低氧含量液态超支化聚碳硅烷的合成与陶瓷化研究

李 然^{1, 2}, 詹俊英², 周 聪², 余兆菊², 哥太^{2, 3}, 夏海平^{1, 2}
(1. 厦门大学 化学化工学院, 福建 厦门 361005;
2. 厦门大学 材料学院, 高性能陶瓷纤维教育部重点实验室, 福建 厦门 361005;

3. 龙岩学院 化学与材料工程学院, 福建 龙岩 364000)

摘 要: 以甲醇对氯甲基三氯硅烷(Cl₃SiCH₂Cl)进 行烷氧化反应,然后经过格氏偶联反应和还原反应,制 备了低氧含量液态超支化聚碳硅烷(HBPCS)。通过 凝胶渗透色谱法(GPC)、核磁共振(NMR)以及元素分 析对由此制备的 HBPCS 进行表征。结果表明,提高 烷氧化比例,可以有效抑制溶剂四氢呋喃开环的副反 应,降低先驱体氧含量。通过热失重分析(TGA)和X 射线衍射(XRD)分别对HBPCS 的热性能及相应陶瓷 在高温下的结晶行为进行研究。

关键词: 烷氧化;聚碳硅烷;先驱体法;碳化硅;超支 化

中图分类号: TQ163; TL344 文献标识码: A 文章编号: 1001-9731(2010) 12-2166-03

1 引 言

连续纤维增韧的 SiC 陶瓷复合材料具有优异的物 理与机械性能, 被认为是 21 世纪航空航天领域最有应 用前景的材料^[1-3]。其中液态超支化聚碳硅烷(HB-PCS) 因具良好的流动性和可自交联性, 是一种制备 SiC 陶瓷复合材料的理想先驱体^[4, 5]。

使用有机镁或有机锂与有机氯硅烷进行偶合反 应, 是制备液态 HBPCS 的主流途径, 合成液态 HB-PCS的单体通常可以分为 AB3 型和 AB2 型两种。其 中, A 和 B 分别代表 C -- X 键和 Si -- X 键(X = Br 或 Cl)^[6]。Interrante 等^[7]采用 AB₃型单体,氯甲基三氯 硅烷(Cl₃SiCH₂Cl) 均聚得到的聚合物为液态超支化结 构, C/Si 比接近化学计量, 容易热交联; Froehling^[8]采 用 Interrante 相似的技术路线、以 AB2 型单体 Cl2Si (CH3)CH2Cl为原料, 合成结构为[SiH(CH3)CH2] n 的液态 H BPCS, 其 C/Si 比接近 2, 陶瓷富碳。目前为 了得到近化学计量比的 HBPCS, 通常采用 AB3 型单 体与其它单体共聚合^[9],但由于 Cl₂SiCH₂Cl 单体中 Si-Cl键反应活性高,易与醚类溶剂发生亲核取代,导 致来自醚类溶剂的烷氧基团接到聚合物侧链上,先驱 体氧含量升高^[7, 10, 11]。2007年, Shen 等^[12, 13]公布了 以烷氧化产物 Ch. 25 Si(OM e) 1.75 CH2 Cl 混合 Cl2 Si(CH3) CH2 Cl 和 CH2=CH CH2 Cl 及 Ch. 25 Si(OMe) 1.75 CH2 Cl 混合 Cl₂Si(CH₃) CH Cl₂ 和 CH₂=CHCH₂Cl,两种共 聚单体制备液态烯丙基聚碳硅烷的专利,但均未阐述 烷氧化对先驱体结构及氧含量的影响。由于聚碳硅烷 先驱体中的氧经交联、裂解易形成 Si -O -C、Si-O -Si 结构,这两种结构在高温下不稳定,1200℃以上易分 解逸出 SiO、CO、CO₂,导致陶瓷强度下降^[14, 15],因此 有必要研究烷氧化对先驱体结构及氧含量的影响。

本研究以甲醇(CH3OH)对 ClaSiCH2Cl进行烷氧 化,然后经过格氏偶联反应和还原脱氧反应,制备了低 氧含量液态 HBPCS。主要研究烷氧化比例对 HBPCS 聚合物中氧含量的影响,并对 HBPCS 的热性能及其 高温热解产物的结晶行为进行研究。

2 实 验

2.1 主要试剂

氯甲基三氯硅烷(Cl₃SiCH₂Cl)用前分馏,收集 118℃的馏分。甲醇(CH₃OH),经氢化钙除水蒸馏,收 集 65℃的馏分;四氢呋喃(THF)用前在氩气气氛下经 过钠二苯甲酮除水新蒸;镁粉(纯度 99. 9%)与氢化锂 铝(LiAlH₄)(纯度 99. 9%),在无水无氧条件下存放, 现取现用;正己烷(AR),直接使用。

