brought to you by Decompositor

| 第 36 卷, 增刊        | 红外与激光工程                        |
|-------------------|--------------------------------|
| Vol 36 Supplement | Infrared and Laser Engineering |

2007年6月 Jun.2007

## 掺铒氟化物玻璃 ZBLALip 光谱性质和 Judd-Ofelt 理论分析

石梦静<sup>1</sup>,蔡添志<sup>1</sup>,张 磊<sup>1</sup>,马 乐<sup>1</sup>,刘 月<sup>2</sup>,蔡志平<sup>2</sup>,许惠英<sup>2</sup>

(1. 厦门大学物理系,福建厦门 361005; 2. 厦门大学电子工程系,福建 厦门 361005)

摘要 测量了常温下,  $Er^{3+}$ 离子在氟化物玻璃 ZBLALip 中的吸收光谱和荧光寿命;应用 Judd-Ofelt 理论计算了  $Er^{3+}$ 离子的谱线强度、自发辐射几率 A、荧光分支比  $\beta$  和辐射寿命  $\tau_{rad}$ 等光谱参量,并拟 合了相应的强度参数  $\Omega_t$ (*t*=2,4,6),分别为  $\Omega_2$ =2.80×10<sup>-20</sup> cm<sup>2</sup>,  $\Omega_4$ =0.95×10<sup>-20</sup> cm<sup>2</sup>,  $\Omega_6$ =0.94×10<sup>-20</sup> cm<sup>2</sup>; 利用 McCumber 理论计算了能级  ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$  跃迁的受激发射截面  $\sigma_{em}$ ;通过计算发现,该材料的量 子效率较高,达到 90%,可成为新的激光材料,为拉制高Q值的光学介质微球腔提供了参考。 关键词:光谱性质; 铒离子; Judd-Ofelt 理论

**中图分类号:**O433.4 **文献标识码**: A **文章编号:**1007-2276(2007)增(激光)-0410-05

# Spectroscopic properties and Judd-Ofelt theory analysis of Er<sup>3+</sup> doped

## **ZBLALip based glasses**

SHI Meng-jing<sup>1</sup>, CAI Tian-zhi<sup>1</sup>, ZHANG Lei<sup>1</sup>, MA Le<sup>1</sup>, LIU Yue<sup>2</sup>, CAI Zhi-ping<sup>2</sup>, XU Hui-ying<sup>2</sup> (1. Department of Physics, Xiamen University, Xiamen 361005, China;

2. Department of Electronic Engineering , Xiamen University, Xiamen 361005, China )

**Abstract:** A new fluoride glass composition revealing a high stability, with a weak nucleation tendency, has been studied. The Judd-Ofelt intensity parameter  $\Omega(t=2,4,6)$  of a novel  $\text{Er}^{3+}$  doped ZBLALip based glasses deriving from the absorption spectra were acquired as follows:  $\Omega_2=2.80\times10^{-20}$  cm<sup>2</sup>,  $\Omega_4=0.95\times10^{-20}$  cm<sup>2</sup>,  $\Omega_6=0.94\times10^{-20}$  cm<sup>2</sup>. McCumber theory was used to calculate the stimulated emission cross section of  ${}^{4}I_{13/2}$   ${}^{4}I_{15/2}$  transition, the result was  $4.2 \times 10^{-21}$  cm<sup>2</sup>. In addition, the lifetime of the  ${}^{4}I_{13/2}$  level of  $\text{Er}^{3+}$  ions was 9.2 ms, and the quantum efficiency was 90%. The novel  $\text{Er}^{3+}$  doped glasses can be used in fabricationing high Q quality factor dielectric microcavities.

