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Abstract By using the Chern-Finsler connection and complex Finsler metric, the Bochner

technique on strong Kähler-Finsler manifolds is studied. For a strong Kähler-Finsler man-

ifold M , the authors first prove that there exists a system of local coordinate which is

normalized at a point v ∈ M̃ = T 1,0M\o(M), and then the horizontal Laplace operator

�H for differential forms on PTM is defined by the horizontal part of the Chern-Finsler

connection and its curvature tensor, and the horizontal Laplace operator �H on holomor-

phic vector bundle over PTM is also defined. Finally, we get a Bochner vanishing theorem

for differential forms on PTM. Moreover, the Bochner vanishing theorem on a holomorphic

line bundle over PTM is also obtained

Key words Bochner technique; strong Kähler-Finsler manifold; horizontal Hodge-
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Bochner [1, 2] initiated a method, the well-known “Bochner technique”, which used the

Laplace operator and the general maximum principle of E.Hopf to deal with the relation between

vector or tensor fields and the curvature of manifolds, and got the global properties of manifolds.

From then on, the Bochner technique became a very useful method in geometrical study. Such

as, both in Riemannian and Kählerian manifolds, the Bochner technique were discussed in

details in [3–5]. Recently, under the initiation of S.S. Chern, the global differential geometry of

real and complex Finsler manifolds gained a great development [6–8], Abate and Pateizio [8] set

up a Cartan-Finsler connection in a real Finsler manifold and a Chern-Finsler connection in a

complex Finsler manifold. By using the non linear connection associated to the Cartan-Finsler

connection, Zhong Tongde and Zhong Chunping [9] discussed the Bochner technique in a real

Finsler manifold. In this article, based on [10], we further discuss the Bochner technique for

a strong Kähler-Finsler manifold, and obtain some Weitzenböck formulas on strong Kähler-

Finlser manifolds. Using the Weitzenböck formulas, we get the Bochner vanishing theorems on

strong Kähler-Finlser manifolds.
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1 The Normalizations of Coordinates and Frames

Definition 1 [8] A strongly pseudoconvex complex Finsler metric on a complex manifold

M is a continuous function F : T 1,0M −→ R+ satisfying

(i) G = F 2 is smooth on M̃ = T 1,0M\o(M);

(ii) F (v) > 0 for all v ∈ M̃ ;

(iii) F (λv) = |λ|F (v) for all v ∈ T 1,0M and λ ∈ C;

(iv) The Hermitian matrix (Gαβ̄) is positive definite on M̃ , where

Gαβ̄ =
∂2G

∂vα∂v̄β
.

The derivatives with respect to the z-coordinates will be denoted by indices after a semicolon,

for instance,

G;µν =
∂2G

∂zµ∂zν
or Gα;ν̄ =

∂2G

∂z̄ν∂vα
.

A manifold M endowed with a strongly pseudoconvex complex Finsler metric will be called

a strongly pseudoconvex complex Finsler manifold.

Condition (iv) allows us to introduce a Hermitian structure on the vertical bundle V .

Indeed, if v ∈ M̃ , and W1,W2 ∈ Vv with Wj = Wα
j ∂̇α (j = 1, 2), we set

〈W1,W2〉v = Gαβ̄(v)Wα
1 W

β

2 , (1)

then, there is a unique Chern-Finsler connection D associated to the Hermitian structure in-

duced by F . Being Chern-Finsler connection D a good complex vertical connection, it extends

to a complex linear connection on M̃(still called the Chern-Finsler connection in this article).

Using the complex horizontal map Θ : V −→ H, we can transfer the Hermitian structure 〈, 〉 on

H just by setting

∀H,K ∈ Hv, 〈H,K〉v = 〈Θ−1(H),Θ−1(K)〉v, (2)

and then, we can define a Hermitian structure on T 1,0M̃ by requiring H to be orthogonal to V .

It is easy to check that these definitions are compatible enough so to get

X〈Y, Z〉 = 〈DXY, Z〉 + 〈Y,DX̄Z〉, (3)

for any X ∈ T 1,0M̃ , and Y, Z ∈ χ(T 1,0M̃).

The complex nonlinear connection D̃ : χ(T 1,0M) −→ χ(T ∗
CM ⊗ T 1,0M) associated to the

Chern-Finsler connection is defined as follows.

Take ξ ∈ χ(T 1,0M), p ∈M , and set v = ξ(p), then

D̃ξ =

(
∂ξα

∂zµ
(p) + Γα

µ(ξ(p))

)
dzµ ⊗

∂

∂zα

∣∣∣
p
, (4)

where Γα
µ’s are the Christoffel symbols of the complex nonlinear connection D̃. In local coordi-

nates, they can be expressed as

Γα
µ = Γ̃α

β;µv
β = Gτ̄αGτ̄ ;µ. (5)

Set

Γα
β;µ = ∂̇β(Γα

µ) = Gτ̄αδµ(Gβτ̄ ), (6)
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which is the horizontal part of the Chern-Finsler connection.

Definition 2 [8] Assume that (M,F ) is a strongly pseudoconvex complex Finsler man-

ifold, if the horizontal part of (2,0)-torsion θ for the Chern-Finsler connection is zero, that is,

for arbitrary H,K ∈ H, θ(H,K) = 0, then F is called a strong Kähler-Finsler metric of M .

In local coordinates, the necessary and sufficient conditions of F to be a strong Kähler-Finsler

metric of M are

Γα
µ;ν = Γα

ν;µ. (7)

Let (M,F ) be a strongly pseudoconvex complex Finsler manifold, then, we may associate

the fundamental form

Φ = iGαβ̄dzα ∧ dz̄β, (8)

which is a well-defined real valued (1, 1)-form on M̃ .

Proposition 1 [8] The differential form Φ is dH -closed, that is, dHΦ = 0, if and only if

the metric F is a strong Kähler-Finsler metric.

It is easily seen that the condition dHΦ = 0 is equivalent to

δGαβ̄

δzγ
=
δGγβ̄

δzα
,

δGαβ̄

δz̄γ
=
δGαγ̄

δz̄β
, (9)

i.e.,

Γα
β;γ = Γα

γ;β.

Definition 3 Assume that (M,F ) is a strongly pseudoconvex complex Finsler manifold,

let v0 ∈ M̃ = T 1,0M\o(M), then, a complex coordinate system {z, v} around v0 is said to be

normal at point v0 iff 



Gαβ̄(v0) = δαβ̄ ,

dHGαβ̄(v0) = 0,

for all α, β. If a normal complex coordinate system exists at v0, then obviously, dHΦ = 0 is the

additional condition of (M,F ) being a strong Kähler-Finsler manifold. Conversely, we have

Lemma 1 Let (M,F ) be a strong Kähler-Finsler manifold. Given a point v0 ∈ M̃ =

T 1,0M\o(M), then there exists a complex coordinate system normal at v0 (cf. [10, 11]).

