Aug. 2011

文章编号:1006-3471(2011)03-0300-06

吸附物种在金纳米电极上的表面扩散

苏宝法,王 玮,詹东平*,任 斌,田中群

(厦门大学 固体表面物理化学国家重点实验室、化学化工学院化学系, 福建 厦门 361005)

纳米电极不仅具有优良的传质特性,在电极 过程动力学和电化学微体系研究中已被广泛应 用^[14] 而且具有明显的纳米效应: 当表面扩散层 厚度接近其双电层厚度时,双电层的性质将对电 子的转移速率和稳态极限电流产生显著影响^[5-8]. 而它的表观几何尺寸 则对纳米电极/溶液界面的 结构以及反应特性具有十分重要的作用.在电化 学研究中 通常根据经典氧化还原电对(三氯六氨 合钌或者二茂铁衍生物)的稳态极限电流计算纳 米电极的几何尺寸,该法与由电镜测定的结果无 明显差别(r>20 nm 时)^[9]. 然而 在研究法拉第吸 附、电催化和电沉积等电化学界面现象时,却需要 精确探明电极的真实表面积,即有效活性面积,因 为这些界面现象所涉及的界面吸附、吸附物种的 表面扩散、位交换、溢流和反溢流、新相生长等过 程 对于阐释纳米催化剂的催化机理和金属电沉 积初始阶段的电化学特性具有重要意义^[10-1].例 如,当固体表面存在化学势梯度场以及扩散物质 的浓度变化或样品表面的形貌变化时,吸附物种 就会发生表面扩散. 作者率先研究了铂纳米电极 上的氢吸附行为^[10] 根据欠电势吸附氢原子的积 分电量,计算得到的"真实表面积"竟高出由经典 氧化还原电对计算的表观面积几个数量级,说明 了在铂纳米电极/溶液界面上生成的氢吸附原子 会沿着铂表面发生明显的扩散;而且,计时电量法 还同时表明吸附氢原子在 Pt/SiO, 界面存在着溢 流和反溢流现象,其中溢流是自发过程,但反溢流 过程则要求一定的过电位,这在传统的双层区产 生了一个表征吸附氢原子的脱附峰.本文应用激 光加热拉伸法制备金纳米电极,研究了非金属物 种(氧、碘)在金纳米电极表面的吸附以及金属物 种(铅、铜)在金纳米电极表面的欠电势沉积行为, 同时观察到了吸附物种在该电极上的表面扩散.

- 1 实 验
- 1.1 试 剂

甲醇二茂铁(FcMeOH),三氯六氨合钌(Ru (NH₃)₆Cl₃)硫酸(H₂SO₄)硫酸铜(CuSO₄) 盐酸 (HCl),高氯酸铅(Pb(ClO₄)₂),氯化钾(KCl),碘 化钾(KI),高氯酸(HClO₄),高氯酸钠(NaClO₄), 氯化铁(FeCl₃),以上均为分析纯或其以上品级. 水溶液使用超纯水(18.2 M $\Omega \cdot cm^{-1}$,Milli-Q,Millipore Co.)配制.

1.2 金纳米电极制备

将 25 μm 的 Au 丝放入玻璃毛细管(ID 0.2 mm,OD 1 mm,length 10 mm) 中部,由 P-2000 玻璃 电极拉制仪(Sutter Co.)制备纳米电极:即在抽真 空条件下 利用激光加热将 Au 丝包封在玻璃毛细管中部,并于加热的同时拉断玻璃毛细管,形成纳 米级尖端. 然后在视频监视器的监测下,用精细磨 针仪(Micro Grinder EG-400)小心打磨,得到盘状 金纳米电极.

