brought to you by 🗓 CORE

Vol. 43 No. 4

Jul. 2004

厦门大学学报(自然科学版)

第43卷 第4期 2004年7月

Journal of Xiamen University (Natural Science)

文章编号:0438-0479(2004)04-0483-04

球微腔介质的回廊模近似解

磊.蔡志平 张

(厦门大学物理学系,福建厦门 361005)

摘要:从球对称边界条件出发,分别讨论微球内部光场的两类重要的传播模式——横电场(TE)和横磁场(TM)回 廊模(WGMs),并导出其对应的特征方程.运用大球近似下的特征方程解,计算低阶 WGMs 模的谐振波长,很好地解 释掺铒氟化物玻璃微球中所观察到的发射光谱.

关键词:回廊模;掺铒氟化物玻璃;微球;特征方程近似解

中图分类号: O 443; TN 248

文献标识码:A

微球对光的限制效应和存储光能的能力在量子 电动力学和光学中都有提到.在所有几何形谐振腔 中.微米级的球形谐振腔在长时间存储能量方面是 最好的[1].对于吸收系数较小的介电微球,它对光 的限制效应就是一种微腔效应,进入微腔内部的入 射光、微腔内部发射的荧光或散射光中的一部分,可 在微球内表面形成连续全内反射。从几何光学看,光 束沿内表面传播一周后,光束又返回到它的起始位 置且相位相同,从而形成光学共振,这些光束要满足 一定的频率(它与球的尺寸及折射率等因素有关)オ 能在微球内部形成共振,这称为回廊模 WGMs.存 在于这个共振模中的能量要经过很长的时间才会泄 漏出微球,这使得共振模中有非常大的能量密度,许 多光学效应在这个模中得到加强^[2].由于回廊模谐 振腔具有高 Q 值和小的模体积,它是一项很有用的 技术,因此在光频率区域内,回廊模的数量被大幅度 减少并且真空中的振幅能够得到明显的修正. WGM 谐振腔对于量子力学体系中的光子控制装置 的设计有着巨大的潜力,例如零阈值激光器、光子光 学双稳态装置和辐射场的 OND 装置^[3]. 本文通过 球的边界条件对微球进行分析,得到微球的回廊模 公式.再从回廊模理论公式出发,计算低阶 WGMs 模的谐振波长,与实验数据进行比较.

基金项目:国家自然科学基金(69878023,60277026)和 福建省重大基金 (2002F011) 资助 作者简介:.张磊(1982-),男,硕士研究生.

球内的回廊模 1

选取半径为,折射率为 n 的介电微球,并且是 大球(即 ≫ 的球).对于这样的球,它的光场强度 的峰值和它的结构是有关的,本文主要考虑的是 TE 模. 微球和光波之间最重要的参量是尺寸参量 x =k , k 指真空中的波数. 由于光照射微球会产生反 射和折射,此时,散射波和球内波在 r = 面上连 续,可得到 TE 模的边界方程^[4]:

$$\frac{nj_{-l}(nx)}{j_{l}(nx)} = \frac{n_{-l}(x)}{n_{l}(x)}$$
(1)

或
$$\frac{nJ(nx)}{J(nx)} = \frac{Y(x)}{Y(x)}$$
 (2)

式中, n为折射率, $= l + \frac{1}{2}$,它是由于把球贝塞耳 函数 j_l 和球诺伊曼函数 n_l 换成对应的柱函数出现 的,它可以被视为总角动量.

如果一束波数为 nk 的光在球的内表面反射,则 它的角动量 = $nk \sin = nx \sin$,由于满足全反 $\left[\frac{1}{n},1\right]$,因此 nx 射条件,所以 sin x,我 们可以定义一个变量 $\mu = \frac{1}{x} (n)$ 1),而且对于 低阶的共振,可认为 / nx - / 是一个非常小的值, 这个值大约是和 ¹ 成比例的,所以引入一个参量 z.它满足

$$nx = + z^{\frac{1}{3}}$$
(3)

$$Rightarrow Rightarrow Right$$

收稿日期:2003-05-21

$$\frac{2^{\frac{2}{3}}}{A_{i}} \left(-\frac{2^{\frac{1}{3}}}{z} \right) \left[1 + \frac{g_{k}(z)}{\int_{x=0}^{2^{\frac{2}{3}k}} \right]$$
(4)
$$Y(x) \sim -\frac{\exp \left[\frac{(z-\tanh)}{\sqrt{\frac{1}{2}}} + \tanh \right]}{\sqrt{\frac{1}{2}} - \tanh } \cdot \frac{1}{\sqrt{\frac{1}{2}} - \tanh - \frac{1}{2^{\frac{1}{2}}}}$$
(5)