Proof Let (zi, vα) be an arbitrary coordinate function around v0, such that (zi, vα)(v0) =

(0, vα(v0)) for all i, α. Let Φ = iGαβ̄dzαdz̄β, where

Gαβ̄ = Gβᾱ, (10)

for all α, β. It is no matter we may assume

Gαβ̄(v0) = δαβ̄. (11)

Since dHΦ = 0, by the assumption,

Γα
β;γ(v0) = Γα

γ;β(v0). (12)

We introduce a new coordinate function (z
′α, v

′α) with

z
′α = zα +

1

2
Γα

β;γ(v0)z
βzγ ,
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for all α. Then (12) yields immediately for all α

dz
′α = dzα + Γα

β;γ(v0)z
γdzβ. (13)

Writing Φ = iG̃αβ̄dz
′αdz̄

′β , it follows from (9)–(12) and (6) that
δG̃αβ̄

δzγ = 0 for α, β, γ. Thus,

dHG̃αβ̄(v0) = 0 for all α, β. It is clear from (10) and (12) that G̃αβ̄(v0) = δαβ̄. This completes

the proof.

Definition 4 Assume that {V1, · · · , Vn} is a local horizontal frame field of (1, 0)-form

around v0 ∈ M̃ , that is, V1, · · · , Vn are the horizontal vector fields of (1, 0)-form defined near

v0, satisfying 〈Vα, Vβ〉 = δαβ̄ for all α, β (where 〈, 〉 is the Hermitian inner product on T 1,0M̃

restricted on H). Then, the local horizontal frame {Vα} of (1, 0)-form is called normalized at

v0, if and only if for all α, β

DVαVβ(v0) = 0, (14)

where D is the Chern-Finsler connection. (14) implies that

DV̄α
V̄β(v0) = DVα V̄β(v0) = DV̄α

Vβ(v0) = 0, (15)

for all α, β. Thus, we may write

DVαVβ = Γδ
α;βVδ (16)

for some complex-valued functions {Γδ
α;β}, then,

DV̄α
V̄β = Γδ

α;β V̄δ. (17)

Because 0 = Vα〈Vβ , Vδ〉 = 〈DVαVβ , Vδ〉 + 〈Vβ , DV̄α
Vδ〉, we obtain

DV̄α
Vδ = −

∑

β

Γδ
α;βVβ . (18)

So, (15) follows from (17) and (18).

Lemma 2 Let (M,F ) be a strong Kähler-Finsler manifold, v0 ∈ M̃ , then, there exists a

frame field of (1, 0)-form of H normalized at point v0 (cf. [4, 11]).

Remark 1 Assume that the local horizontal frame {Vα} of (1,0)-form is normal at v0 ∈

M̃ , and its dual coframe is {ωα}. We have

DVαω
β(v0) = DV̄α

ωβ(v0) = 0.

Remark 2 Assume that {Vα} is normal at v0, then for all α, β,

[Vα, Vβ ](v0) = 0, [Vα, Vβ̄ ](v0) 6= 0.

2 Hodge-Laplace Operator and Weitzenböck Formula on PTM

In the following, we introduce the definition of Hodge-Laplace operator on the projectivized

tangent bundle (PTM) in a complex Finsler manifold (cf. [10, 12]).

Let (M,F ) be an n-dimensional strongly pseudoconvex compact complex Finsler manifold

with a Finsler metric F , then, F induces a natural Hermitian metric on T 1,0M̃ :

G̃ = Gαβ̄dzα ⊗ dz̄β +Gαβ̄δv
α ⊗ δv̄β .
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It descends to a non-degenerated metric (still denote it by G̃)

G̃ = Gαβ̄dzα ⊗ dz̄β + (lnG)αβ̄δv
α ⊗ δv̄β ,

on the total space PTM [cf. 12].

Denote by

ωV =
√
−1(lnG)αβ̄δv

α ∧ δv̄β , ωH =
√
−1Gαβ̄dzα ∧ dz̄β .

Then, the invariant volume form of PTM is given by

dv =
ωn−1
V

(n− 1)!
∧
ωn

H

n!
. (19)

Since ωn
H is a horizontal (n, n)-form, the above expression is invariant by replacing δvα and δv̄β

by dvα and dv̄β , respectively.

If we denote by dσ the pure vertical form of the volume form of PTM, then,

dσ =
ωn−1
V

(n− 1)!
.

So, we have

dv = dσ ∧
ωn

H

n!
= Gdσ ∧ dχ,

where

G = det(Gαβ̄), dχ =
τn

n!
, τ =

√
−1

n∑

i=1

dzi ∧ dz̄i.

Let Ap,q be the space of horizontal (p, q)-forms on PTM, i.e., those coefficients of every

ϕ ∈ Ap,q are zero homogeneous with respect to fibre coordinates, the elements of Ap,q in local

coordinates are

ϕ =
1

p!q!
Σϕα1···αpβ̄1···β̄q

dzα1 ∧ · · · ∧ dzαp ∧ dz̄β1 ∧ · · · ∧ dz̄βq ,

ψ =
1

p!q!
Σψλ1···λpµ̄1···µ̄q dzλ1 ∧ · · · ∧ dzλp ∧ dz̄µ1 ∧ · · · ∧ dz̄µq .

Then, at each point (z, v) ∈ PTM, we define

〈ϕ, ψ〉 =
1

p!q!
Σ ϕα1···αpβ̄1···β̄q

ψλ1···λpµ̄1···µ̄qG
λ̄1α1 · · ·Gλ̄pαpGβ̄1µ1 · · ·Gβ̄qµq

=
1

p!q!
Σ ϕα1···αpβ̄1···β̄q

ψᾱ1···ᾱpβ1···βq , (20)

where

ψᾱ1···ᾱpβ1···βq = ψλ1···λpµ̄1···µ̄qG
λ̄1α1 · · ·Gλ̄pαpGβ̄1µ1 · · ·Gβ̄qµq .

Notice that there is a natural Hermitian inner product in Ap,q which is induced by the complex

Finsler metric F , i.e.,

(ϕ, ψ)PTM =

∫

PTM

〈ϕ, ψ〉dv. (21)
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In the following, we define the Hodge-Laplace operator for (p, q)-forms in Ap,q. First, we

define the operator ∗ : Ap,q −→ An−q,n−p, by the relation

∫

PTM

ϕ ∧ ∗ψ̄ ∧ dσ = (ϕ, ψ)PTM. (22)

Proposition 2 Assume that (M,F ) is a strongly pseudoconvex compact complex Finsler

manifold, then, there is a linear map ∗ : Ap,q −→ An−q,n−p satisfying

(i)
∫
PTM ϕ ∧ ∗ψ̄ ∧ dσ = (ϕ, ψ)PTM;

(ii) ∗ψ = ∗ψ̄ (that is, ∗ is a real operator);

(iii) ∗ ∗ ψ = (−1)p+qψ.

