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Abstract By using the Chern-Finsler connection and complex Finsler metric, the Bochner
technique on strong Kéhler-Finsler manifolds is studied. For a strong Kéhler-Finsler man-

ifold M, the authors first prove that there exists a system of local coordinate which is

normalized at a point v € M = Tl’OM\o(M)7 and then the horizontal Laplace operator

O for differential forms on PTM is defined by the horizontal part of the Chern-Finsler

connection and its curvature tensor, and the horizontal Laplace operator (g on holomor-

phic vector bundle over PTM is also defined. Finally, we get a Bochner vanishing theorem

for differential forms on PTM. Moreover, the Bochner vanishing theorem on a holomorphic

line bundle over PTM is also obtained
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Bochner [1, 2] initiated a method, the well-known “Bochner technique”, which used the
Laplace operator and the general maximum principle of E.Hopf to deal with the relation between
vector or tensor fields and the curvature of manifolds, and got the global properties of manifolds.
From then on, the Bochner technique became a very useful method in geometrical study. Such
as, both in Riemannian and Kahlerian manifolds, the Bochner technique were discussed in
details in [3-5]. Recently, under the initiation of S.S. Chern, the global differential geometry of
real and complex Finsler manifolds gained a great development [6-8], Abate and Pateizio [8] set
up a Cartan-Finsler connection in a real Finsler manifold and a Chern-Finsler connection in a
complex Finsler manifold. By using the non linear connection associated to the Cartan-Finsler
connection, Zhong Tongde and Zhong Chunping [9] discussed the Bochner technique in a real
Finsler manifold. In this article, based on [10], we further discuss the Bochner technique for
a strong Kéahler-Finsler manifold, and obtain some Weitzenbock formulas on strong Kéahler-
Finlser manifolds. Using the Weitzenbtck formulas, we get the Bochner vanishing theorems on
strong Kéahler-Finlser manifolds.
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1 The Normalizations of Coordinates and Frames

Definition 1 [8] A strongly pseudoconvex complex Finsler metric on a complex manifold
M is a continuous function F : TH9M — R satisfying

(i) G = F?is smooth on M = THOM\o(M);

(i) F(v) >0 for all v € M;

(iii) F(\) = |MF(v) for all v € TH°M and ) € C;

(iv) The Hermitian matrix (G, 3) is positive definite on M, where

0%G

v dvs’

The derivatives with respect to the z-coordinates will be denoted by indices after a semicolon,

Gop =

for instance,
0?G G 0?°G
0zr9z O TN T o
A manifold M endowed with a strongly pseudoconvex complex Finsler metric will be called

G =

a strongly pseudoconvex complex Finsler manifold.
Condition (iv) allows us to introduce a Hermitian structure on the vertical bundle V.
Indeed, if v € M, and Wi, Wa € V, with W; = W20, (j = 1,2), we set

<W17 W2>'U = GQB(U)WIQWéjv (1)

then, there is a unique Chern-Finsler connection D associated to the Hermitian structure in-
duced by F. Being Chern-Finsler connection D a good complex vertical connection, it extends
to a complex linear connection on M (still called the Chern-Finsler connection in this article).
Using the complex horizontal map © : V — H, we can transfer the Hermitian structure (,) on
‘H just by setting

VH,K € H,, (H,K), = (07 (H),0 Y (K)),, (2)

and then, we can define a Hermitian structure on VM by requiring H to be orthogonal to V.

It is easy to check that these definitions are compatible enough so to get
X(Y,Z) = (DxY, Z) + (Y, Dx 2), (3)

for any X € TH°M, and Y, Z € x(T"OM).
The complex nonlinear connection D : x(TM) — x(TgM @ TH°M) associated to the
Chern-Finsler connection is defined as follows.
Take ¢ € x(T*'M),p € M, and set v = £(p), then
- 85(1 a 8
De = (55w + i) )ar o 2| (@

OzH p

where I'}}’s are the Christoffel symbols of the complex nonlinear connection D. In local coordi-

nates, they can be expressed as

I = Ng;uvﬁ =GGryp (5)

Set
TG, = 9s(T}) = GT0,(Gpr), (6)



No.1 J.X. Xiao et al: BOCHNER TECHNIQUE ON STRONG KAHLER-FINSLER MANIFOLDS 91

which is the horizontal part of the Chern-Finsler connection.

Definition 2 [8] Assume that (M, F) is a strongly pseudoconvex complex Finsler man-
ifold, if the horizontal part of (2,0)-torsion 6 for the Chern-Finsler connection is zero, that is,
for arbitrary H, K € H,0(H,K) = 0, then F is called a strong Kéhler-Finsler metric of M.
In local coordinates, the necessary and sufficient conditions of F' to be a strong Kéhler-Finsler
metric of M are

D =Th (7)

Let (M, F) be a strongly pseudoconvex complex Finsler manifold, then, we may associate
the fundamental form
d =iG,5d2" AdZ”, (8)

which is a well-defined real valued (1,1)-form on M.

Proposition 1 [8] The differential form ® is dgy-closed, that is, dg® = 0, if and only if
the metric F' is a strong Kahler-Finsler metric.