2.2 低氧含量液态 HBPCS 的合成

将装有恒压滴液漏斗、回流冷凝管和氩气导气管的 100mL 三颈瓶抽真空、换氩气反复操作 3 次,并在 通氩气下,加入 53.1g (0.29mol) Cl₃SiCH₂Cl,磁力搅 拌,通过恒压滴液漏斗将一定量的 CH₃OH 滴入三颈 瓶中,室温下搅拌过夜,得到烷氧化的氯硅烷混合物。 将接有球形冷凝管、恒压滴液漏斗、机械搅拌及氩气导 管的 1L 四颈瓶抽换气 3 次,并加入上述烷氧化的氯硅 烷混合物和 200mL THF。在搅拌下分批次加入 9.2g (0.38mol,过量 30%) 镁粉,每隔 10min 加约 1g 镁粉, 整个反应过程保持缓和回流。镁粉加完后,反应混合 物在室温下搅拌 30min,然后在 60℃油浴下加热反应 12h 得到黄褐色粘稠浆状混合物。将 7.2g (0.19mol) LiA 1H₄ (过量 30%) 分批次加入反应混合物中,整个反 应保持搅拌和通氩气。加完 LiA1H₄ 后,60℃油浴反 应 12h 得到灰色浆状物。在 2L 烧杯中加入 200mL 的

 * 基金项目:国家自然科学基金资助项目(50802079);航空科学基金资助项目(2008ZH 68005) 收到初稿日期:2010 04 16
 收到修改稿日期:2010 07 10
 通讯作者:余兆菊,夏海平
 作者简介:李.然(1986-);男,山东枣庄人,硕士,师承夏海平教授,从事碳化硅陶瓷先驱体的研究。
 ○ 作者简介:李.然(1986-);用,山东枣庄人,硕士,师承夏海平教授,从事碳化硅陶瓷先驱体的研究。 2 ※ 等: 低氧含重液态超支化素碱硅烷的合成与陶瓷化研究 4mol/L 盐酸和 100mL 的正己烷,将上述浆状物倒入 快速搅拌的盐酸/正己烷混合液中水解。停止搅拌后, 水相上层出现橙黄色有机相。分出有机相,再用无水 Na² SO4 干燥 2h。旋转蒸发除去溶剂,再经减压蒸馏 (60℃/200Pa)除去未反应完全的单体,留下粘稠的黄 色油状物。

2.3 液态 HBPCS 的交联与陶瓷化

称量 2g 液态 HBPCS 样品置于 10mL 的 Schlenk 瓶中抽真空、换氩气反复操作 3次, 然后在氩气保护 下, 250℃保温 6h 得到黄色橡胶状交联样品。将所有 交联样品置于同一管式炉中, 抽换气 3次, 在氩气保护 下, 以 5℃/min 的升温速率升到 900℃后保温 2h, 然后 随炉自然冷却, 制得块状的黑色 SiC 陶瓷。将初烧得 到的 SiC 陶瓷置于高温管式炉, 抽换气 3次, 在氩气保 护下, 以 40℃/min 的升温速率升到设定温度后保温 10min, 冷却后得到 1200、1400、1600 和 1800℃裂解陶 瓷。

2.4 测试与表征

用 Agilent 1100 Series 型液相色谱仪进行凝胶渗

透色谱(GPC)分析,测定样品的分子量及其分布。用 Bruker AV300MHz 超导核磁共振波谱仪测定¹H NMR 谱, CDCl³为溶剂,TMS 为内标。用 Netzsch STA 409EP型热分析仪测定交联样品热重(TGA)曲 线及陶瓷产率。用PANalytical X'Pert PRO 型 X 射 线衍射仪分析陶瓷相组成。用 HORIBA EMGA-620W 型氧氮联测仪测定氧含量。