Proof Before giving the proof, let us fix some notations. Let n = dimM . We denote

Ap = (α1, · · · , αp), α1 < α2 < · · · < αp, 1 ≤ αi ≤ n,

An−p = (αp+1, · · · , αn), αp+1 < · · · < αn, 1 ≤ αi ≤ n,

and let (α1, · · · , αp, αp+1, · · · , αn) be a permutation of (1, 2, · · · , n). Similarly, denote Bq =

(β1, · · · , βq), Bn−q = (βq+1, · · · , βn). Then, with these notations, we write horizontal (p, q)-

form on PTM

ψ =
∑

Ap,Bq

ψApBq
dzAp ∧ dzBq ,

where dzAp = dzα1 ∧ · · · ∧ dzαp , dzBq = dz̄β1 ∧ · · · ∧ dz̄βq . Thus,

ψ =
∑

Ap,Bq

(ψ)BqAp
dzBq ∧ dzAp ,

where

(ψ)BqAp
= (−1)pqψApBq

.

Denote

ψApBq =
∑

λ,µ

Gᾱ1λ1 · · ·GᾱpλpGµ̄1β1 · · ·Gµ̄qβqψλ1···λpµ̄1···µ̄q ,

then, we have

ψApBq = (−1)pqψ
BqAp

.

Thus, we can rewrite the Hermitian inner product (21) as

(ϕ, ψ)PTM = (−1)pq

∫

PTM

ϕApBq
ψ

BqAp
dv.

Define

∗ψ = (i)n(−1)
n(n−1)

2 +pn
∑

Ap,Bq

sgn(ApAn−p)sgn(BqBn−q)ψ
ApBqGdzBn−q ∧ dzAn−p , (23)

where

sgn(ApAn−p) = sgn


 1 · · ·n

α1 · · ·αn


 , sgn(BqBn−q) = sgn


 1 · · ·n

β1 · · ·βn


 .
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Then,

∗ψ = (i)n(−1)
n(n−1)

2 +qn
∑

Ap,Bq

sgn(BqBn−q)sgn(ApAn−p)ψ
BqAp

GdzAn−p ∧ dzBn−q .

By (23), we have

∗ψ = (−i)n(−1)
n(n−1)

2 +pn
∑

Ap,Bq

sgn(ApAn−p)sgn(BqBn−q)ψApBqGdzBn−q ∧ dzAn−p

= (i)n(−1)
n(n−1)

2 +nq
∑

Ap,Bq

sgn(ApAn−p)sgn(BqBn−q)ψ
BqAp

GdzAn−p ∧ dzBn−q

= ∗ψ.

Thus, (ii) is proved.

For (i), let ϕ =
∑

ApBq
ϕApBq

dzAp ∧ dzBq , by a direct caculation, we have

∫

PTM

ϕ ∧ ∗ψ ∧ dσ =

∫

PTM

(i)n(−1)
n(n−1)

2 +nq
∑

Ap,Bq

sgn(ApAn−p)sgn(BqBn−q)

ϕApBq
ψ

BqAp
GdzAp ∧ dzBq ∧ dzAn−p ∧ dzBn−q ∧ dσ

=

∫

PTM

(i)n(−1)
n(n−1)

2 +pq
∑

Ap,Bq

sgn(ApAn−p)sgn(BqBn−q)

ϕApBq
ψ

BqAp
GdzAp ∧ dzAn−p ∧ dzBq ∧ dzBn−q ∧ dσ.

Since

dzAp ∧ dzAn−p ∧ dzBq ∧ dzBn−q = sgn′(ApAn−p)sgn′(BqBn−q)(−1)
n(n−1)

2
dχ

(i)n
,

where

sgn′(ApAn−p) = sgn


α1 · · ·αn

1 · · ·n


 , sgn′(BqBn−q) = sgn


 β1 · · ·βn

1 · · ·n


 ,

and

sgn(ApAn−p)sgn′(ApAn−p) = 1, sgn(BqBn−q)sgn′(BqBn−q) = 1,

then, we have

∫

PTM

ϕ ∧ ∗ψ ∧ dσ =

∫

PTM

(−1)pq
∑

Ap,Bq

ϕApBq
ψ

BqAp
Gdχ ∧ dσ = (ϕ, ψ)PTM.

Finally, we check (iii) for any point (z0; v0) ∈ PTM. According to Lemma 1, we may

assume by a change of coordinates that Gαβ̄(z0; v0) = δαβ̄ , then,

G = det(Gαβ̄) = 1,

and

ψApBq =
∑

λ,µ

Gᾱ1λ1 · · ·GᾱpλpGµ̄1β1 · · ·Gµ̄qβqψλ1···λpµ̄1···µ̄q = ψApBq
. (24)
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Denote

∗ψ =
∑

An−p,Bn−q

(∗ψ)Bn−qAn−p
dzBn−q ∧ dzAn−p,

then by (23) and (24), we have

(∗ψ)Bn−qAn−p
= (i)n(−1)

n(n−1)
2 +pnsgn(ApAn−p)sgn(BqBn−q)ψApBq

.

Thus, we get

(∗ ∗ ψ)ApBq
= (i)n(−1)

n(n−1)
2 +n(n−q)sgn(Bn−qBq)sgn(An−pAp)(∗ψ)Bn−qAn−p

. (25)

Because

sgn(An−pAp) = (−1)p(n−p)sgn(ApAn−p), sgn(Bn−qBq) = (−1)q(n−q)sgn(BqBn−q),

by (24), we have

(∗ ∗ ψ)ApBq
= (−1)n+(n−1)n+pn+(n−q)n+p(n−p)+q(n−q)ψApBq

= (−1)p+qψApBq
.

And Proposition 2 is proved.

Now, we define the adjoint of ∂̄H , ∂H , and dH

Definition 5 [13–15] ∂̄∗H = − ∗ ∂H∗, ∂∗H = − ∗ ∂̄H∗, δH = − ∗ dH∗.

It is easy to see that

Proposition 3 Let (M,F ) be a strongly pseudoconvex compact complex Finsler mani-

fold. Then,

∂̄∗H : Ap,q −→ Ap,q−1,

∂∗H : Ap,q −→ Ap−1,q,

δH : Ap −→ Ap−1,

(∂̄Hϕ, ψ) = (ϕ, ∂̄∗Hψ), (∂Hϕ, ψ) = (ϕ, ∂∗Hψ), (dHϕ, ψ) = (ϕ, δHψ).

Definition 6 [13–15] �H = ∂̄H ∂̄
∗
H + ∂̄∗H ∂̄H , �H maps Ap,q into Ap,q, and is called the

complex horizontal Laplacian.

Definition 7 [13–15] Let (M,F ) be a strongly pseudoconvex compact complex Finsler

manifold and ϕ ∈ Ap,q. If �Hϕ = 0, then, ϕ is called a horizontal harmonic (p, q)-form.