It is easily seen that the condition dy® = 0 is equivalent to

5G0¢B _ 5GVB 5Ga@ _ 5Ga,—y (9)

527 oz’ 5z 0zP

ie.,
IG5, =%
Definition 3 Assume that (M, F') is a strongly pseudoconvex complex Finsler manifold,
let v € M = THOM\o(M), then, a complex coordinate system {z,v} around vy is said to be

normal at point vg iff
Gog(vo) = 04,
dHGaB(UO) = 0,

for all a, 8. If a normal complex coordinate system exists at vy, then obviously, dg® = 0 is the
additional condition of (M, F') being a strong Kéhler-Finsler manifold. Conversely, we have
Lemma 1 Let (M, F) be a strong Kéhler-Finsler manifold. Given a point vy € M =
THOM\o(M), then there exists a complex coordinate system normal at vg (cf. [10, 11]).
Proof Let (2!,v%) be an arbitrary coordinate function around v, such that (2, v%)(vg) =
(0,v%(vp)) for all i,cr. Let ® =iG,5dz*dz?, where

G.3= Gpa, (10)
for all o, 8. It is no matter we may assume
GQB(UQ) =043 (11)
Since dg® = 0, by the assumption,
I'5.,(vo) =T, 5(vo). (12)

. . . ’ ’ .
We introduce a new coordinate function (z *,v *) with

’

1
2% =24 51—‘%;,7(7)0)262’7,
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for all a. Then (12) yields immediately for all «

dz'® = dz* + I‘gw(vo)z"ydzﬁ. (13)

Writing & = iéagdzlo‘délﬁ, it follows from (9)—(12) and (6) that Jg‘f = 0 for «, 3,7. Thus,

dHéag(Uo) =0 for all o, 5. Tt is clear from (10) and (12) that éag(vo) = 0,- This completes
the proof.

Definition 4 Assume that {V4,---,V,} is a local horizontal frame field of (1, 0)-form
around vy € M, that is, V4,---,V, are the horizontal vector fields of (1,0)-form defined near

vo, satisfying (Va, Vg) = 0,5 for all a, 3 (where (,) is the Hermitian inner product on TOM
restricted on H). Then, the local horizontal frame {V,} of (1,0)-form is called normalized at
vg, if and only if for all a, 8

Dy, Vs(vg) =0, (14)

where D is the Chern-Finsler connection. (14) implies that
Dy, Vs(vo) = Dy, Vs (vo) = Dy, Vs(vo) = 0, (15)
for all o, 3. Thus, we may write
Dy, Vs = T3 4Vs (16)
for some complex-valued functions {Fi; 5}, then,
Dy, Vs =19 _,Vs. (17)
Because 0 = Vo (V;3, Vs) = (Dv, Vg, Vs) 4 (V, Dy, Vs), we obtain

Dy Vs=—Y T% Vs (18)
B

So, (15) follows from (17) and (18).

Lemma 2 Let (M, F) be a strong Kéhler-Finsler manifold, vy € M, then, there exists a
frame field of (1, 0)-form of H normalized at point vg (cf. [4, 11]).

Remark 1 Assume that the local horizontal frame {V,} of (1,0)-form is normal at vy €
M, and its dual coframe is {w®}. We have

Dy, wP(vg) = D(,awﬁ(vo) =0.
Remark 2 Assume that {V,} is normal at vy, then for all «, 3,

[VOU Vﬁ](vo) =0, [Va, VE](UO) # 0.

2 Hodge-Laplace Operator and Weitzenbock Formula on PTM

In the following, we introduce the definition of Hodge-Laplace operator on the projectivized
tangent bundle (PTM) in a complex Finsler manifold (cf. [10, 12]).
Let (M, F') be an n-dimensional strongly pseudoconvex compact complex Finsler manifold

with a Finsler metric F, then, F induces a natural Hermitian metric on T40M:

G = Gopdz* @ Az’ + G, 300" ® 60°.
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It descends to a non-degenerated metric (still denote it by G)
G =G,3dz" ® dZ° + (InG) 500" ® 60°,
on the total space PTM [cf. 12].

Denote by

wy = V-1(InG),360* A 607, wy = V—1G,5dz" Adz".

Then, the invariant volume form of PTM is given by

w1 w
dv=—Y—AH. 19
(n—1)  n! (19)
Since w? is a horizontal (n, n)-form, the above expression is invariant by replacing v® and §v°
by dv® and doP, respectively.
If we denote by do the pure vertical form of the volume form of PTM, then,

n—1
wy

do = 7(71_ ik

So, we have

dv =do /\ = Gdo A dy,
n!

where

G = det(G,p3), dx:%, T:\/—lZdzi/\dZi

Let AP'? be the space of horizontal (p,q)-forms on PTM, i.e., those coefficients of every

p € AP are zero homogeneous with respect to fibre coordinates, the elements of AP>? in local
coordinates are

1

Y=
plq!