收稿日期: 2011-03-30,修订日期: 2011-06-09 * 通讯作者, Tel: (86-592) 2185797, E-mail: dpzhan@ xmu. edu. cn 国家自然科学基金(No. 20973142), NSFC-NSF 中美化学领域合作项目(No. 21061120456), 国家自然科学基金委界面电化 学创新群体(No. 21021002)资助

图 1 金纳米电极的光学显微照片(a)及同一电极在 1 mmol/L FcMeOH (b),Ru(NH₃)₆Cl₃(c)和 FeCl₃(d)溶液中的 循环伏安曲线(扫描速率: b. 20 mV • s⁻¹; c. 20 mV • s⁻¹; d. 500 mV • s⁻¹)

Fig. 1 Optic photograph of a gold nanoelectrode (a) and cyclic voltammograms of the same gold nanoelectrode in 1 mmol/L FcMeOH (b), Ru(NH₃)₆Cl₃(c) and FeCl₃(d), respectively scan rate: b. 20 mV \cdot s⁻¹; c. 20 mV \cdot s⁻¹; d. 500 mV \cdot s⁻¹

1.3 循环伏安研究

电化学实验使用 PARSTAT 2273 恒电位仪 (Ametek Co.).电解池置于接地良好的屏蔽箱中 以降低噪音干扰.两电极体系,以金纳米电极为工 作电极,饱和甘汞电极(SCE)或 Ag 丝为参比电 极.实验前溶液通 N₂ 除氧,实验过程保持 N₂ 气 氛.对于吸脱附体系,由于法拉第吸脱附电流与扫 描速率成正比,因此实验过程中均取较高的扫描 速率以提高测量的信噪比.

2 结果与讨论

2.1 金纳米电极的循环伏安表征

图1给出金纳米电极的光学显微照片(a)及 FcMeOH(b),Ru(NH₃)₆³⁺(c)和Fe³⁺(d)在同一 金纳米电极上的循环伏安曲线.可以看出,各CV 扫描(b~d)都呈现良好的稳态极化特征,而且经 过精细打磨后的金纳米电极,其几何形状近于圆 盘状^[1243],故可利用圆盘电极的稳态极限电流计 算纳米电极的表观几何半径:

$$i_{ss} = 4nFDCa$$

式中 i_{ss} 为稳态极限电流 ,n 为反应电子数 ,F 为法 拉第常数 D 为反应物的扩散系数 ,C 为反应物浓 度 ,a 为电极半径.依据 FcMeOH 的扩散系数为 7.8×10⁻⁶ cm²/s^[14],算得该电极的表观几何半径 为 166 nm.并且由此计算出 Ru(NH₃)₆Cl₃和水合 Fe³⁺的扩散系数分别为 6.9×10⁻⁶ cm²/s 和4.2× 10⁻⁶ cm²/s ,与文献报道的 6.3×10⁻⁶ cm²/s (Ru (NH₃)₆³⁺)^[12]和 4.5×10⁻⁶ cm²/s (Fe³⁺)^[15]基本 一致 表明本测算方法可靠.又从图 1 可见 在 3 种 氧化还原电对的 CV 曲线上(b~d) 均未出现电极 材料和包封玻璃界面薄层溶液相的特征电流峰 , 表明该电极无漏液^[10,16].本文后续实验所用的金 纳米电极若无特别说明,均以 Ru(NH₃)₆³⁺为基准 物,快速伏安扫描表征,确保金纳米电极不漏液 , 然后根据稳态极限电流计算其表观几何半径.

2.2 氧在金纳米电极上的吸附和表面扩散

实验表明在完全去除溶解氧的 0.5 mol/L 硫 酸溶液中,氧吸附物种在金纳米电极表面的吸脱 附行为与一般宏观尺度的金电极基本一致(见图 2),说明该金纳米电极表面也呈现多晶面共存的

(1)

统计特征. 据式(1) 计算,该电极的表观几何半径 为77 nm ,表观几何面积 18617 nm². 而氧吸附物种 在金电极上的饱和吸附量为 386 μC•cm^{-2[17]},依 照氧脱附的积分电量 2.75×10⁻¹¹ C,计算得出该 金电极表面的粗糙因子为 376. 如此大的表面粗糙 度是不可能的,唯一合理的解释就是氧吸附物种 在金电极表面的扩散,这在 Tu 等人的粉末微电极 研究中得到过证实^[11].在金纳米电极/电解质溶液 界面反应区,氧吸附物种的表面浓度远大于毗邻 金表面区域,形成一个动态的浓度梯度,氧吸附物 种沿着金表面扩散,其毗邻的区域即称扩散区;又 因该纳米电极金属丝的尖端随着实验的进行迅速 由纳米尺度增加到微米尺度,其表面能量的不均 一性,也加剧了吸附原子表面扩散的深度.

