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Fault Feature Extraction Method for Rotor System
Under Radial Impact Based on BF-HHT

Xiong Xin, Yang Shixi, Gan Chunbiao
(The State Key Lab of Liquid Power T ransmission and Control, Zhejiang U niversity Hangzhou, 310027, China)

Abstract  As radial impact signals are often composed of rich frequency components continuously
distributed in a wide region, accurately extracting the characteristic frequencies of vibration signals of a
rotor system under radial impact is of great significance for fault diagnosis. The customary Hilbert-Huang
transform (HHT) cannot be directly used to decompose such signals into several mono—requency intrinsic
mode functions (IMFs). Because of the existence of multifrequency IMFs, the estimations of
instantaneous frequencies for these signals are usually inaccurate. A new feature extraction method is
developed in this study, i.e., the bandpass filtering HHT (BF-HHT), which can accurately extract the
characteristic frequencies of radial impact signals. Firstly, frequencies with main power are collected
through calculating power spectrum densities of the signals’. Secondly, a set of bandpass filters with
centering frequencies selected from the first step are designed to filter the original signals. Finally, the
timeHdrequency characteristics are extracted from the filtered signals by HHT. Both the customary HHT
and the BF-HHT are used to analyze the signals collected from rotor test bench and industrial sites.
Comparisons between the results from both the methods show that, the BF-HHT can be used to extract
the characteristic frequencies of radial impact signals, meanwhile, it can explore the instantaneous

characteristic frequencies.

Keywords  bandpass filtering, Hilbert-Huang transform, rotating machinery, radial impact, time-

frequency feature

Damage Identification Technique for Building Structure
Based on Random Forest

Zhou Qﬁ'engl, Yang Xiaoqingl, Zhou QingqingI, Lei ]iayan2
(L Department of Automation, Xiamen University Xiamen, 361005, China)
(2.School of Architecture & Civil Engineering, Xiamen University Xiamen, 361005, China)

Abstract For the use of classifier in the structure damage diagnosis, a structural damage identification
method is proposed based on wavelet packet decomposition and random forest which is a new combination
classifier algorithm. Wavelet package decomposition is used to decompose the vibration acceleration signals
of building structure with different damage degrees and locations. T he energy sequences at different bands
of frequencies decomposed by the wavelet packet decomposition are inputted to classifier as feature
vectors. A random forest model is trained and used to identify the location and degree of injury. T he
method is applied for damage identification of an eight-story shear steel frame model. Experimental results
show that the method has good recognition accuracy and stability compared with BP neural network and

support vector machines.

Keywords damage identification, random forest, wavelet package decomposition, acceleration signal