If we denote by α1 · · · α̂i · · ·αp+1 the sequence which we get from α1 · · ·αp+1 by suppressing

αi, then, we have

(∂Hψ)α1···αp+1β̄1···β̄q
=

p+1∑

i=1

(−1)i−1δαi(ψα1···α̂i···αp+1β̄1···β̄q
),

(∂̄Hψ)α1···αpβ̄1···β̄q+1
=

q+1∑

j=1

(−1)p+j−1δβ̄j
(ψ

α1···αpβ̄1···
ˆ̄βj ···β̄q+1

).

If (M,F ) is a strong Kähler-Finsler manifold, then by the symmetry of the horizontal part

coefficients of the Chern-Finsler connection, we have Γα
µ;ν = Γα

ν;µ. Therefore, we can replace
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the horizontal derivatives by the covariant derivation in the direction of horizontal vector δα,

and obtain

(∂Hψ)α1···αp+1β̄1···β̄q
=

p+1∑

i=1

(−1)i−1Dδαi
ψα1···α̂i···αp+1β̄1···β̄q

,

(∂̄Hψ)α1···αpβ̄1···β̄q+1
=

q+1∑

j=1

(−1)p+j−1Dδβ̄j
ψ

α1···αpβ̄1···
ˆ̄βj ···β̄q+1

.

Assume that {Vα} is a horizontal frame field of (1,0)-form on a strong Kähler-Finsler

manifold (M,F ), and {ωβ} is its dual coframe field, i.e., ωβ(Vα) = δβ
α. Then, we can simply

express ∂H or ∂̄H by the Chern-Finsler connection as follows:

∂H =
∑

α

ωα ∧DVα , ∂̄H =
∑

α

ω̄α ∧DV̄α
. (26)

It is easy to check that the right-hand sides of these formulas are independent of the choice of

{Vα}. Similar to the case of complex Kähler manifold in [4], using ∗ operator and formula (26),

we can also express ∂̄∗H or ∂∗H as follows by the Chern-Finsler connection.

Proposition 4 ∂̄∗H = −
∑
β

i(V̄β)DVβ
, ∂∗H = −

∑
β

i(Vβ)DV̄β
.

Proof It is suffice to prove ∂̄∗H = −
∑

β i(V̄β)DVβ
. One can see that the right-hand side of

this formula is independent of the choice of the horizontal frame field {Vα} for H1,0. To simplify

the computations, we can check it at a point v0 ∈ PTM, and choose {Vα} to be a horizontal

frame field normal at v0. Let {V1 · · ·Vn} be consistent with the orientation of M , and let {ωβ}

be the dual coframe field of {Vα}, then, it suffices to show that, at v0, ∂̄
∗
H = −

∑
β i(V̄β)DVβ

is

achieved on the (p, q)-form w = fω1∧· · ·∧ωp∧ ω̄1∧· · ·∧ ω̄q, where f is a complex differentiable

function defined near v0 with zero homogeneous with repect to v. Thus at the point v0, the

following calculations are valid:

∗w = ∗(fω1 ∧ · · · ∧ ωp ∧ ω̄1 ∧ · · · ∧ ω̄q)

= (i)n(−1)
1
2 n(n−1)+npfωq+1 ∧ · · · ∧ ωn ∧ ω̄p+1 ∧ · · · ∧ ω̄n,

∂H ∗ w = (i)n(−1)
1
2 n(n−1)+np(DVαf)ωα ∧ ωq+1 ∧ · · · ∧ ωn ∧ ω̄p+1 ∧ · · · ∧ ω̄n,

and

∗((DVαf)ωα ∧ ωq+1 ∧ · · · ∧ ωn ∧ ω̄p+1 ∧ · · · ∧ ω̄n)

= (−i)n(−1)
1
2 n(n−1)+α−1+p+np(DVαf)ω1 ∧ · · · ∧ ωp ∧ ω̄1 ∧ · · · ∧ ˆ̄ω

α
∧ · · · ∧ ω̄q,

then

∂̄∗Hw = − ∗ ∂H ∗ w

= −(−1)p+α−1(DVαf)ω1 ∧ · · · ∧ ωp ∧ ω̄1 ∧ · · · ∧ ˆ̄ω
α
∧ · · · ∧ ω̄q

= −
∑

α

i(V̄α)DVαw.

This ends the proof.

Lemma 3 [8] Let D : χ(TCM̃) −→ χ(T ∗
CM̃ ⊗ TCM̃) be the Chern-Finsler connectin on

M̃ . Then, for any Vα, Vβ ∈ χ(T 1,0M̃), we have

DVαVβ −DVβ
Vα = [Vα, Vβ ] + θ(Vα, Vβ), (27)
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DVα V̄β −DV̄β
Vα = [Vα, V̄β ] + τ(Vα, V̄β) + τ̄(Vα, V̄β), (28)

where θ is the (2, 0)-torsion of the connection, and τ is the (1,1)-torsion of the connection.

Lemma 4 [8] Let D : χ(T 1,0M̃) −→ χ(T ∗
CM̃ ⊗ T 1,0

C M̃) be the Chern-Finsler connection

on M̃ . Then, for any Vα, Vβ ∈ χ(T 1,0M̃), we have

DVαDVβ
−DVβ

DVα = D[Vα,Vβ ] + Ω(Vα, Vβ), (29)

DVαDV̄β
−DV̄β

DVα = D[Vα,V̄β ] + Ω(Vα, V̄β), (30)

DV̄α
DV̄β

−DV̄β
DV̄α

= D[V̄α,V̄β ], (31)

where Ω(Vα, Vβ) = 0 is the (2,0)-form curvature operator, Ω(Vα, V̄β) is the (1,1)-form curvature

operator.

Theorem 1 (Formula WFI) On an n-dimensional compact strong Kähler-Finsler mani-

fold, if {Vα} is a local horizontal frame field, and {ωβ} is its dual coframe, then,

�H = −
∑

α

D2
VαV̄α

+
∑

α

ω̄α ∧
∑

β

i(V̄β)
(
D[Vβ ,V̄α] + Ω(Vβ , V̄α)

)
, (32)

�H = −
∑

α

D2
V̄αVα

−
∑

α

ωα ∧
∑

β

i(Vβ)
(
D[Vα,V̄β ] + Ω(Vα, V̄β)

)
. (33)

If the (1, 1)-torsion τ of the Chern-Finsler connection is zero, {Vα} is a normal horizontal

frame, that is, DVα V̄β = 0, DVβ
V̄α = 0, then, by (28), we have [Vα, V̄β ] = 0 and D[Vα,V̄β ] = 0.