图 2 金纳米电极在 0.5 mol/L H₂SO₄ 溶液中的循环 伏安曲线(扫描速率: 1 V/s ,电极表观几何半 径 77 nm)

Fig. 2 The cyclic voltammogram of the gold nanoelectrode in 0.5 mol/L $\rm H_2SO_4$ scan rate: 1 V/s the apparent radius of the electrode was 77 nm

2.3 碘在金纳米电极上的吸附和表面扩散

图 3 给出金纳米电极在 1 mmol/L KI (a) 和 FcMeOH (b) 溶液中的循环伏安曲线. 据图,可从 其稳态极限电流分别计算电极的表观半径,依次 为 17.2 nm (a) 和 17.3 nm (b). 二者基本一致, 表明相关电子转移反应只在金纳米电极/溶液界 面发生. 将经过 I₂/I⁻氧化还原处理之后的金纳米 电极经超纯水冲洗干净,转移到 0.1 mol/L 的高氯 酸溶液中,从双层区开始作阳极扫描,在氧吸附区 观察到 1 个明显的氧化峰,第 2 周以后伏安行为则 趋于稳定(c).可以认为第1周和第2周氧吸附区

图 3 同一金纳米电极在 1 mmol/L 的 KI (a) 或 Fe-MeOH (b) 溶液中及该电极经过吸附碘预处理 后在 0.1 mol/L 高氯酸中(c) 的循环伏安曲线

Fig. 3 Cyclic voltammograms of the same gold nanoelectrode in different solutions a. 1 mmol/L KI 20 mV \cdot s⁻¹; b. 1 mmol/L Fc-MeOH 20 mV \cdot s⁻¹; c. 0. 1 mol/L HClO₄ ,the electrode was pretreated in 1 mmol/L KI to accumulate the faraday adsorptive I₂ ,500 mV \cdot s⁻¹

的电量差是由吸附的 I_2 引起的,单位面积的 I_2 氧 化成碘酸所需电量为500 μ C • cm^{-2[18]},若根据 由 I_2 氧化成 IO_3^- 所消耗的电量,即可计算吸附 I_2 所占据的面积为 3.4 × 10⁴ nm²,由该面积得到的粗 糙因子为 36,表明吸附的碘原子在金电极表面有 扩散.

Fig. 4 Cyclic voltammograms of the gold nanoelectrode in 1 mmol/l Ru(NH₃) ₆Cl₃(a) and the typical cyclic voltammogram of Pb UPD on the same gold nanoelectrode (b)

scan rate: a. 20 mV \cdot s⁻¹ b. 200 mV \cdot s⁻¹; eletrolyte: b. 1 mmol/L Pb(ClO₄) ₂ + 0. 1 mol/L HClO₄; the apparent radius of the electrode: 77 nm

表1 根据不同方法估算的金纳米电极的粗糙因子

Tab. 1	Rough factor (RF) of the gold nanoelectrode
	estimated based on different methods

	RF1	RF2	RF3
Kadius/nm	($S_{\rm oad}$ / $S_{\rm geo}$)	($S_{\rm Cu~UPD}/S_{\rm geo}$)	($S_{\rm Pb~UPD}$ / $S_{\rm geo})$
16	459	366	314
62	435	205	218
77	385	134	136

2.4 铅在金纳米电极上的欠电势沉积

金属欠电势沉积本质上是金属原子在电极表面上的电化学吸脱附行为^[19].为进一步确认纳米 金电极吸附原子的表面扩散现象,本文同时研究 了铅在金纳米电极表面的欠电势沉积,其典型循 环伏安曲线如图 4b 所示,与文献报道的基本符 合^[20].根据铅在金电极上的饱和吸附浓度(300 μ C·cm^{-2[21]})以及铅脱附的积分电量,算出该电 极的活性面积为 2.6×10⁶ nm².又从图 4a 可得该 电极的表观半径为 77 nm 粗糙因子为 136 ,说明欠 电势沉积的铅在金电极表面也存在表面扩散.