Key words: Spectroscopic properties; Er<sup>3+</sup> doped; Judd-Ofelt theory

## 0 引 言

在玻璃和晶体材料中,  $\mathrm{Er}^{3+}$ 离子  ${}^{4}\mathrm{I}_{13/2} \rightarrow {}^{4}\mathrm{I}_{15/2}$ 能 级跃迁所产生的 1.5  $\mu$ m 激光正对应光纤低损耗的 第 3 通信窗口,在大气中穿透力极强,且处于人眼

安全波段,应用前景广阔,得到广泛的研究<sup>[1]</sup>。氟 化物玻璃具有声子能量小的特点,可以减少多声子 发射概率,提高稀土离子能级间的发射效率。实验 采用的氟化物玻璃ZBLALip 组分为 51ZrF<sub>4</sub>-16BaF<sub>2</sub>-5LaF<sub>3</sub>-3AIF<sub>3</sub>-20LiF-5PbF<sub>2</sub>,与其他氟

收稿日期: 2007-05-10

基金项目:福建省基金(A0310004)

作者简介:石梦静(1983-),女,福建福州人,硕士生,主要从事光谱和固体激光器方面的研究。Email:ibigfacecat@gmail.com

**通讯作者:**许惠英, Email: xuhy@xmu.edu.cn

化物玻璃相比,由于其玻璃性质稳定,易与稀土离 子结合,具有更高的可塑性,可用来拉制光纤,制 作高Q值的微球腔<sup>[2]</sup>。文中测量了ZBLALip中Er<sup>3+</sup> 的吸收光谱,用Judd-Ofelt理论得到了Er<sup>3+</sup>离子在 ZBLALip玻璃中的光谱参数。

### 1 实验

本 实验 所 用 样 品 为 掺 铒 浓 度 2 mol % 的 ZBLALip 玻璃。利用北京卓立汉光的 SAC-2 光谱 分析仪测量了范围 350~1 700 nm 的吸收光谱。采 用荧光衰减的方法测量了  $\mathrm{Er}^{3+}$ 离子  ${}^{4}\mathrm{I}_{13/2}$ 能级的荧光 寿命。用信号发生器生成振幅为 3 V 的方波调制 974 nm 半导体激光器,所产生的脉冲激光泵浦样品。 $\mathrm{Er}^{3+}$ 离子  ${}^{4}\mathrm{I}_{13/2}$ 能级的荧光寿命由示波器获得。所有测量 均在室温下进行。

### 2 结果和讨论

#### 2.1 吸收光谱

图 1 为 Er:ZBLALip 的吸收光谱 在 300~1 700 nm 区域可观察到 11 个吸收峰,分别对应从  $Er^{3+}$ 基态到  ${}^{4}I_{13/2}$ ,  ${}^{4}I_{11/2}$ ,  ${}^{4}I_{9/2}$ ,  ${}^{4}F_{9/2}$ ,  ${}^{4}S_{3/2}$ ,  ${}^{2}H_{11/2}$ ,  ${}^{4}F_{7/2}$ ,  ${}^{4}F_{5/2}$ ,  ${}^{2}H_{9/2}$ ,  ${}^{4}G_{11/2}$ 以及  ${}^{4}G_{9/2}$ 和  ${}^{2}K_{15/2}$ 的吸收跃迁,吸收中 心波长分别为 1 532、972、801、650、540、521、 486、449、405、379、363 nm。



图 1 Er<sup>3+</sup>在 ZBLALip 中的吸收光谱



#### 2.2 Judd-Ofelt 理论分析

稀土离子在不同基质中的光谱参数如强度参数  $\Omega_t$  (t=2,4,6) 自发辐射几率 A、荧光分支比  $\beta$  和辐 射寿命  $\tau_{rad}$ 等常用 Judd-Ofelt 理论进行计算<sup>[7-8]</sup>。稀 土离子从初态 | (S,L)J 到终态 | (S',L') J' 能级间跃迁的实验振子强度 *S*<sub>meas</sub>,可根据吸收 光谱由公式(1)求得:

$$S_{\text{meas}}(J \to J') = \frac{3ch(2J+1)}{8\pi^3 \lambda_{\text{m}} e^2 N_0} \left[ \frac{9n}{\left(n^2 + 2\right)^2} \right] \int \alpha(\lambda) d\lambda$$
(1)