—— Y00 oy By B, A2 A A2 AAZ A AdE,

1
P = WZWI...AM...%dzM Ao Adz™ AdZFY A A dZPae.

Then, at each point (z,v) € PTM, we define

1 . o ]
(g, ) = o q' DIRT I - ﬁqq/}h pul___ﬁqGMm c GMver QP L GBati
1 Ea BB,
p q|2 @al apﬁl ﬁqw ! PP 9, (20)

where
1/)@1"'5@31”'5:; = w)\l"'Apﬁl"'ﬁqu\lal .. .GS‘PO‘PGBLUJ .. .Gﬁq#q'

Notice that there is a natural Hermitian inner product in A4P'? which is induced by the complex

Finsler metric F, i.e.,

(6, ¥)prut = / (o v, (21)

PTM
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In the following, we define the Hodge-Laplace operator for (p, ¢)-forms in AP9. First, we

define the operator * : AP9 — A"~9"~P by the relation

/ o A*F A do = (9, 9)prar. (22)
PTM

Proposition 2 Assume that (M, F) is a strongly pseudoconvex compact complex Finsler
manifold, then, there is a linear map * : AP9 — A"~ 9"P gatisfying

(i) form @ AU Ado = (p,9)pM;

(ii) =*1) = = (that is, * is a real operator);

(iii) * %9 = (=1)PT%).

Proof Before giving the proof, let us fix some notations. Let n = dim M. We denote

Ap=(o1, - 0p), <o <---<ap 1<a <n,
A"*P:(o‘erlv"'ao‘n)a Opt1 < -+ < Qp, 1<a; <n,
and let (aq,- -, ap, apy1, -, an) be a permutation of (1,2,---,n). Similarly, denote By =

(B1,-+,Bq)s Bn—q = (Bg+1,--+,8n). Then, with these notations, we write horizontal (p, q)-
form on PTM

=3 5, dzt A dzBe,

Ap,By

where dz47 = dz™ A .- Adz%, dzBa =dzf A--- AdzPe. Thus,

b= (@)pz dz" ndar,
Ay, By

where

(E)qup = (_1)pq¢Ap§q'
Denote

1/)APB‘1 = Z Gdl)‘l .. .Ga‘p)‘PGﬂlﬁl .. 'Gﬁqﬁqd))\lm)\pﬂy“ﬂqv
Ap

then, we have B

prBq — (_1)1711@3(114;:'

Thus, we can rewrite the Hermitian inner product (21) as

()Pt = (—1)P0 / ons T

PTM

*h = (i)"(—l)n(n;lhrp" Z sgn(ApAn_p)sgn(Ban_q)z/JZPBqGdzB”*q A dzAn—r, (23)
AT”Bq

sgn(ApA,_,) = sgn o , sgn(ByBn—_q) = sgn
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Then,

*’(/) = (i)n(_l)n(7—l271) “+gn Z Sgn(Bqanq)SgH(ApAnfp)EBquGdZA"*:D A dziBn—q'
Ap,By

By (23), we have

*) = (_i)n(_l)%ﬂm Z Sgn(ApAn,p)sgn(Ban,q)d)ZpBq GdzBr-a p dzAn-r
Ap,Bq

= ()" (~)" TS sgn(A, Ay )sgn(ByBa_g) T P Gdzr A d2Pr
Apoq

— 3.

Thus, (ii) is proved.
For (i), let ¢ =>4 5 ©a,B, dz4» A dzPa, by a direct caculation, we have

[ ensindo= [ @rEn T S s, A sen(B, B
PTM PTM A B,

—B,A = =
pap 0 TGzt AdZP AdzA e AdzPre A do

\n n(n—1)
- / i)"(-1)"= ra E sgn(ApAn—p)sgn(ByBr—q)
PTM A,

—B. A S -
pap, 0 TGz AdzAnr Ad2Pe A d2Prme A do

Since
A A, B Bn_ ’ ’ nnoy dy
dz?? Adz®rmr Adz®e AdzTr = sgn'(ApAn—p)sgn’ (BgBn—q)(—1) " 2 "
1 n
where
a .. an DRI n
sgn’(ApA,_p) = sgn ' , sgn'(ByBj_,) = sgn brooB :
1 ... n 1 DRI n
and

sgn(A,A,_p)sgn’ (A, An—p) =1, sgn(ByB,_q)sgn’ (ByBnr—q) = 1,

then, we have

— —B,A
[ ensiindo= [ (10 Y oy 55" G do = (o 0)en
PTM PTM AT,

Finally, we check (iii) for any point (z9;v9) € PTM. According to Lemma 1, we may

assume by a change of coordinates that G, 5(z0;v0) = d,53, then,
G =det(G,5) = 1,

and

1/)‘417311 — E Gdl)‘l .. .Ga‘p)‘PGﬂlﬁl .. .Gﬁqﬁqw)\l"'Apﬁl"'ﬂq = 1/)A 5 -
P q
A1
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Denote

B Al
*1h = Z (*w)Bn,qAn,de a A\ dztnor,
An_p,Bn_gq

then by (23) and (24), we have
AN 2=l L on
(*Q/J)Bn,qm =@ (-1 = Sgn(ApAn—p)Sgn(Ban—q)Q/JAPEQ'

Thus, we get

(k)4 5, = ()" (=1) T Dsgn (B, By)sgn(An—pAdp) () . (25)

TL*p'

Because
sgn(An—pA,) = (~1)P" Psgn(A,Au-p), sen(Ba—qBy) = (~1)"" Vsgn(B,Byi—y),
by (24), we have
( * U))A,Eq = (_1)n+(nf1)n+pn+(n*q)ner(n*p)Jrq(n*q)¢Ap§q — (_1)p+q¢Ap§q'

And Proposition 2 is proved.

Now, we define the adjoint of Oy, g, and dg

Definition 5 [13-15] 5}*{ = — % Op*, 05 = — * O+, 0 = — % dp*.