Therefore, (32) and (33) reduce respectively to

�H = −
∑

α

D2
VαV̄α

+
∑

α

ω̄α ∧
∑

β

i(V̄β)Ω(Vβ , V̄α), (34)

�H = −
∑

α

D2
V̄αVα

−
∑

α

ωα ∧
∑

β

i(Vβ)Ω(Vα, V̄β). (35)

Remark 3 If the strong Kähler-Finsler manifold is a Kähler manifold, then, (32), (33)

and (34), (35) coincide with (2.12), (2.13) of WFIII in [4].

Proof of Theorem 1 Let p ∈ M , and {Vα} be normal at v0 ∈ T 1,0
p M , π(v0) = p.

Because D2
VαV̄α

= DVαDV̄α
−DDVα V̄α

, we have D2
VαV̄α

= DVαDV̄α
. By conjugation, (33) can be

obtained by (32), so, it suffices to prove (32).

Obviously, the right-hand side of (32) is independent of the choice of the horizontal frame

field {Vα} of (1,0)-form, and we shall verify the formula at v0 relative to this {Vα}. With all

computations below understood to hold only at v0, we have

∂̄H ∂̄
∗
H =

∑

α

ω̄α ∧DV̄α
(−

∑

β

i(V̄β)DVβ
) = −

∑

α

ω̄α ∧ (
∑

β

i(V̄β)DV̄α
DVβ

),

∂̄∗H ∂̄H = −
∑

β

i(V̄β)DVβ
(
∑

α

ω̄α ∧DV̄α
) = −

∑

β

i(V̄β)(
∑

α

ω̄α ∧DVβ
DV̄α

)

= −
∑

α,β

i(V̄β)ω̄α ∧DVβ
DV̄α

+
∑

α

ω̄α ∧
∑

β

i(V̄β)DVβ
DV̄α

= −
∑

α

DVαDV̄α
+

∑

α

ω̄α ∧
∑

β

i(V̄β)DVβ
DV̄α

.
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Hence, by (30)

�H = ∂̄H ∂̄
∗
H + ∂̄∗H ∂̄H

= −
∑

α

DVαDV̄α
+

∑

α

ω̄α ∧
∑

β

i(V̄β)(DVβ
DV̄α

−DV̄α
DVβ

)

= −
∑

α

D2
VαV̄α

+
∑

α

ω̄α ∧
∑

β

i(V̄β)(D[Vβ ,V̄α] + Ω(Vβ , V̄α)).

This ends the proof.

Corollary 1 Assume that the (1, 1)-tortion τ of the Chern-Finsler connection is zero. If

φ is of type (p, 0), 0 ≤ p ≤ n, then

�Hφ = −
∑

α

D2
VαV̄α

φ, (36)

and if φ is of type (p, n), 0 ≤ p ≤ n, then

�Hφ = −
∑

α

D2
VαV̄α

φ+
∑

α

Ω(Vα, V̄α)φ. (37)

If φ is of type (0, q), 0 ≤ q ≤ n, then

�Hφ = −
∑

α

D2
VαV̄α

φ+
∑

α

Ω(Vα, V̄α)φ, (38)

and if φ is of type (n, q), 0 ≤ q ≤ n, then

�Hφ = −
∑

α

D2
VαV̄α

φ. (39)

For applications, it is important to have explicit formula also for �H |φ|2 for (p, q)-forms

φ, where |φ|2 = 〈φ, φ〉 (where 〈, 〉 is defined by (20)). If {Vα} is a horizontal frame field, using

(36), we can get

−�H |φ|2 =
∑

α

|DV̄α
φ|2 +

∑

α

|DVαφ|
2 +

∑

α

〈D2
VαV̄α

φ, φ〉 +
∑

α

〈φ,D2
V̄αVα

φ〉. (40)

To simplify (40), let φ be a harmonic form of type (p, 0), then, it follows from Corollary 1,

for such φ,

−�H |φ|2 =
∑

α

|DV̄α
φ|2 +

∑

α

|DVαφ|
2 −

∑

α

〈φ,Ω(Vα, V̄α)φ〉. (41)

The last term can be further simplified. Since the consideration will be localized at a point, let

p ∈M , fix v0 ∈ T 1,0
p M . On horizontal co-vector of type (1,0) at v0, the pairing ξ, η −→ 〈ξ, η〉 is

hermitian metric defined by (20). Now, under the condition of the (1,1)-tortion τ of the Chern-

Finsler connection being zero,
∑

α Ω(Vα, V̄α) is the anti-hermitian transformation relative to

the inner product 〈ξ, η〉 at v0. In fact, from (28) and (30), we get 0 = [Vα, V̄α] = VαV̄α − V̄αVα

and Ω(Vα, V̄α) = DVαDV̄α
−DV̄α

DVα , then, we have

0 = [Vα, V̄α]〈ξ, η〉 = 〈(DVαDV̄α
−DV̄α

DVα)ξ, η〉 + 〈ξ, (DV̄α
DVα −DVαDV̄α

)η〉,

that is,

〈Ω(Vα, V̄α)ξ, η〉 = 〈ξ,Ω(Vα, V̄α)η〉 = −〈ξ,Ω(Vα, V̄α)η〉.
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Thus, (
∑

α Ω(Vα, V̄α)) is diagonalized by some basis {ω1, · · · , ωn} of horizontal covectors of type

(1, 0) normalized at v0, which satisfies 〈ωα, ωβ〉 = Gαβ̄ = δαβ̄ . Let (
∑

α Ω(Vα, V̄α))ωα = λαω
α

for α = 1, · · · , n, i.e., the λα’s are the (real) eigenvalues of (
∑

α Ω(Vα, V̄α)). If the horizontal

frame {Vα} is normalized at v0 and {ωα} is its dual frame, we denote KF (Vα) by the horizontal

holomorphic flag curvature of the strongly pseudoconvex Finsler metric F along the horizontal

vector Vα ∈ H1,0
v0

, then λα = 1
2KF (Vα).

Now, return to the last term of (41) and write

φ =
∑

A

φAω
A,

at v0 on PTM, where A runs through the ordered multi-index (i1, · · · , ip) with 1 < i1 < · · · <

ip ≤ n, φA is zero homogeneous with respect to fibre coordinates, and ωA = ωi1 ∧ · · · ∧ωip . For

simplicity of notation, suppose A = (1, 2, · · · , p), then

(
∑

α

Ω(Vα, V̄α))ωA =

p∑

α=1

ω1 ∧ · · · ∧ (
∑

α

Ω(Vα, V̄α)ωα) ∧ · · · ∧ ωp

=

p∑

α=1

λαω
1 ∧ · · · ∧ ωp =

1

2

∑

α∈A

KF (Vα)ωA,

where by abuse of notation, we also write A for the unordered set (i1, · · · , ip), then, we have

〈φ,Ω(Vα, V̄α)φ〉 = 〈Ω(Vα, V̄α)φ, φ〉 =
1

2

∑

α∈A

KF (Vα)|φA|
2. (42)

It remains to observe that 〈
∑

α Ω(Vα, V̄α)ωα, ωα〉 = 〈
∑

α Ω(Vα, V̄α)Vα, Vα〉 under the horizontal

fame {Vα} of type (1,0) normalized at v0 on PTM, the λα’s can also be characterized by∑
α Ω(Vα, V̄α)Vα = λαVα for α = 1, · · · , n. Thus, (42) together with (41) proves the following.

