
	ME2/EM7	45	11	24.4
	ME2/EM9	30	9	30.0
	ME3/EM7	38	12	31.6
	ME3/EM9	42	7	16.7
	ME4/EM6	27	6	22.2
	ME5/EM4	33	7	21.2
	ME5/EM6	36	8	22.2
SRAP	ME5/EM7	40	9	22.5
	ME6/EM7	34	5	14.7
	ME6/EM9	32	7	21.9
	EM1/ME10	43	7	16.3
	EM3/ME10	36	7	19.4
	EM5/ME8	47	11	23.4
	EM2/ME3	24	1	4.2
	EM5/ME7	41	13	31.7
	EM3/ME6	37	7	18.9
	EM1/ME2	31	9	29.0
	EM5/ME10	38	5	13.2
	EM3/ME3	40	7	17.5
	合计 total	872	190	21.8

Tab. 1 Results of SRAP and SSR analyzed in P. haitanensis DH population

标记类型	引物组合	总位点数	多态位点数	多态位点百分率(%)
marker type	primer combination	no. of total loci	no. of polymorphic loci	percentage of polymorphic loci
	Phes02	5	1	20.0
	Phes03	4	1	25.0
	Phes06	11	4	36.4
	Phes07	5	2	40.0
	Phes09	9	3	33.3
	Phes11	8	3	37.5
	Phes12	9	2	22.2
	Phes14	7	1	14.3
SSR	Phes15	13	3	23.1
	Phes17	8	1	12.5
	Phes20	9	2	22.2
	Phes24	10	3	30.0
	Phes28	7	2	28.6
	PH14	4	1	25.0
	PH47	8	3	37.5
	PH49	5	2	40.0
	合计 total	122	34	27.9

・ 续表 1・

39 对 SSR 引物对亲本及 5 个子代株系进行 了引物筛选,结果有 16 对引物扩增出了只一个亲 本中出现,且在子代中呈分离状态的清晰、稳定条 带。将筛选出来的 16 对 SSR 引物对 DH 作图群 体中的 157 个株系进行了遗传分析,共扩增出 122 个位点,其中 34 个位点在亲本中表现为多态 性,并在子代中产生了分离(表 1),即平均每对引 物组合扩增出了 7.63 个位点,其中有 2.13 个位 点为多态性位点,多态位点百分率为 27.9%。

2.2 遗传连锁图谱构建

按"一个位点为一个标记"假设,224个标记

(包括 SRAP 标记 190 个 ,SSR 标记 34 个) 经过卡 方检验,有 67 个标记(包括 SRAP 标记 58 个 ,SSR 标记 9 个)偏离孟德尔分离规律(*P* < 0.05),偏分 离比例为 29.9% 这些偏分离标记不作为遗传图谱 构建的标记(表 2)。符合孟德尔分离规律的 132 个 SRAP 标记和 25 个 SSR 标记经 Mapmaker 3.0 的标记连锁分析,共有 104 个 SRAP 标记和 20 个 SSR 标记构成了 5 个连锁群 2 个 SRAP 标记和 1 个 SSR 标记构成了一个三联体 7 个 SRAP 标记和 1 个 SSR 标记构成了 4 个连锁对 剩下 19 个 SRAP 标记和 3 个 SSR 标记未连锁(表 2)。

分子标记类型 molecular marker type	多态性标记数 no. of polymorphic markers	偏分离标记数 no. of distorted markers	标记偏分离比 rate of distorted markers	形成连锁群(超过 3 个标记) 标记数 no. of linked markers	三联体标记数 no. of unlinked markers in triplets	连锁对标记数 no. of unlinked markers in doublets	未连锁标记数 no. of unlinked singles
SRAP	190	58	30.5%	104	2	7	19
SSR	34	9	26.5%	20	1	1	3
合计 total	224	67	29.9%	124	3	8	22