同法,发现在金纳米电极上欠电势沉积的铜 也有表面扩散.表1列出根据氧吸附和铜、铅欠电 势沉积电量计算的粗糙因子.显示该电极活性面 积竟比表观面积高出数百倍,说明这些表面吸附 物种在金纳米电极表面发生了显著的表面扩散, 这与作者在铂纳米电极上的研究结果一致^[10].

以上结果表明,从经典的氧化还原电对看,如 二茂铁的衍生物、六氨合钌以及水合铁离子等,因

其离子半径很大(360~422 pm),很难渗透到玻璃 包封层的内部,故而没有薄层电解的特征电流峰 出现^[22].另一方面 这些氧化还原电对在金电极表 面不发生吸附,从而极化时也不会产生吸附电流. 但对具有表面吸附行为的原子或小分子,如氧、碘 以及欠电势沉积的铅等都会表现出非常奇异的特 征 即由吸脱附电量计算的活性表面积远大于根 据式(1) 计算的表观几何面积. 这是因为在极化的 电极/溶液界面发生法拉第吸附反应时,其反应界 面与毗邻的金表面之间也伴随着出现了吸附物种 的表面浓度梯度 这是吸附物种表面扩散的驱动 力;另一方面,金电极的表面状态(晶格缺陷或台 阶) 以及金表面与吸附原子的相互作用(位交换) 等也会促使吸附原子自发地迁移至能量最合适的 位点^[23].这些因素共同促使吸附原子在金纳米电 极表面发生扩散 其中氢、氧物种甚至会发生溢流 和反溢流现象^[10].

3 结 论

应用激光拉制法制备的金纳米电极,其电极 半径与由不同氧化还原电对稳态极限电流和相关 公式计算得出的基本一致,而且对应的循环伏安 曲线未出现薄层溶液的特征电流峰.表明利用稳 态伏安法测算纳米电极尺寸的方法是可靠的,即 电极包封良好.在保证电极不漏液的前提下,研究 法拉第吸附的氧、碘以及欠电势沉积的铅,发现吸 附原子在纳米电极表面都存在显著的扩散,导致 依据吸附原子吸脱附电量算出的活性面积要远大 于其几何面积.况且,随着纳米电极尺寸的减小, 其由氧吸脱附方法算得的粗糙因子越大,同时也

比由铜、铅欠电位法所得的结果明显增大. 深入的 实验和理论研究正在进行中.

参考文献(References):

- Watkins J J ,Chen J ,White H S ,et al. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions [J]. Anal Chem , 2003 ,75(16) : 3962-3971.
- [2] Sun P ,Mirkin M V. Kinetics of electron-transfer reactions at nanoelectrodes [J]. Anal Chem 2006 ,78(18): 6526-6534.
- [3] Wightman R M. Probing cellular chemistry in biological systems with microelectrodes [J]. Science ,2006 ,311 (5767):1570-1574.
- [4] Sun P ,Laforge F O ,Abeyweera T P ,et al. Nanoelectrochemistry of mammalian cells [J]. PNAS ,2008 ,105 (2):443-448.
- [5] Morris R B ,Franta D J ,White H S. Electrochemistry at platinum bane electrodes of width approaching molecular dimensions: breakdown of transport equations at very small electrodes [J]. J Phys Chem ,1987 91(13): 3559– 3564.
- [6] Smith C P ,White H S. Theory of the voltammetric response of electrodes of submicron dimensions. Violation of electroneutrality in the presence of excess supporting electrolyte [J]. Anal Chem ,1993 ,65(23): 3343-3353.
- [7] Sun Y ,Liu Y ,Liang Z ,et al. On the Applicability of conventional voltammetric theory to nanoscale electrochemical interfaces [J]. J Phys Chem C ,2009 ,113 (22):9878-9883.
- [8] Liu Y ,He R Zhang Q ,et al. Theory of electrochemistry for nanometer-sized disk electrodes [J]. J Phys Chem C , 2010 ,114(24): 10812-10822.
- [9] Agyekum I ,Nimley C ,Yang C X ,et al. Combination of scanning electron microscopy in the characterization of a nanometer-sized electrode and current fluctuation observed at a nanometer-sized electrode [J]. J Phys Chem C 2010 ,114(35) : 14970-14974.
- [10] Zhan D ,Velmurugan J ,Mirkin M V. Adsorption/desorption of hydrogen on Pt nanoelectrodes: Evidence of surface diffusion and spillover [J]. J Am Chem Soc , 2009 ,131(41): 14756–14760.
- [11] Tu W Y ,Liu W J ,Cha C S ,et al. Study of the powder/ membrane interface by using the powder microelectrode technique I. The Pt-black/Nafion (R) interfaces [J]. Electrochimica Acta ,1998 ,43(24): 3731-3739.
- [12] Shao Y H Mirkin M V Fish G et al. Nanometer-sized