It is easy to see that

Proposition 3 Let (M, F) be a strongly pseudoconvex compact complex Finsler mani-
fold. Then,

a;}: AP Ap7q—1,
3}*{: AP }Apflﬁq,

5H . Ap — Apil,

Definition 6 [13-15] Oy = 5H5;1 + 5}}5;1, Oy maps AP? into AP9, and is called the

complex horizontal Laplacian.

Definition 7 [13-15] Let (M, F) be a strongly pseudoconvex compact complex Finsler
manifold and ¢ € AP, If Oy = 0, then, ¢ is called a horizontal harmonic (p, ¢)-form.

If we denote by a - - - &; - - - op11 the sequence which we get from ay - - - a1 by suppressing

«;, then, we have

p+1

O arapasfrody = D (=1 00V otrapyaBreoiy )

i=1

q+1

OY) s apfreBapr = Z(_l)p+j715ﬁj (1/}o¢1 "'OlpBl'”Ej"'Bq+1)'

j=1
If (M, F) is a strong Kéhler-Finsler manifold, then by the symmetry of the horizontal part

coeflicients of the Chern-Finsler connection, we have I'j,, = I'}, .. Therefore, we can replace
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the horizontal derivatives by the covariant derivation in the direction of horizontal vector d,,

and obtain
p+1

i—1
(OHY) oy aps1frBy = Z(—l)l D5, VayetiseapinfrBys
im1
_ atl

_ — _1)pti—1 s
(8H1/})a1~~~apﬁ1"'5q+1 - Zl( 1) Déﬁjwal"'apél"'gj"'gq+l'
J:

Assume that {V,} is a horizontal frame field of (1,0)-form on a strong Kéhler-Finsler
manifold (M, F), and {w”} is its dual coframe field, i.e., w?(V,) = §%. Then, we can simply

express Oy or Oy by the Chern-Finsler connection as follows:
8H:ZWQ/\DVM 5H:ZL«_)Q/\DVa. (26)

It is easy to check that the right-hand sides of these formulas are independent of the choice of
{V4}. Similar to the case of complex Kéhler manifold in [4], using * operator and formula (26),
we can also express d3; or 9} as follows by the Chern-Finsler connection.

Proposition 4 0} = — Xﬁ:i(Vﬁ)DVB, Oy = — Xﬁ:i(Vﬁ)DVB.

Proof 1t is suffice to prove 9, = — >5 i(V3)Dy,. One can see that the right-hand side of
this formula is independent of the choice of the horizontal frame field {V,,} for H':?. To simplify
the computations, we can check it at a point vy € PTM, and choose {V,} to be a horizontal
frame field normal at vg. Let {V; ---V,,} be consistent with the orientation of M, and let {w”}
be the dual coframe field of {V,,}, then, it suffices to show that, at vg, 9} = — PP i(V3)Dy, is
achieved on the (p, ¢)-form w = fwl A---AwWP A@WIA---A@? where f is a complex differentiable
function defined near vy with zero homogeneous with repect to v. Thus at the point vy, the

following calculations are valid:
$(fwr A AWP ADY A A DY)
D)7 (—1) 2D £ 0t A LA A GPT A A",

(
O xw = (1)"(=1)2" =D (Dy Fu® AwITE A AW ABPTEA A B,

*w

and

#((Dy, lrw* AwTT A AW ARPTE A A Q™)
= (=i)(=1)2r=Dta=ltptne (DU Al A AWP ABY A AT A A DY,

then

Ojw = —*0g xw

= —(=1)P" YDy HHwr A AWP AT A - ADT A A DT

= i(Va) Dy, w.

This ends the proof.
Lemma 3 [8] Let D : x(TcM) — x(T;M ® Tc M) be the Chern-Finsler connectin on
M. Then, for any V,,V € x(T"°M), we have

Dy, Vg — Dy, Vo = [Va, V| + 0(Va, V), (27)
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DVaVﬁ _D‘75V0¢ = [Va,f/f}] +T(Vaa‘7ﬁ) +7_-(V067Vﬁ)5 (28)

where 6 is the (2,0)-torsion of the connection, and 7 is the (1,1)-torsion of the connection.
Lemma 4 [8] Let D : x(T"OM) — x(Tg;M @ T;°M) be the Chern-Finsler connection
on M. Then, for any Vi, Vs € x(T'°M), we have

DVQD‘/g _DV@DVQ :D[VQ,V@] +Q(Vavvﬁ)7 (29)
Dy, Dy, — Dy, Dy, = Dy, v, + Q(Va, Vs), (30)
Dy, Dy, — Dy, Dy, = Dy, v, (31)

where Q(V,,, V) = 0 is the (2,0)-form curvature operator, Q(V,, Vj) is the (1,1)-form curvature
operator.