表 2 分子标记连锁分析结果 Tab. 2 Results of markers linkage analyzed

由 104 个 SRAP 标记和 20 个 SSR 标记构成 的 5 个连锁群总长度为 879.2 cM ,各个连锁群长 度为 134.2 ~ 213.6 cM ,包含标记 18 ~ 31 个(表 3 图 1)。所获得的遗传连锁图谱平均标记间隔 为 7.09 cM ,最大标记间隔为 33.3 cM ,最小标记 间隔为 0.4 cM(表 3 图 1)。

2.3 基因组长度及图谱覆盖率

所构建的坛紫菜遗传连锁图谱观察基因组 长度为 879.2 cM(表4),如果加上三联体和连 锁对的长度,则观察基因组长度为 947.5 cM,而 采用 3 种不同方法计算得到的坛紫菜估计基因 组长度平均为 955.3 cM,由此获得坛紫菜遗传

连锁图谱的基因组覆盖率为 92.0% (只计算 5 联体及 4 个连锁对)。 个连锁群) 或 99.2% (包括 5 个连锁群,1 个三

图1 坛紫菜遗传连锁图谱

括号中斜线左侧为连锁群长度(cM) 右侧为标记数目。连锁群左侧为相邻标记间遗传距离 右侧为标记名称。

Fig. 1 Genetic linkage maps of *P. haitanensis*

Size of the linkage group(before slashes) and the marker number(after slashes) of each group are at the top in parenthesis. Marker names are shown on the right of each group and the adjacent marker spacing is displayed on the left in cM Kosambi.

	Tab. 3 Summary of the genetic linkage map for P. haitanensis									
连锁群	长度(cM)	标记数	平均标记间隔(cM)	最大标记间隔(cM)	最小标记间隔(cM)					
linkage group	length of group	no. of markers	average marker spacing	maximum marker spacing	minimum marker spacing					
1	213.6	31	6.89	26.9	0.4					
2	191.7	24	7.99	33.3	0.7					
3	176.6	26	6.79	19.2	0.7					
4	163.1	25	6.52	21.7	1.2					
5	134.2	18	7.46	15.2	1.4					
合计 total	879.2	124	7.09	33.3	0.4					

表3 坛紫菜遗传连锁图谱各连锁群特征

表4 坛紫菜基因组长度及遗传图谱覆盖率

Tab. 4 G	enome length	and coverage	of genetic	linkage maps	s of P. haitanensi
----------	--------------	--------------	------------	--------------	--------------------

			估计基因组长度(cM) 基因组覆盖			盖率(%)		
	observed ge	nome length	estimated genome length			genome coverage		
	G _{oa}	$G_{\rm of}$	G _{el}	G_{e2}	G_{e3}	G _e	$C_{\rm of}$	Coa
数值 value	879.2	947.5	950.5	953.6	961.8	955.3	92.0%	99.2%

注: G_{of} 指遗传图谱实际长度; G_{os} 指遗传图谱加上三联体及连锁对长度; G_{e} 指 G_{el} , G_{e2} 和 G_{e3} 三种方法估计基因组长度的平均值; C_{of} 和 C_{os} 分别指 G_{of} 和 G_{os} 的基因组覆盖率。

Notes: G_{of} observed total length of the framework map; G_{oa} , the map length based on framework map plus triples and doublets; G_{e} is the average of the estimated genome length G_{e1} , G_{e2} and G_{e3} (see ''Materials and Methods''); C_{of} and C_{oa} are the genome coverage of G_{of} and G_{oa} respectively.