3 结果与讨论

3.1 先驱体结构分析

低氧含量液态 HBPCS 的合成路线如图 1 所示。 其中在格氏偶联反应中, 镁能够有效地区分 Si—Cl和 C—Cl,选择性地与 C—Cl 反应形成格氏试剂。Si—Cl 与 C—M gCl 发生偶合, 由于 Si—Cl 的官 能度> 1, 合 成的聚合物具有超支化结构^[7]。经过 LiA IH₄ 的还原 反应, 未反应的 Si—Cl 和 Si—OCH₃ 均被还原为 Si— H 键, 最终产物为 Si—C—Si 键构成主链, 侧基为氢的 超支化聚合物。

$$\begin{array}{c} \text{Cl}_{3} \operatorname{SiCH}_{2} \text{Cl}\\ x \operatorname{CH}_{3} \operatorname{OH} \end{array} \right\} \longrightarrow \operatorname{SiCl}_{3-x} (\operatorname{OCH}_{3})_{x} \operatorname{CH}_{2} \operatorname{Cl} \xrightarrow{\operatorname{Mg/THF}} "[\operatorname{SiCh}_{-x} (\operatorname{OCH}_{3})_{x} \operatorname{CH}_{2}]_{n}" \xrightarrow{\operatorname{LiAlH}_{4}/\operatorname{THF}} "[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" \operatorname{LiAlH}_{4}/\operatorname{THF}} "[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" \operatorname{LiA}_{4}/\operatorname{THF}} "[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" \operatorname{LiA}_{4}/\operatorname{THF}} "[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" :[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" :[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" :[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" :[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" :[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" :[\operatorname{SiH}_{2} \operatorname{CH}_{2}]_{n}" :[\operatorname{SiH}$$

Fig 1 Reaction sequence of HBPCS

如表 1 所示, 按照特定的摩尔比例, 改变 CH₃OH 的加入量, 得到了一系列低氧含量 HBPCS。从 HB-PCS1~ HBPCS5, 烷氧化比例增加使先驱体氧含量降 低, 特别是当烷氧化程度较低时, 这种影响更为明显。 当烷氧化比例超过 1. 75 后, 氧含量随烷氧化程度提高 而降低就不明显了。根据 THF 溶剂与氯硅烷单体的 副反应机理^[10, 11], 未烷氧化的 Cl₃SiCH₂Cl中, 每分子 中含 3 个 Si—Cl, Si—Cl 非常活泼, 易进攻 THF 发生 开环副反应, 在聚合物侧链上引入氧。而通过烷氧化 反应, 活泼的 Si—Cl 被相对惰性的 Si—OCH₃ 取代, 副反应降低。因此, 随着烷氧化比例升高, 先驱体氧含 量降低。烷氧化比例增大到一定程度后, 单体反应活 性下降, 很难导致 THF 开环, 所以氧含量与烷氧化比 例关系不大。所合成的 HBPCS 分子量具有多分散 性, 重均分子量为 1500~ 2400。

表 1 不同烷氧化比例的 H BPCS 的氧含量

Table 1 Oxygen contents of HBPCSs with different methoxylation ratios

先驱体编号	CH 3OH/ Cl3 SiCH 2Cl 摩尔比	氧含量(%)
H BP CS 1	0	2.6
H BP CS 2	1	1.7
H BP CS 3	1.5	1.5
H BP CS4	1.75	1.0
H BP CS 5	2	1.0

uence of HBPCS 图 2 为 HBPCS 的¹H NMR 谱图。δ= 0 附近的组 峰为 Si --CH₂ --上的质子信号; δ= (3.5~5) × 10⁻⁶范 围内的组峰依次对应为 Si--H₃、Si--H₂ 以及 Si--H 中的质子信号^[7,16,17]。除此以外,¹H NMR 谱图中还 可以观测到来源于溶剂 THF 与 Cl₃SiCH₂Cl发生副反

由THF 开环形成的SiCH₂CH₂CH₂CH₂OSi 中的 SiCH₂ — 质子信号包埋于 0 附近, & 1.6×10⁻⁶ 左右的 组 峰 为 Si — OCH₂CH₂CH₂CH₂CH₂Si 单 元 中— CH₂CH₂ — 上的质子信号, δ = 3.4×10⁻⁶ 附近的峰则 为 SiOCH₂CH₂CH₂CH₂CH₂ — Si 单元中 O — CH₂ — 上的 质子信号^[10, 11]。如图 2 所示,随着烷氧化比例的提

© 1994-2011 China Academic Journal Electronic Publishing House. An rights reserved. http://www.cnkt.net

李 然 等: 低氧含量液态超支化聚碳硅烷的合成与陶瓷化研究

为1.75时基本上消失。

3.2 陶瓷化分析

对所合成的 HBPCS 进行 TGA 分析。其典型 TGA 曲线如图3 所示, 900 ℃陶瓷产率可达 75%,陶瓷 产率较高,表明由此制备的液态 HBPCS 是一种优异 的 SiC 陶瓷先驱体。