Theorem 1 (Formula WFI) On an n-dimensional compact strong Kéhler-Finsler mani-
fold, if {V,,} is a local horizontal frame field, and {w”} is its dual coframe, then,

= =D Dy, + 29" A Y iVa) (Dyy, v, + AV, Vo)), (32)
« « ﬁ

Oy = — szava _ ZW"‘ A Zi(vﬁ)(DWm%] + Vi, V). (33)
% % ﬁ

If the (1, 1)-torsion 7 of the Chern-Finsler connection is zero, {V,,} is a normal horizontal
frame, that is, Dy, Vs = 0, Dy, V, = 0, then, by (28), we have [V, V3] = 0 and Dy, v, = 0.
Therefore, (32) and (33) reduce respectively to

ZDQQV +Zw AZ i(V5)2(Vs, Vo), (34)
EH — _ ZD\Z/QVQ — Zwo‘ A Zi(VB)Q(Va, Vﬁ) (35)
@ [e4 B

Remark 3 If the strong Kahler-Finsler manifold is a Kahler manifold, then, (32), (33)
and (34), (35) coincide with (2.12), (2.13) of WFIII in [4].

Proof of Theorem 1 Let p € M, and {V,} be normal at vy € T,°M, w(vo) = p.
Because D\Q/QVQ = Dy, Dy, —Dp,, v, , we have D%/J/a = Dy, Dy, . By conjugation, (33) can be
obtained by (32), so, it suffices to prove (32).

Obviously, the right-hand side of (32) is independent of the choice of the horizontal frame
field {V,,} of (1,0)-form, and we shall verify the formula at vy relative to this {V,}. With all

computations below understood to hold only at vy, we have

Z@a/\Dv Z (V) Dy,) = Zw A Z (Vs) Dy, Dv,),
B
D50y = —Z i(V3) Dy, Zw ADy,)=—>_i(Vs)(D_@* A Dy,Dy,)
B @
—Zi (V3)@® A Dy, Dy, + Y @AY _i(Vs)Dy, Dy,
B

— ZDVQDVQ + ZU_)Q A Zi(vﬁ)DVBDVa'
« « B

O
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Hence, by (30)
Oy = 5}[({5;1 + 5;{5]{
—> Dy, Dy, +> @AY i(Vs)(Dy,Dy, — Dy, Dy,)

3
=3 D} A @AY i(Ve) (D, v + UVa,s Va)).
[ o B

This ends the proof.
Corollary 1 Assume that the (1, 1)-tortion 7 of the Chern-Finsler connection is zero. If
¢ is of type (p,0),0 < p <n, then

Oug=—Y_ D}y 6, (36)
and if ¢ is of type (p,n),0 < p < n, then
Oud=—-Y D} v o+ QVa,Va)s. (37)
If ¢ is of type (0,¢),0 < g < n, then
Oug=—-> Dy v o+ UVa,Va)e, (38)
and if ¢ is of type (n,q),0 < ¢ < n, then

Ou¢=-> Dy i ¢ (39)

For applications, it is important to have explicit formula also for Og|@|? for (p, q)-forms
¢, where |¢|? = (¢, ¢) (where (,) is defined by (20)). If {V,} is a horizontal frame field, using
(36), we can get

—Oulgl? => Dy o + > [Dv,o* + > (D} . 6,8) + > (6. DE \, 0. (40)

To simplify (40), let ¢ be a harmonic form of type (p,0), then, it follows from Corollary 1,
for such ¢,

—Ogulél* = Dy, ¢+ |1Dv.o* = > (6, 2(Va, Va)o). (41)

The last term can be further simplified. Since the consideration will be localized at a point, let
p e M, fixuyy € Tpl’OM. On horizontal co-vector of type (1,0) at vg, the pairing &, n — (&, n) is
hermitian metric defined by (20). Now, under the condition of the (1,1)-tortion 7 of the Chern-
Finsler connection being zero, Y Q(Va, Va) is the anti-hermitian transformation relative to
the inner product (£,7) at vo. In fact, from (28) and (30), we get 0 = [Va, Vo] = Va Vi — Va Vi
and Q(Vq, Vo) = Dy, Dy, — Dy, Dy, then, we have

0 = [Va, Val(&m) = ((Dv, Dy, — Dy, Dy, )¢, n) + (&, (Dy, Dy, — Dy, Dy, )n),

that is,
(QVa, Va)&,m) = (€. Q(Va, Va)n) = —(€, Q(Va, Vo))
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Thus, (3", Q(Va, Va)) is diagonalized by some basis {w!, - - -, w™} of horizontal covectors of type
(1,0) normalized at v, which satisfies (w®,w?) = G*F = §%8. Let (3, OV, Va))w® = Aqw®
for a = 1,---,n, ie., the A\,’s are the (real) eigenvalues of (> Q(Va,V,)). If the horizontal
frame {V,} is normalized at vy and {w®} is its dual frame, we denote Kp(V,,) by the horizontal
holomorphic flag curvature of the strongly pseudoconvex Finsler metric F' along the horizontal
vector V, € HLO, then A\ = 3Kp(Va).