式中:S,L,J和S',L',J'分别为初态和末态的 自旋量子数、轨道量子数和总角动量量子数;n为 玻璃基质的折射率; $N_0$ 为稀土离子粒子数浓度; $\lambda_m$ 为谱线的中心波长; $\alpha(\lambda)$ 为吸收系数;c为光速; e为电子电量;h为普朗克常量。根据 J-O 理论模型, 计算振子强度  $S_{cal}$ 可表示成:

$$S_{cal}(J \to J') = S_{cd}(J \to J') =$$
$$\sum_{t=2,4,6} \Omega_t \left| \left\langle (S,L)J \parallel U^{(t)}(S',L')J' \right\rangle \right|^2$$

(2)

式中: $S_{ed}$ 为电偶极跃迁振子强度; $\Omega_t$ 为强度参数, 取决于基质材料的配位特性; $(S, L J U^{(t)})$ ( S', L' J'为约化矩阵元,其值基本不随基质变 化,文中采用文献<sup>[3]</sup>中的数据。实验振子强度包含 电偶极跃迁和磁偶极跃迁振子强度,从实验振子强 度减去磁偶极跃迁振子强度所得到的电偶极跃迁振 子强度与计算振子强度相等。磁偶极跃迁振子强度  $S_{md}$ 常被忽略,因为一般情况下它与电偶极子跃迁 相比很小<sup>[4]</sup>。但对于满足跃迁选择定则 S= L=0,  $J=0, \pm 1$ 的两个能级,则必须考虑磁偶极子的作 用, $S_{md}$ 可表示成:

$$S_{\rm md}(J \to J') = \frac{1}{4m^2c^2} \left| \left\langle (S,L)J \| L + 2S \| (S',L')J' \right\rangle \right|^2$$
(3)

由公式(1)~(3),利用最小二乘法拟合出相 应的  $\Omega_t$ (*t*=2,4,6)。 $Er^{3+}$ 在 ZBLALip 中从基态  ${}^{4}I_{15/2}$ 到激发态能级的跃迁计算振子强度、实验振子强度 以及强度参数  $\Omega_t$ (*t*=2,4,6),如表 1 所示。

拟合的误差可以用均方根偏差来表示<sup>[4]</sup>:

$$\delta_{\rm rms} = \left[ \left( q - p \right)^{-1} \sum \left( S_{\rm meas} - S_{\rm cal} \right)^2 \right]^{1/2}$$
 (4)

式中:p和q分别为跃迁的数目和所要确定的参数的个数。文中得到的 $\delta_m$ 较小,说明 J-O 理论在计

算稀土离子光谱性能方面的适用性。Er<sup>3+</sup>在各种基质玻璃中的 J-O 强度参数  $\Omega_i$ 如表 2 所示。

表1 Er<sup>3+</sup>在ZBLALip中的吸收振子强度

Tab.1Absorption oscillator strengths of  $Er^{3+}$ in ZBLALip glasses

| Transition                      | Wavelength                        | Intensity (× $10^{-20}$ cm <sup>2</sup> ) |                      |
|---------------------------------|-----------------------------------|-------------------------------------------|----------------------|
| ${}^{4}I_{15/2}$                | $\lambda$ / nm                    | Smeas                                     | $S_{ m cal}$         |
| ${}^{4}I_{13/2}$                | 1 532                             | 1.571 7                                   | 1.511 7              |
| ${}^{4}I_{11/2}$                | 972                               | 0.429 8                                   | 0.450 8              |
| <sup>4</sup> I <sub>9/2</sub>   | 801                               | 0.173 8                                   | 0.173 9              |
| ${}^{4}F_{9/2}$                 | 650                               | 0.938 1                                   | 0.942 7              |
| ${}^{4}S_{3/2}$                 | 540                               | 0.205 1                                   | 0.207 8              |
| ${}^{4}F_{7/2}$                 | 486                               | 0.646 3                                   | 0.728 6              |
| <sup>4</sup> F <sub>5/2</sub>   | 449                               | 0.227 5                                   | 0.209 8              |
| $^{2}H_{9/2}$                   | 405                               | 0.250 2                                   | 0.230 0              |
| ${}^{4}G_{9/2} + {}^{2}K_{5/2}$ | 363                               | 0.390 8                                   | 0.345 6              |
| Ω <sub>2</sub> =2.8             | $30 \times 10^{-20} \text{ cm}^2$ | Ω <sub>4</sub> =0.95×10 <sup>-</sup>      | $^{20} \text{ cm}^2$ |
| Ω <sub>6</sub> =0.9             | $4 \times 10^{-20} \text{ cm}^2$  | $\delta_{\rm rms}$ =4.76×10               | $-22 \text{ cm}^2$   |