其中, $\cosh = \mu$, A_i 是 Airy 函数, f_k , g_k , μ_k 是多项 式.

把上述方程(4)和(5)代入式(2),且把文献[5] 中表达式(9.3.12),(9.3.27)代入式(2),由于主要 考虑第1项,通过化简得出

$$n \frac{J(nx)}{J(nx)} \sim - n(\frac{2}{3})^{\frac{1}{3}} A_i (-2^{\frac{1}{3}}z) / A_i(-1)^{\frac{1}{3}}$$

$$\frac{Y(x)}{Y(x)} \sim -/\sinh / = -(\mu^2 - 1)^{\frac{1}{2}}$$
(7)

当 → ,µ为一定值时,由于 $n(\mu^2 - 1)^{\frac{1}{2}}$ 是有限的,可知

$$A_i(-2^{\frac{1}{3}}z) = o(-\frac{1}{3}) \rightarrow 0$$
 (8)

 也就是说
 (9)

 $-2^{\frac{1}{3}}z = -i + o(-\frac{1}{3})$
 (9)

 把式(9) 代入式(3),得
 (1)

 $nx = -2^{-\frac{1}{3}}i^{\frac{1}{3}} - o(1)$
 (10)

 从上式可以看出,光围绕一个半径为
 的球一

周所走过的路程 2 可以看成是球内的波长 n 的 整数倍, 即 2 = $l(\frac{1}{n})$, 其中 l 和 的差值可被视为 在 o(1) 中.

现在考虑高阶近似项,把方程(9) 写成

$$2^{\frac{1}{3}}z = - i - c_j^{-\frac{j}{3}}$$
(11)

如果知道 c_j , 就可以知道后面的近似项, 对 $A_i(-2^{\frac{1}{3}}z)$ 进行级数展开:

$$A_{i}(-2^{\overline{3}}z) = A_{i}(-i+) = - A_{i}(-i) + (-2^{2}/2)A_{i}(-i) + ...,$$
(12)

其中上式的 就是式(11)中的后面一项
现在扩大式(4)到
$$k = 0$$
的项,则
 $n \frac{J(nx)}{J(nx)} \sim n$.

$$\frac{(2)^{\frac{2}{3}}A_{i}(-2^{\frac{1}{3}}z) + \frac{2^{\frac{1}{3}}}{\frac{4}{3}}A_{i}(-2^{\frac{1}{3}}z)(\frac{3}{5}z^{3}-\frac{1}{5})}{(2)^{\frac{1}{3}}A_{i}(-2^{\frac{1}{3}}z) + \frac{2^{\frac{2}{3}}}{2}A_{i}(-2^{\frac{1}{3}}z)(-\frac{1}{5}z)}$$
(13)

而

$$\cosh = \frac{1}{x} = \frac{n}{1 + 2^{-\frac{1}{3}} - \frac{2}{3}} (14)$$

由于式(13)和(14)相等,再通过比较系数可知

$$c_{1} = 2^{\frac{1}{3}} \frac{n}{(n^{2} - 1)^{\frac{1}{2}}}, \quad c_{2} = -\frac{3}{10} 2^{-\frac{1}{3}} \frac{2}{i}$$

$$c_{3} = \frac{n}{(n^{2} - 1)^{\frac{3}{2}}} (\frac{8}{5} n^{2} - \frac{3}{5})_{i},$$