Now, return to the last term of (41) and write
b= paw’,
A

at vo on PTM, where A runs through the ordered multi-index (iq,---,4p) with 1 <43 <--- <
i, < n, ¢4 is zero homogeneous with respect to fibre coordinates, and w4 = w® A --- Aw®. For
simplicity of notation, suppose A = (1,2,---,p), then

O Vo, Vo)) = zp:wl A NSV, Vo)) A AP

where by abuse of notation, we also write A for the unordered set (i1, -, p), then, we have

(6, QVa, Va)b) = (Vs Va )9, ) = Z Kp(Va)|al®. (42)
aGA

It remains to observe that (" Q(Va, Va)w® w®) = (3", Q(Va, Va)Va, Va) under the horizontal
fame {V,} of type (1,0) normalized at vy on PTM, the A,’s can also be characterized by
>0 Ve, Vo) Va = AV, for a=1,- -+, n. Thus, (42) together with (41) proves the following.
Theorem 2 (Formula WFII) On an n-dimensional compact strong Kéhler-Finsler man-
ifold M, let p € M, assume that {V,} is a local horizontal frame field of H}:* normalized at vo,
7(vp) = p, and {w”} is its dual coframe field. Furthermore, let ¢ be a horizontal harmonic form
of type (p,0), and write ¢ = > , paw?, if the (1,1)-torsion 7 of the Chern-Finsler connection

is zero, then, we have

~Oulef? = Z Dy o* + Z |Dy, 6> — = Z Kr(Va)|pal®. (43)

aEA

3 Hodge-Laplace Operator and Weitzenbock Formula on a Holomor-
phic Vector Bundle Over PTM

Let E be a holomorphic vector bundle of rank r over a complex Finsler manifold M of
dimension n with projection 7. We identity M with the zero section of E. Let E' = E\o(F).
Then C” acts on E’ by scalar multiplication. The projective bundle P(FE) is defined by P(F) =
E'/C’ with projection p : P(E) — M. The pull-back E = p~!(E) is a holomorphic vector
bundle of rank r over P(E) with projection p : E — E. Let L(E) be the tautological line
subbundle of E.
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We summarize the construction in the following diagram:

L(E) C E P E

T lﬂ' (44)

P(E) M

Let L'(F) be L(F) minus its zero section P(F). There is a natural map L(E) — F, which
maps L'(E) biholomorphically to E’ and collapses the zero section P(E) of L(E) to the zero
section M of E by p; Thus, L(F) is a blow-up of E along the zero section M of E (cf. [16]).

In preparation, we explain local coordinate systems associated to the bundles mentioned
in (44). Let z = (2!,---,2") be a local coordinate system in M, and & = (£%,---,€") the local
fibre coordinate system defined by a local holomorphic frame field e = (e!,---,e") of E. Then,
(2,6) = (21,--+,2™, &L, -+ £7) is local coordinate system for E. This can be considered also
as a local coordinate system for P(E) as long as (¢1,---,£") is considered as a homogeneous
coordinate system for fibre. Setting

Z'=¢op. (45)

We take (2,&,7) = (2%,---,2", &4, &7, ZY, ... Z") as a local coordinate system for E =
p~1(E) with the understanding that (£!,---,£") is a homogeneous coordinate system. Then
the line bundle L(E) is defined by

(ZY o 2Ty = (& ). (46)

Given a strongly pseudoconvex complex Finsler metric F(z,€) in E, we set G(z,§) =
F2(2,€) = Gag(z,ﬁ)ﬁo‘{_ﬁ, then F induces a Hermitian metric @(2,5, Z) in the vector bundle
E over P(E), so that G(z,£,7) = Ga@(z,f)Zo‘ﬁ on the line bundle L(F). By definition,
G(z,8) = G(2,§,€) is restricted to L'(E), G coincides with G. Denote the metric of E by ()

and its connection by 17, and the connection forms w = (w§) defined by
w§ = GT9Gg; =T¢,,dz" +T5,d¢7, (47)

where T4, , = G™*Gpr.p, T, = GGz, and we have 'y 67 = T'F_ €7 = 0.
The curvature form = (23) of the connection w = (wf) is given by

o = du. (48)

In this article, we shall use only the horizontal part 7 of the connection vy, its horizontal

parts of the connection 1-forms are given by

(W) = Ngmdz“. (49)

Let A" (E) (resp. .AP? (E)) be the space of complex horizontal i-forms (resp. (p,q)-
forms) on PTM with value in E, precisely, if A’(resp. AP'?) denotes the space of complex
horizontal i-forms (resp. (p, q)-forms) on PTM, then by definition A’ (E) = I's(E) ® A (resp.
AP1 (E) = Too(E) ® AP7). Recall that 7 is a C-lincar map: A°(E) — AY(E), and v
decomposes into a sum of two operators:y 7 : AY(E) — AY(E), 0y : A%(E) — A(E),
that is,

v ="+ 8y. (50)
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If ¢ = eq ® ¢ is E-valued horizontal (p, q)-forms on PTM, where ¢* is a horizontal

(p, ¢)-form on PTM for each o and e,, € I'o(E), then by definition
Vo =eq ® 0% +eq @ dud®. (51)
This is well-defined and furthermore, 577 becomes an antiderivation
VoA = (V") Ap+ (=)@ Adup, (52)
where ¢ € Al(E ) and p is a horizontal form on PTM. Correspondingly, we obtain antiderivations
v APYE) — APTV(E), O : API(E) — APITY(E),

Now, assume that M is a strongly pseudoconvex compact Finsler manifold with a complex
Finsler metric F', and the natural Hermitian metric on E induced by F' will also be denoted
by (). Then a pointwise inner product denoted by (,) is defined on A* = ®;.A*(E), namely, if
Yo, 8c ®¢7 and Y eq ® ™ are given with s,,eq € T (E), and ¢7, 1 € A*(= ®;A") for all
o, a, then by definition

O 50 @7 a®@v) =D (5,€a) (67, 0%). (53)

o o,a

If ¢ € A*(E), define |¢|> = (¢,¢). Extending the operator  to AP4(E) — A"~ 0"P(E) by
letting it act on the second variable, then, 3 can now be extended to AP(E) — AP9~1(E)
by defining
Oy =—xy M x. (54)
The horizontal Laplacian Oy can consequently be extended to AP4(E) — AP4(E) by
Oy = ({5]{5;1 + 5}}5}[ (55)

The kernel of Oy : AP4(E) — AP4(E) is the space of harmonic E-valued horizontal
(p, q)-forms. To study this space, the following Weitzenbock formula would be useful. For
notation, let {e,} be a local holomorphic frame of E and {V,} be a horizontal frame field of
(1,0)-form.