#### 表2 几种玻璃中Er<sup>3+</sup>的强度参量

**Tab.2** Intensity parameters  $\Omega_t$  of  $\mathrm{Er}^{3^+}$  in different glasses<sup>[6]</sup>

| Glass                 | $arOmega_2$ | $arOmega_4$ | $arOmega_{\!\!6}$ |
|-----------------------|-------------|-------------|-------------------|
| Aluminate             | 5.60        | 1.60        | 0.61              |
| Gemanate              | 5.81        | 0.85        | 0.28              |
| Silicate              | 4.23        | 1.04        | 0.61              |
| Tellurite             | 4.74        | 1.62        | 0.64              |
| Fluorophosphate       | 2.91        | 1.63        | 1.26              |
| Fluoroindate          | 2.17        | 2.31        | 0.89              |
| ZBLAN <sup>[10]</sup> | 2.68        | 1.04        | 1.06              |

根据稀土光谱理论<sup>[5]</sup>, Ω<sub>2</sub> 与稀土离子的超敏跃 迁有关。玻璃结构中稀土离子的极化和不对称环境 对超敏跃迁有显著的影响:玻璃结构的不对称性和 稀土离子的极化性越高,相应的超敏跃迁也越强,  $Ω_2$ 也越大,玻璃基质的共价性越强。 $Ω_6$ 随玻璃结构 中 Er - O 或是 Er - F 的离子性的增大而增大<sup>[4]</sup>。由 表 2 看出,氟化物玻璃的  $Ω_6$ 值比较大,这是因为氟 离子的电负性高于氧离子,与金属离子形成的化合 键中离子性成分比较高。自发辐射几率 A、荧光分 支比 β 和辐射寿命  $τ^{[9]}$ 的值如表 3 所示。

$$A(J \to J') = A_{ed} + A_{md} = \frac{64\pi^4 e^2}{3h\lambda^3 (2J+1)} \left[ \frac{n(n^2+2)^2}{9} S_{ed} + n^3 S_{md} \right]$$
(5)

$$\tau = \frac{1}{\sum A(J \to J')} \tag{6}$$

$$\beta(J \to J') = \frac{A(J \to J')}{\sum A(J \to J')} = A(J \to J')\tau \quad (7)$$

从表 3 可看出  ${}^{4}I_{1_{3/2}}$ 、  ${}^{4}I_{1_{1/2}}$  和  ${}^{4}I_{1_{9/2}}$  能级的寿命 较长 ,说明粒子在这些激发态上有较大的停留几率。 另外 ,  ${}^{4}I_{1_{3/2}}$ 和  ${}^{4}I_{1_{1/2}}$ 两个能级的吸收都在红外区 , 这 对于实现  $Er^{3+}$ 从红外到可见的上转换是有利的。

## 2.3 荧光特性

受激发射截面  $\sigma_{em}$  和荧光寿命  $\tau$  是评估激光玻 璃激光性能的重要参量。 $\sigma_{em}$  越大越易出激光;  $\tau$  越 长,粒子在该能级上停留的时间越长,越容易实现 粒子数反转。根据 McCumber<sup>[9]</sup>理论,<sup>4</sup>I<sub>13/2</sub> 的跃迁 发射截面可由相应的吸收截面得到:

$$\sigma_{\rm em}(\nu) = \sigma_{\rm abs}(\nu) (Z_{\rm l}/Z_{\rm u}) \exp[(E_{\rm zl} - h\nu)/kT]$$
(8)