3 讨论

3.1 紫菜遗传连锁图谱的构建

细胞减数分裂过程发生的各种标记的重组交 换是分子遗传图谱构建的基础。但由于紫菜的细 胞小 细胞核的细微结构很难区分 染色体长度只 有 0.5~3.5 μm ,在光学显微镜下很难观察到紫 菜染色体的减数分裂过程 因此长期以来 紫菜减 数分裂发生的时间与位置一直是藻类学家关注和 争论的问题^[19-21]同时也成为紫菜遗传图谱构建 的最大障碍。紫菜叶状体色素突变体的发现及用 颜色作为遗传标记的研究为通过遗传分析推导紫 菜减数分裂发生的确切位置提供了条件^[22], Ohme 等^[23]首先通过色素突变体与野生型进行杂 交试验 阐明了条斑紫菜减数分裂的确切发生位 置是在壳孢子萌发时第一和第二次细胞分裂时 期 这一结论符合细胞学观察的实际^[24],也能解 释紫菜配子体嵌合色素细胞变异的四分子遗传分 析的结果^[25],因此得到了大多数藻类学家的认 同 但由于条斑紫菜属于雌雄同体 很容易发生自 交,且具无性生殖,难以确切追溯子代的来源,故 至今未见其遗传图谱构建的相关报道。最近,严 兴洪等^[26-27]通过坛紫菜的人工色素突变体与野 生型进行的杂交实验推导及细胞学实验观察认为

坛紫菜的减数分裂发生的位置与条斑紫菜一致, 也是在壳孢子萌发时第一和第二次细胞分裂时 期,而且坛紫菜大部分为雌雄异体,很容易发生品 系间杂交,不具无性生殖,在人工调控下,也能发 育为雌雄同体进行自交而培育出纯系,这些特点 为坛紫菜遗传连锁图谱的构建创造了条件。

紫菜遗传图谱构建时存在的另外一个困难就 是杂交子代嵌合体的遗传分析问题,因为坛紫菜 减数分裂发生在壳孢子萌发时的最初两次分裂, 减数分裂完成后壳孢子产生的4个子细胞继续分 裂,最终发育成为2~4块遗传组成不同的镶嵌叶 状体,在缺乏明显标记的情况下,是无法区分同一 叶状体上的各块嵌合体的,因此也就无法对其进 行遗传分析。同样的,色素突变体的应用也就使 得该问题迎刃而解^[22],可以采用不同的颜色特征 作为遗传标记,来区分同一叶状体上的不同嵌合 块,即可对各个嵌合块进行遗传分析。

因此本研究就采用坛紫菜红色型突变体同野 生型杂交,并使杂交子代各嵌合块通过单个体细 胞克隆的丝状体途径^[9]直接发育为二倍体的丝 状体的方法构建了坛紫菜的 DH 作图群体,并通 过 SRAP 和 SSR 双标记分析首次构建了包含5 个 连锁群的坛紫菜分子遗传连锁图谱。尽管5 个连 锁群与坛紫菜体细胞的5条染色体数目相同,但 由于缺少细胞学标记,这些连锁群是否与5条染 色体一一对应以及如何对应,尚无法判断,还有待 于进一步的研究。

3.2 遗传图谱构建中分子标记方法的选择

分子标记方法的选择是遗传连锁图谱构建的 关键,尽管许多分子标记方法(如:RFLP,RAPD, AFLP SSR SRAP 等) 都已在各种动植物的遗传 图谱构建中得到了广泛应用,但不同的标记方法 在遗传图谱构建中仍然存在着各自的优缺点: RFLP 标记具有重复性好、标记为共显性等优点, 但操作复杂,需要大量高质量的DNA; RAPD标 记操作简单,但重复性差; AFLP 标记是遗传图谱 构建中应用最为广泛的分子标记方法 但操作仍 较为繁杂; SSR 标记具有操作简单,多态信息丰 富 标记为共显性等优点 但昂贵的引物开发费用 及在基因组内分布的不均匀在很大程度上限制了 其在遗传图谱构建中的应用; SRAP 标记是一种 兼有以上分子标记优点 同时克服了它们一些缺 点的新型分子标记,其不足之处在于标记主要分 布于编码区 对于基因分布相对较少的着丝粒及 端粒附近区域检测到的机会较低,可能造成所构 建的遗传图谱缩短或出现连锁群断开的现象[11]。 因此许多学者认为采用 SRAP 和 SSR 两种标记 联合进行遗传连锁图谱构建是比较理想的方法, 这样所构建的遗传连锁图谱可以覆盖基因组的大 部分区域,且分布较为均匀^[28-30]。这一点也得到 了本实验结果的证实,采用 SRAP 和 SSR 双标记 构建的坛紫菜的遗传连锁图谱对基因组的覆盖率 达到了 92% ,且标记在遗传图谱上分布均匀 ,平 均标记间隔为 7.09 cM 没用出现明显的聚集和 连锁群断开的现象。