Fig 3 T GA curve of H BPCS4

图 4 为 HBPCS 在不同温度下热解产物的 XRD 谱图。结果表明 900 ℃时 SiC 陶瓷处于无定型相,并且 高度无序。1200 ℃出现 SiC 宽峰,表明结晶仍不完全, 但形成部分局部有序的 SiC。随着裂解温度的升高, SiC 微晶从无序结构向有序结构转变。1400 ℃时,峰 的强度增大及峰变窄,表明 SiC 微晶结构更加有序。 1600 ℃时, β SiC 的 3 个主要的特征峰出现,分别为 2 θ = 36°(111),60°(220) 和 72°(311),同时在 34°出现 α SiC 的特征峰^[18]。

图 4 HBPCS4 在不同温度下裂解产物的 XRD 谱图

- Fig 4 XRD patterns of HBPCS4 derived ceramics pyrolyzed at different temperatures
- 4 结 论

(1) 通过预先对 Cl₃SiCH₂Cl 进行烷氧化, 然后 经过格氏偶联反应和还原反应, 制备了低氧含量液态 HBPCS。随着烷氧化比例增加, ¹H NMR 表征表明聚 合时 THF 开环副反应逐步消失。元素分析表明 HB-PCS 的氧含量逐渐降低, 最低可降至 1.0% (质量分 数)。

(2) 对液态 H BPCS 进行 TGA 分析, 其 900℃的 陶瓷产率 高达 75%。对不同温度下裂解产物进行 XRD 测试发现,随着温度的升高, SiC 微晶从无序结构 向有序结构转变,升至 1600℃时,出现 β SiC 和 φ SiC 向有序结构转变,升至 1600℃时,出现 β SiC 和 φ SiC

的特征峰。

村

参考文献:

- Ishikawa T, Kajii S, Matsunaga K. [J]. Science, 1998, 282(5392): 1295-1297.
- [2] Naslain R. [J]. Compos Sci Technol, 2004, 64(2): 155-170.
- [3] 黄汉生. [J]. 高科技纤维与应用, 1999, 24(4): 2731.
- [4] Interrante L V, Jacobs J M, Sherwood W, et al. [J].
 Key Eng Mater, 1997, 127 131: 271 278.
- [5] Interrante L V, Moraes K, Liu Q, et al. [J]. Pure Appl Chem, 2002, 74 (11): 2111 2117.
- [6] 余兆菊, 黄木河, 李 然, 等. [J]. 功能材料, accepted.
- [7] Whitmarsh C K, Interrante L V. [J]. Organometallics, 1991, 10(5): 1336 1344.
- [8] Froehling P E. [J]. J Inorg Organomet Polym, 1993, 3
 (3): 25+258.
- [9] Fang Y H, Huang M H, Yu Z J, et al. [J]. J Am Ceram Soc, 2008, 91(10): 3298 3302.
- [10] 余兆菊,黄阗华,黄木河,等. [J]. 厦门大学学报(自然 科学版), 2008, 47(5): 692 695.
- [11] Huang M H, Fang Y H, Li R, et al. [J]. J Appl Polym Sci, 2009, 113(3): 1611-1618.
- $\label{eq:general} [12] \quad Shen \; Q, \; Sherwood \; W. \; [P] \; . \; USP: \; 20070093587, \; 2007.$
- [13] Shen Q. [P]. USP: 20070167599, 2007.
- [14] Sasaki Y, Nishina Y, Sato M, et al. [J]. J Mater Sci, 1987, 22(2): 443 448.
- [15] Pysher D J, Goretta K C, Hodder R S, et al. [J]. J Am Ceram Soc, 1989, 72(2): 284-288.
- [16] Rushkin I L, Shen Q, Lehman S E, et al. [J]. Macromolecules, 1997, 30(11): 3141-3146.
- [17] Huang T H, Yu Z J, He X M, et al. [J]. Chin Chem Lett, 2007, 18(6): 754 757.
- [18] Moraes K, Vosburg J, Wark D, et al. [J]. Chem Marter, 2004, 16(1): 125-132.