式中: $Z_{l}/Z_{u}$ 为分配系数; $E_{21}$ 为零线能量,对应<sup>4</sup>I<sub>13/2</sub> 和<sup>4</sup>I<sub>15/2</sub>的最低 Stark 能量差,相当于 $hc/\lambda_{p}$ , $\lambda_{p}$ 为吸 收峰波长;k 是波尔兹曼常数; $\sigma_{abs}$ (v)由吸收光 谱得到。<sup>4</sup>I<sub>13/2</sub>的吸收截面 $\sigma_{abs}$ 和发射截面 $\sigma_{em}$ 如图 2 所示,从图中可看出  $Er^{3+}$ 在 ZBLALip 中的主吸收峰 位于 1 532 nm,次吸收峰位于 1 501 nm 处,吸收范 围较宽,为 1 450~1 700 nm 左右。其峰值的受激 发射截面为 4.2 × 10<sup>-21</sup> cm<sup>2</sup>。

## 表3 ZBLALip玻璃中Er<sup>3+</sup>的自发辐射几率、荧光分之比和荧光寿命 Tab.3 Predicted spontaneous radiation transitions rates *A*, fluorescent branch radio β and radiative lifetimes τ of Er<sup>3+</sup> in ZBLALip glasses

| Transition                        | Wavenumber /cm <sup>-1</sup> | $A_{\rm ed}/{ m s}^{-1}$ | $A_{\rm md}/{\rm s}^{-1}$ | β     | $\tau$ / ms |
|-----------------------------------|------------------------------|--------------------------|---------------------------|-------|-------------|
| ${}^{4}I_{13/2}$ ${}^{4}I_{15/2}$ | 6 530                        | 64.17                    | 34.25                     | 1     | 10.2        |
| ${}^{04}I_{11/2}  {}^{4}I_{15/2}$ | 10 245                       | 87.30                    |                           | 0.805 | 9.2         |
| ${}^{4}I_{13/2}$                  | 3 713                        | 11.55                    | 9.66                      | 0.195 |             |
| ${}^{4}I_{9/2}  {}^{4}I_{15/2}$   | 12 480                       | 73.78                    |                           | 0.686 | 9.3         |
| ${}^{4}I_{13/2}$                  | 5 968                        | 31.01                    |                           | 0.289 |             |
| ${}^{4}I_{11/2}$                  | 2 255                        | 0.47                     | 1.95                      | 0.023 |             |
| ${}^{4}F_{9/2}  {}^{4}I_{15/2}$   | 15 330                       | 754.05                   |                           | 0.908 | 1.2         |
| ${}^{4}I_{13/2}$                  | 8 799                        | 35.29                    |                           | 0.042 |             |
| ${}^{4}I_{11/2}$                  | 5 086                        | 39.59                    |                           | 0.048 |             |
| <sup>4</sup> I <sub>9/2</sub>     | 2 831                        | 1.87                     |                           | 0.002 |             |
| ${}^4S_{3/2}  {}^4I_{15/2}$       | 18 400                       | 734.87                   |                           | 0.678 | 0.92        |
| ${}^{4}I_{13/2}$                  | 11 852                       | 294.82                   |                           | 0.272 |             |
| ${}^{4}I_{11/2}$                  | 8 130                        | 21.16                    |                           | 0.019 |             |
| <sup>4</sup> I <sub>9/2</sub>     | 5 866                        | 33.74                    |                           | 0.031 |             |
| ${}^{4}H_{11/2}  {}^{4}I_{15/2}$  | 19 200                       | 3 598                    |                           |       | < 0.278     |
| ${}^{4}F_{7/2}  {}^{4}I_{15/2}$   | 20 520                       | 1 987                    |                           |       | < 0.503     |