3.3 作图群体及标记偏分离

作图群体的类型对于遗传图谱的构建具有重要的作用,目前用于构建遗传连锁图谱的分离群体主要有 F₂代群体、回交一代群体(BC1)、重组自交系群体(RIL)、加倍单倍体群体(DH)、单粒传系群体(SSD)和近等基因系群体等。由于 RI 群体和 DH 群体中每个株系都是纯合的,自交不分离,是一种永久性的分离群体,可以长期使用, 便于不同实验室合作不断增加遗传连锁图的标记 密度,而且特别适合于 QTL 位点的定位研究,目 前已成为国际上遗传连锁图构建的主流。但由于 RIL 群体的构建需经过多轮自然选择和人工抽 样,作图群体的构建较为麻烦,因此本研究采用 DH 群体作为坛紫菜遗传连锁图谱构建的分离群 体,其遗传结构直接反应了 F₁配子中基因的分离 和重组,作图效率高,而且作为永久群体,DH 群 体可以在不同的环境中生长,便于重复实验,既能 提高 QTL 定位的准确性,也能揭示 QTL 与环境 的相互作用^[31]。

标记偏分离现象在各种作图群体的遗传图谱 构建中普遍存在,在远缘杂交组合的分离群体 DH 中尤为明显^[3]。导致偏分离现象的原因很 多,主要有:(1) 由配子体或孢子体不同发育阶段 基因型的选择所造成;(2) 由小孢子培养和植株 再生过程的选择压造成;(3)由于遗传搭车效应, 与影响偏分离的遗传因子紧密连锁的分子标记表 现为严重的偏分离; (4) 与 F_2 群体相比 DH 群体 中隐性有害基因的选择压增大,很可能导致偏分 离的发生^[32]。此外 非生物因素如取样误差也会 引起偏分离的发生。在本研究中, SRAP 和 SSR 的标记偏分离比率分别为 30.5% 和 26.5% ,明显 高于其它研究中的标记偏分离比例,首先这与坛 紫菜 DH 作图群体本身有害基因纯和造成的选择 压力增大有关。其次取样误差也是造成本研究偏 分离比例明显偏高的一个重要原因,由于杂合丝 状体放散的壳孢子发育而来的 F₁ 代叶状体数量 很多 在研究中不可能对所有的叶状体进行镜检, 并对所有嵌合块进行酶解培养成双单倍体的丝状 体,只能随机抽样。还有镜检嵌合体时,有可能相 同颜色的嵌合块靠在一起 造成无法区分 这些过 程都可能产生取样误差。第三,在对嵌合块进行 酶解并培养为双单倍体的丝状体过程中 ,一部分 酶解细胞无法完成整个发育过程,导致无法获得 相应的丝状体,也是造成偏分离的一个原因。由 于在遗传连锁图谱构建时 标记偏分离不但会影 响相邻标记遗传距离的估计,甚至还会影响连锁 群中标记的排列顺序^[32]在本研究中由于造成偏 分离的原因很多 ,为避免偏分离标记对遗传图谱 构建的影响 因此不把这些偏分离标记作为坛紫 菜遗传图谱构建的标记。

参考文献:

- [1] 严兴洪. 坛紫菜的遗传与育种[M] // 王清印. 海水
 养殖生物的细胞工程育种. 北京: 海洋出版社,
 2007: 314.
- [2] 陈昌生 徐燕 纪德华 等. 坛紫菜品系间杂交藻体

选育及经济性状的初步研究[J].水产学报 2007, 31(1):97-104.