则得到了对于一个折射率为 n 的微球的回廊模特征 方程近似解为

$$nx_{l,i} = -2^{-\frac{1}{3}} \frac{1}{i^{\frac{1}{3}}} - \frac{p}{(n^{2} - 1)^{\frac{1}{2}}} + \frac{(\frac{3}{10}2^{-\frac{2}{3}})}{(10^{2} - \frac{1}{3})^{\frac{1}{2}}} - 2^{-\frac{1}{3}} \frac{p}{(n^{2} - 1)^{\frac{3}{2}}} - \frac{(\frac{8}{5}n^{2} - \frac{3}{5})}{(n^{2} - \frac{2}{3})^{\frac{1}{3}}} + o(-1)$$
(15)

式中, $= l + \frac{1}{2}$,对于 TE模, p = n;对于 TM 模, $p = \frac{1}{n}$.其中 ;是 Airy函数的解, $_1 = -2.338$, $_2 = -4.088$, $_3 = -5.521$.

2 结果分析

在文献[6]中Lam有关于折射率为 n的微球的 回廊模特征方程近似解,它的结果为:

$$nx_{l,i} = +2^{-\frac{1}{3}} \frac{1}{i^{-\frac{1}{3}}} - \frac{p}{(n^{2}-1)^{\frac{1}{2}}} + \frac{3}{(10^{2}-3)} \frac{2}{i^{-\frac{1}{3}}} - 2^{-\frac{1}{3}} \frac{p}{(n^{2}-1)^{\frac{3}{2}}} \cdot \frac{1}{(n^{2}-1)^{\frac{3}{2}}} \cdot \frac{1}{(n^{2}-1)^{\frac{3}{2}}} \cdot \frac{1}{(n^{2}-1)^{\frac{3}{2}}} \cdot \frac{1}{(16)}$$

式中, = $l + \frac{1}{2}$,对于 TE模, p = n;对于 TM 模, $p = \frac{1}{n}$.

其中 ;是 Airy 函数的解, 1 = 2.338, 2 = 4.088, 3 = 5.521.

比较式(15)和(16)可以看出,它们第2项符号 相反,这是由于,符号的相反所导致的;在第5项中 级数 i = 1 时 TE 模的波长 和模数 l 的关系

Tab. 1 Wavelength of a TE mode varying with mode number l at mode order $i = 1$								
	l	/ nm						
		(a)	(b)	(c)/ %	(d)	(e)/ %	(f)	(g)/%
	133		1595.87		1599.38		1593.45	
	134	1581.89	1584.39	0.158	1587.83	0.376	1582.00	0.0070
	135	1570. 83	1573.07	0.143	1576.45	0.358	1570.70	0.0083
	136	1559.87	1561.91	0.131	1565.23	0.344	1559. 57	0.0192
	137	1549.06	1550. 92	0.120	1554.17	0.330	1548.59	0.0303
	138	1538.45	1540.08	0.106	1543.27	0.313	1537.77	0.0442
	139	1528.04	1529.39	0.088	1532.52	0. 293	1527.11	0.0609
	140	1517.63	1518.84	0.080	1521.92	0. 283	1516.59	0.0685
	141	1507.62	1508.45	0.055	1511.46	0.255	1506.21	0.0935

注 : (a) : 实验结果(如图 2) ; (b) : 我们的计算结果 ; (c) : 我们的计算结果与实验结果的误差比较 ; (d) : Lam 的计算结 果 ; (e) : Lam 的计算结果与实验结果的误差比较 ; (f) : 精确解结果 ; (g) : 精确解与实验结果误差比较.

我们的结果有一个因子是 $\frac{8}{5}n^2 - \frac{3}{5}$,而在式(16)中 为 $n^2 - \frac{2}{3}p^2$,其余都完全一样.式(15)和(16)的差 异主要由于对 $A_i(-2^{\frac{1}{3}}z)$ 、球贝塞耳函数和球诺伊 曼函数的级数展开项不同引起的.

表 1

考虑一个半径 $= 24.695 \ \mu m$ 、折射率 n = 1.450 5 的微球,半径由电子显微镜定出,而折射率 由精确解拟合得出,比较文献[6] 的近似解结果、本 文的近似解、通过式(2) 计算的精确解和实验结果, 见表 1.