在稀土发光材料中辐射跃迁量子效率 η 可写为:

$$\eta = \frac{\tau_{\exp}}{\tau_{cal}} \tag{10}$$

式中: $\tau_{exp}$ 是实验测得的寿命; $\tau_{cal}$ 是用  $\Omega$  参数计算 得到的辐射跃迁寿命。图 3 为 974 nm 激光激发下  ${}^{4}I_{13/2}$   ${}^{4}I_{15/2}$  跃迁衰减曲线。用单指数衰减函数对实 验曲线拟合,得到  ${}^{4}I_{13/2}$  <sup>4</sup> $I_{15/2}$ 跃迁衰减的时间常数  $\tau_{exp}$ 为 9.2 ms。由表 3 可得  $\tau_{cal}$ 为 10.2 ms,常温下  ${}^{4}I_{13/2}$ 的量子效率  $\eta$ 为 90%。



图 3 <sup>4</sup>I<sub>13/2</sub> <sup>4</sup>I<sub>15/2</sub>的跃迁衰减曲线



## 3 结 论

应用 J-O 理论计算 ZBLALip 玻璃中  $Er^{3+}$ 离子光 谱参量,并拟合了相应的强度参数  $\Omega_t$ ,分别为  $\Omega_2=2.80\times10^{-20}$  cm<sup>2</sup>, $\Omega_4=0.95\times10^{-20}$  cm<sup>2</sup>, $\Omega_6=0.94\times10^{-20}$  cm<sup>2</sup>。 利用 McCumber 理论计算了能级 <sup>4</sup>I<sub>13/2</sub> <sup>4</sup>I<sub>15/2</sub> 跃迁 的受激发射截面  $\sigma_{em}$ 。测量了样品在 974 nm LD 激 发下<sup>4</sup>I<sub>132</sub> <sup>4</sup>I<sub>152</sub>的跃迁衰减曲线,荧光寿命为9.2 ms, 量子效率达90%,可成为新型的激光基质材料。考 虑到浓度猝灭效应的影响<sup>[2]</sup>,在拉制高Q值的光学 微球腔时可采用低掺杂浓度的样品。

#### 参考文献:

- PHILIPPS J F, TOPFER T, EBENDORFF-HEIDEPRIEM H, et al. Spectroscopic and lasing properties of Er<sup>3+</sup>: Yb<sup>3+</sup> doped fluoride phosphate glasses [J]. Appl Physics B, 2001, 72: 399-405.
- [2] MORTIER M, GOLDNER P, FERON P, et al. New fluoride glasses for laser applications [J]. Non-Cryst Solids, 2003, 326&327:505-509.
- [3] SARDAR D K, GRUBER J B, Bahram Zandi, et al. Judd–Ofelt analysis of the Er<sup>3+</sup> (4f<sup>11</sup>) absorption intensities in phosphate glass: Er<sup>3+</sup>, Yb<sup>3+</sup> [J]. J Appl Phys , 2003, 93(4): 2041-2046.
- [4] TANABE S. Optical transitions of rare earth ions for amplifiers: how

the local structure works in glass [J]. J Non-Cryst Solids, 1999, 259:1-9.

- [5] 张思远, 毕宪章. 稀土光谱理论[M]. 长春: 科技出版社, 1991.
- [6] ZOU X ,IZUNITANI T. Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er<sup>3+</sup>-doped glasses [J]. J Non-Cryst Solids, 1993, 162: 68-80.
- JUDD B R. Optical absorption intensities of rare earth ions [J]. Phys Rev, 1962, 127: 750.
- [8] OFELT G S. Intensities of crystal spectra of rare earth ions [J]. J Chem Phys, 1962, 37: 511.
- [9] MCCUMBER D E. Theory of phonon-terminated optical masers [J]. Phys Rev, 1964, 134: A299-A306.
- [10] FLOREZ A, MESSADDEQ Y, MALTA O L, et al. Violet and blue upconversion emission from erbium doped ZBLAN fibers with red diode laser pumping [J]. J Alloys Comp, 1995, 227: 135-140.