- [3] 方宣钧 ,吴为人 ,唐纪良. 作物 DNA 标记辅助育种[M]. 北京: 科学出版社 2000.
- [4] Rajapakse S. Progress in application of molecular markers to genetic improvement of horticultural crops
 [J]. Acta horticulturae 2003 625(2):29-36.
- [5] USDA (U. S. Department of agriculture). Five years of project of genetic maps of aquaculture species
 [M] // USDA regional peoject Number: NE-186, Duration: October1, 1997-September 30, 2002, USA ,1997.
- [6] 岳志芹,孔杰,戴继勋.水产动物遗传连锁图谱的研究现状及应用展望[J].遗传,2004,26(1): 97-102.
- [7] Li Y, Yang Y, Liu J, et al. Genetic mapping of Laminaria japonica and L. longissima using amplified fragment length polymorphism markers 400-in a "two-way pseudo-testcross" strategy [J]. J Integr Plant Biol 2007 A9(3): 392 - 400.
- [8] Sahoo D , Tang X R , Yarish C. Porphyra-the economic seaweed as a new experimental system [J]. Current Science 2002 83(11):1313-1316.
- [9] 曾庆国 刘必谦 杨锐,等.坛紫菜单个体细胞克隆 的丝状体途径[J].中国水产科学,2004,6(11): 549-553.
- [10] Joseph S , David W R. Molecular cloning: a laboratory manual-3rd ed [M]. New York: Cold Spring Harbor Laboratory Press 2001.
- [11] Li G , Quiros C F. Sequence-related amplified polymorphism(SRAP) ,a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet , 2001 ,103(2):455-461.
- [12] Xie C T Chen C S Ji D H et al. Characterization, Development and exploitation of EST-derived microsatellites in *Porphyra haitanensis* Chang et Zheng (Bangiales, Rhodophyta) [J]. Journal of Applied Phycology 2009 21(2): 367 - 374.
- [13] Zuo Z H ,Wang C G ,Cao X H ,et al. Isolation and characterization of microsatellite loci from a commercial cultivar of Porphyra haitanensis [J]. Molecular Ecology Notes 2006 7(3): 522 - 524.
- [14] 谢潮添 陈昌生 纪德华 等. 坛紫菜 SRAP 分子标 记体系的构建及种质材料的遗传分析 [J]. 自然科 学进展 2008 ,18(3): 247 - 253.
- [15] 刘仁虎 孟金陵. MapDraw 在 Excel 中绘制遗传连 锁图的宏[J]. 遗传 2003 25(3):317-321.

- [16] Fishman L ,Kelly A J ,Morgan E ,et al. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions [J]. Genetics , 2001 , 159 (4): 1701 – 1716.
- [17] Chakravarti A ,Lasher L K ,Reefer J E. A maximumlikelihood method for estimating genome length using genetic linkage data [J]. Genetics ,1991 ,128 (1): 175 - 182.
- [18] Cervera M T, Storme V, Ivens B, et al. Dense genetic linkage maps of three populus species (*Populus deltoides*, *P. nigra* and *P. trichocarpa*) based on AFLP and microsatellite markers [J]. Genetics 2001,158(2):787-809.
- [19] 徐姗楠,马家海,何培民.紫菜的减数分裂[J].海 洋科学 2007 31(7):76-80.
- [20] 王娟 戴继勋 张义听,等.紫菜减数分裂的研究现 状及展望[J].中国海洋大学学报(自然科学版), 2006,36(3):377-380.
- [21] 王娟,戴继勋,张义听,等.紫菜的生殖与生活史研究进展[J].中国水产科学,2006,13(2): 322-327.
- [22] 张海波 候和胜.紫菜色素突变体研究进展 [J].生物技术通讯 2007 ,18(2):353 356.
- [23] Ohme M ,Kunifuji Y ,Miura A. Cross experiments of the color mutants in *Porphyra yezoensis* Ueda [J]. Jap J Phycol ,1986 34: 101 - 106.
- [24] Akio S , Kagayaki M , Masahiro K , et al. Identification of Porphyra yezoensis (Rhodophyta) meiosis by DNA quantification using confocal laser scanning microscopy [J]. J Appl Phycol ,2008 ,20 (1):83-88.
- [25] Ohme M ,Miura A. Tetrad analysis in conchospore germlings of *Porphyra yezoensis* (Rhodophyta, Bangiales) [J]. Plant Sci ,1988 57(2):135-140.
- [26] Yan X H ,Li L ,Agura Y. Genetic analysis of the position of meiosis in *Porphyra haitanensis* Chang et Zheng(Bangiales ,Rhodophyta) [J]. J Appl Phycol , 2005 ,17(6):467-473.
- [27] 严兴洪,何亮华,有贺佑胜.坛紫菜的细胞学观察 [J].水产学报 2008 32(1):131-137.
- [28] Ahmad R Potter D ,Southwick S M. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers [J]. J ASHS, 2004, 129: 204-210.
- [29] Lin Z , He D , Zhang X , et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP , SSR and RAPD [J]. Plant