通过表 1 可以看出:对于 TE 模,本文的近似解 结果非常接近于实验结果,误差平均为 0.110%,而 Lam 的近似解与实验结果的误差比较大,误差平均 为 0.319%;同时,从式(2)得出的精确解结果与实 验结果也很接近,误差平均为 0.04% 左右.因此,我 们得到的近似解结果具有很高的精确度,可以解释 回廊模理论和实验.

图1是体状掺铒氟化物玻璃 ZBLALiP的发射光 谱,可以看出在1530 nm 附近有1个很宽的峰,它是 由于块状掺铒氟化物玻璃介质中 Er^{3+} 的 h_2^{1} 和 h_2^{15} 能 级的 Stark 子能级间的跃迁受 ZBLALiP 基质的配位 场作用,呈现出较大的线型加宽,而使该发射光谱为 连续分布的结果.图2是掺铒氟化物玻璃 ZBLALiP 微球发射光谱(最高的峰对应的是 i = 1的 TE 模), 可以看到它的峰所对应的波长与表1中 i = 1的 TE 模的理论数值很接近.它显示出有规律的峰状结构, 其周期约为 10 nm,该光谱的总轮廓与体材料的光 谱是相似的,所有的信号都很强.从图2可以看到一 些光谱一些波长所对应的光强特别大,这是由于掺

图 2 直径为 50 µm 的掺铒氟化物玻璃 ZBLALiP 微 球发射光谱

铒氟化物玻璃的发射光谱在低波数是连续的包状, 总有一些光谱的频率与微球的结构共振频率重合, 使得该频率的发射光谱得到共振加强,从本质上讲, 其增强的原因是由于在该频率处,微球内部平均电 磁场达到最大.

3 总 结

我们从球微腔 W GM 模的特征方程出发,利用 球贝塞尔函数的渐进式,得到微球内部的回廊模特 征方程近似解.这些近似解方程大大简化了球微腔 激光特性及其与微球相互作用的相关理论计算和实 验解释,如本文所计算的共振峰位置和分布.实验 上,测量并比较了体状掺铒氟化物玻璃 ZBLALiP 的 发射光谱和掺铒氟化物玻璃 ZBLALiP 微球发射光 谱,发现它们有明显的区别,其中掺铒氟化物玻璃 ZBLALiP 微球发射光谱有明显分立的与结构参量 有关的共振峰——回廊模.应用本文所得到的近似 解公式,计算球微腔回廊模所对应的波长,结果与实 验符合得很好.

参考文献:

- Spillane S M, Kippenberg T J, Vahala K J. Ultralowthreshold Raman laser using a spherical dielectric microcavity[J]. Nature ,2002 ,415 :621 - 623.
- [2] 王吉有,徐晓轩,张春平,等. TiBa 玻璃微球拉曼光谱
 的结构共振[J]. 红外与毫米波学报,2001,20(1):30
 32.
- [3] Makoto K G, Kenji T. Polymer whispering gallery mode lasers[J]. Opt. Mater. ,1998,9:12 - 17.
- [4] Barber P W, Chang R K. Optical Effects Associated with Small Particle [M]. Singapore: World Scientific Press, 1998.
- [5] Abramowitz M, Stegun I A, eds. Handbook of Mathematical Functions[M]. Washington ,D. C. :National Bureau of Standards ,1972.
- [6] Lam C C, Leung P T, Young K. Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering [J]. J. Opt. Soc. Am. B, 1992, 9:1 585 - 1 592.

Analytical Expressions of Whispering Gallery Modes in a Spherical Dielectric Microcavity

ZHAN G Lei, CAI Zhi-ping

(Dept. of Phys., Xiamen Univ., Xiamen 361005, China)

Abstract : Based on the continuous boundary conditions of a dielectric sphere ,the two specific types of guiding Whispering Gallery Modes — TE, TM modes in the microsphere were discussed. The corresponding characteristic equations were deduced. In the case of large microsphere, the characteristic equations were analytically solved , and applied to calculate the low-order resonance wavelengths. The theoretical prediction was in good accordance with the emission spectrum from an EEBLALiP microsphere.

Key words: Whispering Gallery Modes (WGMs); microsphere; EZBLALiP; analytical solutions of characteristics equations