electrochemical sensors [J]. Anal Chem, 1997, 69 (8):1627-1634.

- [13] Katemann B B Schuhmann W. Fabrication and characterization of needle-type Pt-disk nanoelectrodes [J]. Electroanalysis 2002 ,14(1):22-28.
- [14] Velmurugan J, Sun P, Mirkin M V. Scanning electrochemical microscopy with gold nanotips: the effect of electrode material on electron transfer rates [J]. J Phys Chem C 2009, 113(1): 459-464.
- [15] Benari M D ,Hefter G T. Electrochemical characteristics of the iron(III) /iron(II) system in dimethyl sulfoxide solutions [J]. Electrochim Acta ,1991 ,36 (3-4):471-477.
- [16] Cha C S(查全性). Introduction to the kinetics of rlectrode processes(电极过程动力学导论) [M]. Beijing: Science Press 2002: 345-376.
- [17] Bard A J ,Faulkner L R. Electrochemical methods: fundamentals and applications [M]. New York: John Wiley & Sons Inc 2001: 167-167.
- [18] Rodriguez J F Mebrahtu T Soriaga M P. Determination of the surface area of gold electrodes by iodine chemisorption [J]. J Electroanal Chem Interfacial Electrochem ,1987 233(1/2):283-289.
- [19] Sanchez-Sanchez C M ,Vidal-Iglesias F J ,Sollak-Gullon J ,et al. Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods [J]. Electrochimica Acta , 2010 55(27): 8252-8257.
- [20] Henderson M J ,Bitziou E ,Hillman A R ,et al. Lead underpotential deposition on polycrystalline gold electrode in perchloric acid solution—a combined electrochemical quartz crystal microbalance and probe beam deflection study [J]. Journal of the Electrochemical Society 2001 ,148(3) : E105-E111.
- [21] Liu Y ,Bliznakov S ,Dimitrov N. Comprehensive study of the application of a Pb underpotential deposition-assisted method for surface area measurement of metallic nanoporous materials [J]. J Phys Chem C ,2009 ,113 (28):12362-12372.
- [22] Velmurugan J Zhan D P ,Mirkin M V. Electrochemistry through glass [J]. Nature Chemistry 2010 2(6):498– 502.
- [23] Zhou S M(周绍民). Metal electrodeposition-priciples and methods(金属电沉积-原理与研究方法) [M]. Shanghai: Sinence and Technology Press, 1987: 197-242.

Surface Diffusion of Adsorptive Species on Gold Nanoelectrodes

SU Bao-fa , WANG Wei , ZHAN Dong-ping* , REN Bin , TIAN Zhong-qun

(State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China)

Abstract: Gold nanoelectrodes were prepared successfully by a programmed laser puller. The Faraday adsorptions of oxygen and iodine and the underpotential deposition of lead on the gold nanoelectrodes were investigated. The results showed that the active areas of nanoelectrodes were dramatically higher than their appearant geometry areas which is caused by the surface diffusion of adsorptive species from the nanoscale gold/electrolyte interface to the adjacent gold surface.

Key words: gold nanoelectrodes; Faraday adsorption; underpotential deposition; surface diffusion