Theorem 2 (Formula WFII) On an n-dimensional compact strong Kähler-Finsler man-

ifold M , let p ∈M , assume that {Vα} is a local horizontal frame field of H1,0
v0

normalized at v0,

π(v0) = p, and {ωβ} is its dual coframe field. Furthermore, let φ be a horizontal harmonic form

of type (p, 0), and write φ =
∑

A φAω
A, if the (1,1)-torsion τ of the Chern-Finsler connection

is zero, then, we have

−�H |φ|2 =
∑

α

|DV̄α
φ|2 +

∑

α

|DVαφ|
2 −

1

2

∑

α∈A

KF (Vα)|φA|
2. (43)

3 Hodge-Laplace Operator and Weitzenböck Formula on a Holomor-

phic Vector Bundle Over PTM

Let E be a holomorphic vector bundle of rank r over a complex Finsler manifold M of

dimension n with projection π. We identity M with the zero section of E. Let E′ = E\o(E).

Then C′ acts on E′ by scalar multiplication. The projective bundle P (E) is defined by P (E) =

E′/C′ with projection p : P (E) −→ M . The pull-back Ẽ = p−1(E) is a holomorphic vector

bundle of rank r over P (E) with projection p̃ : Ẽ −→ E. Let L(E) be the tautological line

subbundle of Ẽ.
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We summarize the construction in the following diagram:

L(E) ⊂ Ẽ

P (E) M

E-

-

? ?

p̃

π̃ π

p

(44)

Let L′(E) be L(E) minus its zero section P (E). There is a natural map L(E) −→ E, which

maps L′(E) biholomorphically to E′ and collapses the zero section P (E) of L(E) to the zero

section M of E by p; Thus, L(E) is a blow-up of E along the zero section M of E (cf. [16]).

In preparation, we explain local coordinate systems associated to the bundles mentioned

in (44). Let z = (z1, · · · , zn) be a local coordinate system in M , and ξ = (ξ1, · · · , ξr) the local

fibre coordinate system defined by a local holomorphic frame field e = (e1, · · · , er) of E. Then,

(z, ξ) = (z1, · · · , zn, ξ1, · · · , ξr) is local coordinate system for E. This can be considered also

as a local coordinate system for P (E) as long as (ξ1, · · · , ξr) is considered as a homogeneous

coordinate system for fibre. Setting

Zi = ξi ◦ p̃. (45)

We take (z, ξ, Z) = (z1, · · · , zn, ξ1, · · · , ξr, Z1, · · · , Zr) as a local coordinate system for Ẽ =

p−1(E) with the understanding that (ξ1, · · · , ξr) is a homogeneous coordinate system. Then

the line bundle L(E) is defined by

(Z1 : · · · : Zr) = (ξ1 : · · · : ξr). (46)

Given a strongly pseudoconvex complex Finsler metric F (z, ξ) in E, we set G(z, ξ) =

F 2(z, ξ) = Gαβ̄(z, ξ)ξαξβ , then F induces a Hermitian metric Ĝ(z, ξ, Z) in the vector bundle

Ẽ over P (E), so that Ĝ(z, ξ, Z) = Gαβ̄(z, ξ)ZαZβ on the line bundle L(E). By definition,

G(z, ξ) = Ĝ(z, ξ, ξ) is restricted to L′(E), Ĝ coincides with G. Denote the metric of Ẽ by 〈 〉

and its connection by ▽, and the connection forms ω = (ωα
β ) defined by

ωα
β = Gτ̄α∂Gβτ̄ = Γ̃α

β;µdzµ + Γ̃α
βγdξγ , (47)

where Γ̃α
β;µ = Gτ̄αGβτ̄ ;µ, Γ̃α

βγ = Gτ̄αGβτ̄γ , and we have Γ̃α
βγξ

β = Γ̃α
βγξ

γ = 0.

The curvature form Ω = (Ωα
β) of the connection ω = (ωα

β ) is given by

Ωα
β = ∂̄ωα

β . (48)

In this article, we shall use only the horizontal part ▽H of the connection ▽, its horizontal

parts of the connection 1-forms are given by

(ωα
β )H = Γ̃α

β;µdzµ. (49)

Let Ai (Ẽ) (resp. Ap,q (Ẽ)) be the space of complex horizontal i-forms (resp. (p, q)-

forms) on PTM with value in Ẽ, precisely, if Ai(resp. Ap,q) denotes the space of complex

horizontal i-forms (resp. (p, q)-forms) on PTM, then by definition Ai (Ẽ) = Γ∞(Ẽ)⊗Ai (resp.

Ap,q (Ẽ) = Γ∞(Ẽ) ⊗ Ap,q). Recall that ▽H is a C-linear map: A0(Ẽ) −→ A1(Ẽ), and ▽H

decomposes into a sum of two operators:▽
′H : A0(Ẽ) −→ A1,0(Ẽ), ∂̄H : A0(Ẽ) −→ A0,1(Ẽ),

that is,

▽H = ▽
′H + ∂̄H . (50)
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If φ = eα ⊗ φα is Ẽ-valued horizontal (p, q)-forms on PTM, where φα is a horizontal

(p, q)-form on PTM for each α and eα ∈ Γ∞(Ẽ), then by definition

▽Hφ = ▽Heα ⊗ φα + eα ⊗ dHφ
α. (51)

This is well-defined and furthermore, ▽H becomes an antiderivation

▽H(φ ∧ µ) = (▽Hφ) ∧ µ+ (−1)iφ ∧ dHµ, (52)

where φ ∈ Ai(Ẽ) and µ is a horizontal form on PTM. Correspondingly, we obtain antiderivations

▽
′H : Ap,q(Ẽ) −→ Ap+1,q(Ẽ), ∂̄H : Ap,q(Ẽ) −→ Ap,q+1(Ẽ).

