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Abstract In realtime embedded systems, due to race conditions, synchronization order of operations
to the shared variables or shared resource during the multiple tasks may be different from one
execution to another. This may cause abnormal behaviors of systems. In order to detect the possible
race conditions and analyze the impacts of race conditions effectively in reat time embedded systems, a
formal model of execution sequences and operation events are presented according to the timing
behaviors and execution characteristics of real-time embedded systems. T heir characteristics are also
discussed. Based on the execution sequence model, race conditions including message races and
semaphore races in real time embedded systems are described formally and precisely. And then, a new
race set is presented to describe and store race conditions in systems. It includes the information of
happened before relations and race synchronization relations among the operation events which have
races. With the race set generated, a race condition graph is constructed to visualize the race
conditions. It is also used to predict the potential race synchronization relations of systems. The case
study shows that the approach proposed can be used to analyze and predict efficiently the potential race
synchronization relations as well as the different execution situations and results of realtime embedded

systems.
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Research Background

The nom determinacy of task scheduling and the uncertainty of external environment cause race conditions in reat time
embedded systems. Race conditions make synchronization order of operations to the shared variables or shared resource during
multiple tasks be different from one execution to another. This may cause abnormal behaviors of systems, such as deadlock,
timing errors, etc. M any static and dynam ic approaches have been proposed to analyze and detect race conditions in parallel and
concurrent programs. These approaches usually use space time diagrams to describe system executions and analyze race
conditions. However, space time diagram is not formal enough to store, visualize and compute race conditions. In this paper, a
kind of race set and race condition graph are presented to assist users in analyzing race conditions in real time embedded
systems. The race set includes the information of happened before relations and race synchronization relations among the
operation events which have races. The race condition graph is constructed to visualize the race conditions. It is also used to
predict the potential race synchronization relations of systems. The approach proposed can be used to predict the potential
execution situations and results of reat time embedded systems and other kinds of concurrent programs efficiently. Our work is
supported by the National Natural Science Foundation of China ( No. 60753001) and the Financial Support Program from the

Chinese Ministry of Education for New Century Talented Persons.
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