Theorem 3 (Formula WFIII) Let E be a holomorphic vector bunlde of rank r over
a complex compact strong Kéahler-Finsler manifold M, and the pull-back E = p~I(E) is a
holomorphic vector bundle over P(E). Given ¢ € AP4(E), relative to a local holomorphic
frame {eq } of E, write ¢ = Yoo €a®®. If {V,} is a horizontal frame field of (1, 0)-form on PTM,
and D is the Chern-Finsler connection, then,

On6 = Y ea(@r6%) - S(Vilea) Dy 6%) + 3 eeliV) (@) Ai(V,)6%).  (56)

oL a6,

Proof We need to compute the left-hand side directly:
On0¢ = (= + 7 106 = Ou[— (3 v Mea A+ eald * ¢*)]
== eclu * [ N6+ eal@nyo®),
[eH3 [eY

5}}5H¢ = — % V,H * (Z eagHgbo‘) = Z eag}k{gH(bo‘ — *(Z V,Hea A *5]{(}50‘)

[e3 o
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Then,

Oné = ea(@no?) ZezaH* "] = Qv e AxOug™). (5T

Now, if {w®} is the horizontal coframe field of type (1,0) dual to {V,} and ¢ € AP?, then,

* (W A %) = i (Vo). (58)
Hence, writing (w§)? = fgmw”, by (26) and (58), we have
O * [(WS)H A x¢]) = O * (Z fgmw“ A %¢%) Z omi(V, HNG(V,) o™
J7Re

= = V)@ AT,

D (V Hea N 0™ = 5( D el wh Axdp¢®) = Y ecls,,i(V,)0u o™

a &, o, 1

= S (Gl ea) Dy, 6°).

This combined with (57) yields (56).

Remark 4 From formula (43) of WFII, one can see that formula (56) of WFIII involves
not only the curvature of the strongly pseodoconvex Finsler metric of M, but also the curvature
of the holomorphic vector bundle E on P(E). In many situations, one would like to draw
conclusions solely from the given data on E over P(FE) without being handicapped by the
Finsler manifold M itself. In such case (36) comes in hand because the curvature term of M
disappears from that formula. Thus, if ¢ € AP°(E), then (36) implies

6 = = Yol ,6%) = LGHeal(Dp, %)+ 3 ccliVI(@E)T AT, 06%). (59
o, a8,

In the following, we introduce a Weitzenbock formula for the line bundle L(E), which is
useful for proving Bochner-Kodaira type vanishing theorem. Let Ag’q(E’) denote the elements
in AP9(E) with compact support and let {V,} be a horizontal frame field, {w®} be the dual
coframe field of {V,}, and dv be the volume element of PTM. Given ¢ € A?4(E), write locally
¢ =>,€ea0", where {e,} is a holomorphic frame field of E. Define a global (0,1)-form ¢ by

o= ZZ Dy, ¢%), ¢)@”,

where (, ) is understood in the sense of (53). It is easy to check that ¢ is indeed globally defined,
i.e., independent of the choices of {es}, {Va}. dmp is a function which, by Proposition 3, is
given by

Srrp = Dpep = — Zea v, 00 = Q_(Vvsea)(Dy,6%),0) = Y leaDy, 0.
o, o,
It is easy to prove fPTM dedv = 0. Hence,

/PTM(Z%WV 8 Zﬁ(vVBeQ)(DVng“), 6)dv = — /PTM Z[; lea Dy, 0" Pdv.  (60)

a,B
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Now, suppose ¢ € AP°(E), then, (59) and (60) yield:

g eedi QO NIV}, ¢)dv = o, p)dv — g eaDo ¢%)%dv.
/P (a.’E# f{ V, )( ) Ai( u) 1) /];) COnue, ¢) /}; a_ﬂ| Vi °d
(61)

Now, we will consider a special case where E is a line bundle L(E) and ¢ is of type
(p,n)(0 < p < n). In this case, a local holomorphic frame of L(E) is just a locally nowhere
zero holomorphic section e of E. Then, we may simply write ¢ = e¢’, where ¢’ is an ordinary
horizontal (p,n)-form. The horizontal part of the curvature of L(E) relative to e is just a
horizontal (1,1)-form €. Therefore, it follows from (37), (42), (56), and (60) that

2NNV N i(Ve)e', ¢)d
/PTM “ (ZB:Z( BRAU(Vg)d', @) dv 1
- /PTM(DH(b7 Pdv - /PTM ef* zﬁ: Dy, ¢'[*dv - 2 /PT lef” Z Kp(Va)l¢al’dv.  (62)

a€cA

Now, g@ is a real (1,1)-form on PTM, so, there exist locally n continuous (1,0)-forms
wl, -+, w", such that (w®, wf) = 6% and