Now, assume that M is a strongly pseudoconvex compact Finsler manifold with a complex

Finsler metric F , and the natural Hermitian metric on Ẽ induced by F will also be denoted

by 〈 〉. Then a pointwise inner product denoted by (,) is defined on A∗ = ⊗iA
i(Ẽ), namely, if∑

σ sσ ⊗ φσ and
∑

α eα ⊗ ψα are given with sσ, eα ∈ Γ∞(Ẽ), and φσ, ψα ∈ A∗(≡ ⊗iA
i) for all

σ, α, then by definition

(
∑

σ

sσ ⊗ φσ,
∑

α

eα ⊗ ψα) ≡
∑

σ,α

〈sσ, eα〉〈φ
σ, ψα〉. (53)

If φ ∈ A∗(Ẽ), define |φ|2 = (φ, φ). Extending the operator ∗ to Ap,q(Ẽ) −→ An−q,n−p(Ẽ) by

letting it act on the second variable, then, ∂̄∗H can now be extended to Ap,q(Ẽ) −→ Ap,q−1(Ẽ)

by defining

∂̄∗H = − ∗▽
′H ∗ . (54)

The horizontal Laplacian �H can consequently be extended to Ap,q(Ẽ) −→ Ap,q(Ẽ) by

�H = ∂̄H ∂̄
∗
H + ∂̄∗H ∂̄H . (55)

The kernel of �H : Ap,q(Ẽ) −→ Ap,q(Ẽ) is the space of harmonic Ẽ-valued horizontal

(p, q)-forms. To study this space, the following Weitzenböck formula would be useful. For

notation, let {eα} be a local holomorphic frame of Ẽ and {Vα} be a horizontal frame field of

(1,0)-form.

Theorem 3 (Formula WFIII) Let E be a holomorphic vector bunlde of rank r over

a complex compact strong Kähler-Finsler manifold M , and the pull-back Ẽ = p−1(E) is a

holomorphic vector bundle over P (E). Given φ ∈ Ap,q(Ẽ), relative to a local holomorphic

frame {eα} of Ẽ, write φ =
∑

α eαφ
α. If {Vα} is a horizontal frame field of (1, 0)-form on PTM,

and D is the Chern-Finsler connection, then,

�Hφ =
∑

α

eα(�Hφ
α) −

∑

α,µ

(▽
′H
Vµ
eα)(DV µ

φα) +
∑

α,ξ,µ

eξ{i(Vµ)(Ωξ
α)H ∧ i(V µ)φα}. (56)

Proof We need to compute the left-hand side directly:

∂̄H ∂̄
∗
Hφ = ∂̄H(− ∗▽

′H∗)φ = ∂̄H [− ∗ (
∑

α

▽
′Heα ∧ ∗φα +

∑

α

eα∂̄H ∗ φα)]

= −
∑

α,ξ

eξ∂̄H ∗ [(ωξ
α)H ∧ ∗φα] +

∑

α

eα(∂̄H ∂̄
∗
Hφ

α),

∂̄∗H ∂̄Hφ = − ∗▽
′H ∗ (

∑

α

eα∂̄Hφ
α) =

∑

α

eα∂̄
∗
H ∂̄Hφ

α − ∗(
∑

α

▽
′Heα ∧ ∗∂̄Hφ

α).
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Then,

�Hφ =
∑

α

eα(�Hφ
α) −

∑

α,ξ

eξ∂̄H ∗ [(ωξ
α)H ∧ ∗φα] − ∗(

∑

α

▽
′Heα ∧ ∗∂̄Hφ

α). (57)

Now, if {ωα} is the horizontal coframe field of type (1,0) dual to {Vα} and ψ ∈ Ap,q, then,

∗(ωα ∧ ∗ψ) = i(V̄α)ψ. (58)

Hence, writing (ωξ
α)H = Γ̃ξ

α;µω
µ, by (26) and (58), we have

∂̄H ∗ [(ωξ
α)H ∧ ∗φα] = ∂̄H ∗ (

∑

µ,α

Γ̃ξ
α;µω

µ ∧ ∗φα) =
∑

µ,α

∂̄H i(Vµ)(ωξ
α)H ∧ i(V̄µ)φα

= −
∑

µ,α

i(Vµ)(Ωξ
α)H ∧ i(V̄µ)φα,

∑

α

(▽
′Heα ∧ ∗∂̄Hφ

α) = ∗(
∑

α,ξ,µ

eξΓ̃
ξ
α;µω

µ ∧ ∗∂̄Hφ
α) =

∑

α,ξ,µ

eξΓ̃
ξ
α;µi(V̄µ)∂̄Hφ

α

=
∑

α,µ

(▽
′H
Vµ
eα)(DV µ

φα).

This combined with (57) yields (56).

Remark 4 From formula (43) of WFII, one can see that formula (56) of WFIII involves

not only the curvature of the strongly pseodoconvex Finsler metric of M , but also the curvature

of the holomorphic vector bundle Ẽ on P (E). In many situations, one would like to draw

conclusions solely from the given data on Ẽ over P (E) without being handicapped by the

Finsler manifold M itself. In such case (36) comes in hand because the curvature term of M

disappears from that formula. Thus, if φ ∈ Ap,0(Ẽ), then (36) implies

�Hφ = −
∑

α,β

eα(D2
VαV β

φα) −
∑

α,µ

(▽
′H
Vµ
eα)(DV µ

φα) +
∑

α,ξ,µ

eξ{i(Vµ)(Ωξ
α)H ∧ i(V µ)φα}. (59)

In the following, we introduce a Weitzenböck formula for the line bundle L(E), which is

useful for proving Bochner-Kodaira type vanishing theorem. Let Ap,q
o (Ẽ) denote the elements

in Ap,q(Ẽ) with compact support and let {Vα} be a horizontal frame field, {ωα} be the dual

coframe field of {Vα}, and dv be the volume element of PTM. Given φ ∈ Ap,q
o (Ẽ), write locally

φ =
∑

α eαφ
α, where {eα} is a holomorphic frame field of Ẽ. Define a global (0,1)-form ϕ by

ϕ ≡
∑

β

(
∑

α

eα(DV β
φα), φ)ωβ ,

where (, ) is understood in the sense of (53). It is easy to check that φ is indeed globally defined,

i.e., independent of the choices of {eα}, {Vα}. δHϕ is a function which, by Proposition 3, is

given by

δHϕ = ∂
∗

Hϕ = −(
∑

α,β

eαD
2
VβV β

φα, φ) − (
∑

α,β

(▽Vβ
eα)(DV β

φα), φ) −
∑

α,β

|eαDV β
φα|2.

It is easy to prove
∫
PTM δHϕdv = 0. Hence,

∫

PTM

(
∑

α,β

eαD
2
VβV β

φα +
∑

α,β

(▽Vβ
eα)(DV β

φα), φ)dv = −

∫

PTM

∑

α,β

|eαDV β
φα|2dv. (60)
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Now, suppose φ ∈ Ap,0
o (Ẽ), then, (59) and (60) yield:

∫

PTM

(
∑

α,ξ,µ

eξ{i(Vµ)(Ωξ
α)H ∧ i(V µ)φα}, φ)dv =

∫

PTM

(�Hφ, φ)dv −

∫

PTM

∑

α,β

|eαDV β
φα|2dv.