(下转第2173页)

张理元 等: Ag 掺杂纳米二氧化钛的制备及光催化性能研究

- 薛寒松,李华基,易 于,等.[]]. 机械工程材料,2008,32 [8] (6): 35-39.
- 梁春华,吴峰.[J].环境保护科学,2008,34(2):45-[9] 47.
- 李振华,刘中清,等.[J].功能材料,2007,38(3):485-[10] 487.
- Khan S U M, Al Shahry M, Ingler W B. [J]. Science, [11] 2002, 297: 2243.
- [12] Choi Y, Umebayashi T, Yamamoto S, et al. [J]. J Mar ter Sci Lett, 2003, 22: 1209.
- [13] Chourasia A R, Chopra D R, Mcguire G E, et al. [J]. Surface Science Spectra, 1992, 1: 233 237.
- Chourasia A R, Chopra D R. [J]. Thin Solid Films, [14] 1995, 266: 298.
- Shankar K, Tep K C, Mor G K, et al. [J]. J Phys D, [15] 2006. 39:3150.
- 余志勇,张 维,马 明,等. [J]. 物理化学学报, 2009, [16] 25(1): 3540.
- [17] Masashi I, Li J G, Takamasa I, et al. [J]. Thin Solid Films, 2007, 1:5.

- [18] 唐丽娜,柳丽芬,等.[]].环境科学,2008,29(9):2536 2541.
- 王卫伟, 等. [J]. 功能材料, 2003, 34(4): 429-430. [19]
- Choi W, Termin A, Michael R H.[J]. J Phys Chem, [20] 1994, 98(51): 13669-13679.
- 张立德,牟季美.纳米材料和纳米技术[M].北京:科学出 [21] 版社,2001.
- 张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工 [22] 业出版社,2000.
- Zhao L, Jiang Q, Lian J S. [J]. Appl Surface Sci, 2008, [23] 254: 4620.
- 宁成云,王玉强,郑华德,等.[J].硅酸盐通报,2009,28 [24] (4): 775-778.
- 刘秀华. 金属离子掺杂二氧化钛光催化剂的改性研究 [25] [D]. 绵阳: 中国工程物理研究院, 2007.
- 崔玉民,范少华,张 颖.[].北京科技大学学报,2006, [26] 28(10): 956 958.
- 刘秀珍,施利毅,华 彬.[J]. 上海环境科学, 2000, 19 [27] (9):414-417.

Preparation and photocatalytic property of Ag doped TiO₂

ZHANG Liyuan, LIU Zhong xin, YU Xiao long, LV Zuo feng, CAO Yang

(Key Laboratory of Ministry of Education for Application Technology of Chemical Materials

in Hainan Superior Resources, Key Laboratory of Research on Utilization of SrZrTi Resources,

Materials and Chemical Engineering Institute, Hainan University, Haikou 570228, China)

Abstract: Ag-doped TiO₂ was prepared by sol-gel process. The characteristics of TiO₂ powder were investigated by SEM, XPS, XRD, UV-Vis. The results indicated that the diameter of undoped TiO² particles was 80 100nm and that of Ag doped TiO₂ particles was 40 50nm, Ag was successfully doped into crystal lattice and the content of Ag was 0.67 at%. The crystal forms of Ag-doped and undoped TiO₂ were almost the same after annealing at 400°C. However, transform from anatase to rutile could be restrainted after annealing at 600°C. The absorption profile of TiO₂ was shifted to longer wavelength by doping. The optimal doping quantity was 0.5% and the optim mal annealing temperature was 600°C. Methyl orange was used as the degradable agent in photocatalytic experiment. The results indicated that methyl orange could be degraded 97.9% by Ag-doped TiO₂ under the optimal conditions after 120min.

Key words: sol gel process; nano TiO₂; Ag doping; photocatalytic property

(上接第2168页)

Synthesis and pyrolytic conversion of a hyperbranched liquid polycarbosilane with low oxygen content

LI Ran^{1,2}, ZHAN Jun-ying², ZHOU Cong², YU Zhao-ju², DING Martai^{2,3}, XIA Harping^{1,2}

(1. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;

2. College of Materials, Key Laboratory of High Performance Ceramic Fibers, Xiamen University,

Ministry of Education, Xiamen 361005, China;

3. College of Chemistry and Materials Engineering, Longyan University, Longyan 364000, China) Abstract: A hyperbranched liquid polycarbosilane (HBPCS) with a low oxygen content was prepared by Grignard coupling of partially methoxylated chloromethyltrichlorosilane, followed by reduction with lithium aluminum hydride. The as synthesized HBPCS was characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. It is suggested that side reactions of THF and chlorosilanes can be avoided with the increase of methoxylation ratio. Less oxygen is expected in the precursors. Pyrolysis behavior of the HBPCS and crystallization behavior of the resultant ceramic were studied by means of thermal gravimetric analysis (TGA) and X-ray diffraction (XRD), respectively.

Key words: methoxylation; polycarbosilane (PCS); precursor; silicon carbide; hyperbranch