Breeding 2005 ,124(2): 180 - 187.

- [30] Levi A ,Thomas C E ,Trebitsh T ,et al. An extended linkage map for watermelon based on SRAP ,AFLP , SSR ,JSSR ,and RAPD markers [J]. J ASHS ,2006 , 131(3): 393 - 402.
- [31] Forster B P ,Thomas W T B. Doubled haploids in genetics and plant breeding [J]. Plant Breed Rev ,

 $2005 \ 25:57 - 88.$

[32] Haitham S, Hamed K, Luke R, et al. Segregation distortion in doubled haploid lines of barley (*Hordeum vulgare* L.) detected by simple sequence repeat(SSR) markers [J]. Euphytica 2002,125(2): 265 - 272.

Construction of a genetic linkage map for Porphyra haitanensis

XU Yan^{1 2}, XIE Chao-tian², CHEN Chang-sheng², JI De-hua², GAO Ya-hui^{1*} (1. School of Life Sciences Xiamen University Xiamen 361005 China;

2. College of Fisheries "Jimei University "Xiamen 361021 "China)

Abstract: Porphyra haitanensis is an important economic marine crop in south China. The development of the *P. haitanensis* cultivation is highly desirable to select or breed new lines of *P. haitanensis* with strong economic traits and use them for cultivation. Molecular markers and molecular genetic maps are prerequisites for molecular breeding in any plant species. A comprehensive genetic linkage map for cultivated P. haitanensis has not yet been constructed. In this study 157 double haploid (DH) lines [derived from a YS III (wild-type) × RTPM (red-type artificial pigmentation mutant) cross]were used as a mapping population in P. haitanensis. A total of 100 pairs of sequence-related amplified polymorphism(SRAP) primers and 39 pairs of simple sequence repeat(SSR) primers were used to detect polymorphisms between the two parents and 5 DH lines. Twenty-four SRAP and 16 SSR polymorphic primer pairs were selected to analyze the DH population. A linkage genetic map comprising 104 SRAP markers and 20 SSR markers in five linkage groups with a total length of 879.2 cM and an average of 7.09 cM between markers was constructed. The linkage groups comprised 18 – 31 markers ranging in length from 134.2 to 213.6 cM. The estimated genome length of P. haitanensis was 955.3 cM, with a coverage of 92.0% coverage. This is the first report of a comprehensive genetic map in *P. haitanensis*. The map presented here will provide a basis for the development of high-density genetic linkage maps , which will facilitate QTL mapping of desirable traits and provide markers for MAS map-based cloning of genes and the introgression of beneficial genes from wild species into modern cultivars in P. haitanensis.

Key words: *Porphyra haitanensis*; genetic linkage map; sequence-related amplified polymorpyism (SRAP); simple sequence repeat(SSR); DH population

Corresponding author: GAO Ya-hui. E-mail: ctxie@126. com