(61)

Now, we will consider a special case where Ẽ is a line bundle L(E) and φ is of type

(p, n)(0 < p ≤ n). In this case, a local holomorphic frame of L(E) is just a locally nowhere

zero holomorphic section e of E. Then, we may simply write φ = eφ′, where φ′ is an ordinary

horizontal (p, n)-form. The horizontal part of the curvature of L(E) relative to e is just a

horizontal (1, 1)-form Ω. Therefore, it follows from (37), (42), (56), and (60) that

∫

PTM

|e|2(
∑

β

i(Vβ)Ω ∧ i(V β)φ′, φ′)dv

=

∫

PTM

(�Hφ, φ)dv −

∫

PTM

|e|2
∑

β

|DV β
φ′|2dv −

1

2

∫

PTM

|e|2
∑

α∈A

KF (Vα)|φA|
2dv. (62)

Now,
√
−1
2π Ω is a real (1, 1)-form on PTM, so, there exist locally n continuous (1, 0)-forms

ω1, · · · , ωn, such that 〈ωα, ωβ〉 = δαβ and

Ω =
∑

α

µαω
α ∧ ωα, (63)

where the µα’s are real-valued continuous functions which, at each point, give the eigenvalues

of Ω. The operator
∑

β i(Vβ)Ω ∧ i(V β) in (62) is independent of the choice of {Vα}. Thus, by

computing at some fixed point v0 ∈ PTM, we may assume that {Vα(v0)} is dual to {ωα(v0)},

i.e., ωα(Vβ)(v0) = δα
β for all α, β at v0, then,

∑

β

i(Vβ)Ω ∧ i(V β) =
∑

β

µβω
β ∧ i(V β). (64)

Furthermore, it is straightforward to check that, if ϕ, ψ are ordinary horizontal forms and

ωα(Vβ) = δα
β , then,

〈ωβ ∧ ϕ, ψ〉 = 〈ϕ, i(V β)ψ〉. (65)

Using the usual multi-index notation ωA = ωα1 ∧ · · · ∧ωαp for A = (α1, · · · , αp), α1 < · · · < αp

and writing φ′ = (
∑

A φ
′
Aω

A) ∧ ω̄1 ∧ · · · ∧ ω̄n, we obtain from (64) and (65)

〈
∑

β

i(Vβ)Ω ∧ i(V β)φ′, φ′〉 =
∑

β

µβ〈 i(V β)φ′, i(V β)φ′〉 =
∑

A

(
n∑

β=1

µβ)|φ′A|
2.

Note that the last expression is independent of v0. Thus, by by combining with (64), we have

Theorem 4 (Formula WFIV) Under the assumptions in Formula WFIII, in addition,

we assume that the (1, 1)-tortion τ of the Chern-Finsler connection is zero. Suppose eφ′ is a

horizontal (p, n)-form with values in a line bundle L(E) (e being a local holomorphic frame

of L(E)), Ω is the horizontal part of curvature form of L(E) relative to e which is locally

diagonalized as in (63), µβ ’s are the eigenvalues of Ω, KF (Vα) is the horizontal holomorphic

flag curvature along its horizontal frame {Vα} ∈ H1,0 and φ′ = (
∑

A φ
′
Aω

A) ∧ ω̄1 ∧ · · · ∧ ω̄n. If
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eφ′ has a compact support, then
∫

PTM

|e|2
∑

A

(

n∑

β=1

µβ)|φ′A|
2dv =

∫

PTM

(�H(eφ′), eφ′)dv −

∫

PTM

|e|2
∑

β

|DV β
φ′|2dv

−
1

2

∫

PTM

|e|2
∑

α∈A

KF (Vα)|φA|
2dv. (66)

4 Bochner Vanishing Theorems

Theorem 5 Assume thatM is an n-dimensional compact strong Kähler-Finsler manifold,

the (1, 1)-tortion of the Chern-Finsler connection vanishes. Given a horizontal harmonic form φ

of type (p, 0) on PTM, if the (horizontal) holomorphic flag curvature along its horizontal frame

{Vα} ∈ H1,0 is non-positive, then, φ has a constant absolute norm.

Proof Let φ be a horizontal harmonic (p, 0)-form on PTM. If {Vα} is a local horizontal

frame field, then from WFII and (43),we have

−�H |φ|2 =
∑

α

|DV̄α
φ|2 +

∑

α

|DVαφ|
2 −

1

2

∑

α∈A

KF (Vα)|φA|
2.

Since KF (Vα) ≤ 0, |φ|2 is subharmonic. By the compactness of M and the general maximum

principle, |φ|2 is constant.

Theorem 6 (Kodaira vanishing theorem) Let M be an n-dimensional compact strong

Kähler-Finsler manifold, E be a holomorphic vector bundle of rank r over M , the pull-back

Ẽ = p−1(E) be a holomorphic vector bundle over P (E), and L(E) be the line bunlde of Ẽ.

Assumptions are as in Formula WFIV. If the horizontal part of the curvature of L(E) is quasi-

positive definite and the horizontal holomorphic flag curvature of M along its horizontal frame

{Vα} ∈ H1,0 is quasi-positive definite, then there is no nonzero harmonic horizontal (p, n)-form

over PTM with values in L(E) for all 0 < p ≤ n.

Proof Let φ be a harmonic horizontal (p, n)-form over PTM with values in L(E), 0 <

p ≤ n. By (66)

∫

PTM

|e|2
∑

A

(

n∑

β=1

µβ)|φ′A|
2dv +

1

2

∫

PTM

|e|2
∑

α∈A

KF (Vα)|φA|
2dv ≤ 0,

where φ′ is a horizontal (p, n)-form over PTM and µβ ’s are the eigenvalues of the horizontal part

of the curvature form Ω of L(E), KF (Vα) is the horizontal holomorphic flag curvature along

its horizontal frame {Vα} ∈ H1,0. If the horizontal part of the curvature form Ω is positive

definite at v0 ∈ PTM, i.e., µβ(v0) > 0 for all β, and the horizontal holomorphic flag curvature is

quasi-positive definite, i.e.,
∑

αKF (Vα)(v0) > 0, all the φ′A’s must vanish in a neighborhood U

of v0. In other words, φ ≡ 0 on U . If L(E) is positive, i.e., Ω is positive definite everywhere, and

the horizontal curvature is positive definite everywhere, then this shows φ ≡ 0 on PTM and the

theorem is already proved. To conclude the proof in the general case of the quasi-positive L(E)

and the quasi-positive horizontal flag curverture, it suffices to invoke the Aronsajn-Carlemann

unique continuation theorem ([4], [17] p.248).

Remark 5 In compact Kähler manifolds, Kodaira vanishing theorem plays an important

role in proving the imbedding theorem, that is, every compact Kähler manifold with positive

line bundle can be imbeded into some P
N (cf. [5]).
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Remark 6 A strongly pseudoconvex complex Finsler metric F is called Kähler if and

only if

(Γα
µ,ν − Γα

ν,µ)vµ = 0.

Recently, Chen and Shen [18] pointed that Kähler Finsler metrics are actually strong Kähler.

So, the results of this article are valid in Kähler Finsler manifolds.
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