Q= Z Hoaw® AW, (63)

where the p,’s are real-valued continuous functions which, at each point, give the eigenvalues
of . The operator >_;i(V5)Q A i(V ) in (62) is independent of the choice of {V,,}. Thus, by
computing at some fixed point vy € PTM, we may assume that {V,(vo)} is dual to {w*(vo)},
ie., w*(Vg)(vo) = 65 for all a,, 8 at vo, then,

D iV QAiI(Vg) =D uge’ Ni(Vp). (64)
g B

Furthermore, it is straightforward to check that, if ¢, are ordinary horizontal forms and
w*(Vp) = 43, then,
@ N 0) = (0, i(Vp)). (65)

Using the usual multi-index notation w? = w® A--- Aw® for A = (ag,---, ap), p < -+ < oy
and writing ¢' = (3, ¢4w?) A@L A -+ A@", we obtain from (64) and (65)

O iVeni(Ve)e',¢) Zuﬁ LiVe)d) = O up)ldhl

B A B=1

Note that the last expression is independent of vg. Thus, by by combining with (64), we have

Theorem 4 (Formula WFIV) Under the assumptions in Formula WFIII, in addition,
we assume that the (1,1)-tortion 7 of the Chern-Finsler connection is zero. Suppose e¢’ is a
horizontal (p,n)-form with values in a line bundle L(F) (e being a local holomorphic frame
of L(FE)), £ is the horizontal part of curvature form of L(E) relative to e which is locally
diagonalized as in (63), pg’s are the eigenvalues of Q, Kp(V,) is the horizontal holomorphic
flag curvature along its horizontal frame {V,} € HY? and ¢/ = (3, ¢yw?) A@ A - A@™. If
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e¢’ has a compact support, then

2 S 2 ! / _ 2 2
[ e >3 sl do= [ @uteo)edao [ e > 1o,
_l 2 2
/PT le] g Kp(Vy)|pal*do. (66)

4 Bochner Vanishing Theorems

Theorem 5 Assume that M is an n-dimensional compact strong Kéhler-Finsler manifold,
the (1,1)-tortion of the Chern-Finsler connection vanishes. Given a horizontal harmonic form ¢
of type (p,0) on PTM, if the (horizontal) holomorphic flag curvature along its horizontal frame
{V.} € HY0 is non-positive, then, ¢ has a constant absolute norm.

Proof Let ¢ be a horizontal harmonic (p,0)-form on PTM. If {V,} is a local horizontal
frame field, then from WFII and (43),we have

~Oulel* =Y Dy o + Z Dy, ¢” — = Z Kp(Va)loal.
«a aEA
Since Kr(V,) < 0, |¢|? is subharmonic. By the compactness of M and the general maximum
principle, |¢|? is constant.

Theorem 6 (Kodaira vanishing theorem) Let M be an n-dimensional compact strong
Kahler-Finsler manifold, E be a holomorphic vector bundle of rank r over M, the pull-back
E = p~1(E) be a holomorphic vector bundle over P(E), and L(E) be the line bunlde of E.
Assumptions are as in Formula WFIV. If the horizontal part of the curvature of L(E) is quasi-
positive definite and the horizontal holomorphic flag curvature of M along its horizontal frame
{Va} € H'O is quasi-positive definite, then there is no nonzero harmonic horizontal (p, n)-form
over PTM with values in L(E) for all 0 < p < n.

Proof Let ¢ be a harmonic horizontal (p,n)-form over PTM with values in L(E), 0 <
p < n. By (66)

/ €|ZZW Y|y [2do + = /T le* Y Kp(Va)|¢al’dv <0,

A p=1 acA

where ¢’ is a horizontal (p, n)-form over PTM and pg’s are the eigenvalues of the horizontal part
of the curvature form Q of L(E), Kr(V,) is the horizontal holomorphic flag curvature along
its horizontal frame {V,} € HY. If the horizontal part of the curvature form (2 is positive
definite at vg € PTM, i.e., ug(vg) > 0 for all 3, and the horizontal holomorphic flag curvature is
quasi-positive definite, i.e., >~ Kr(Va)(vo) > 0, all the ¢/,’s must vanish in a neighborhood U
of vg. In other words, ¢ = 0 on U. If L(F) is positive, i.e.,  is positive definite everywhere, and
the horizontal curvature is positive definite everywhere, then this shows ¢ = 0 on PTM and the
theorem is already proved. To conclude the proof in the general case of the quasi-positive L(F)
and the quasi-positive horizontal flag curverture, it suffices to invoke the Aronsajn-Carlemann
unique continuation theorem ([4], [17] p.248).

Remark 5 In compact Kahler manifolds, Kodaira vanishing theorem plays an important
role in proving the imbedding theorem, that is, every compact Kéahler manifold with positive

line bundle can be imbeded into some PV (cf. [5]).
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Remark 6 A strongly pseudoconvex complex Finsler metric F' is called Kéhler if and
only if
(I, =Ty vt =0.

Recently, Chen and Shen [18] pointed that Kahler Finsler metrics are actually strong Kéhler.
So, the results of this article are valid in Kéhler Finsler manifolds.
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