•研究论文•

电沉积 Bi₂Te₃基薄膜的电化学阻抗谱研究

林青含^a 邱丽琴^a 程 璇*,a,b 周 健*,a

("厦门大学材料学院材料科学与工程系 厦门 361005) (⁶福建省特种先进材料重点实验室 厦门 361005)

摘要 以不锈钢为基底,利用电化学沉积方法制备 Bi₂Te₃基薄膜材料,并采用 X 射线衍射技术、电子探针微观分析等 方法对薄膜进行结构和成分表征,通过电化学阻抗谱技术对不锈钢表面 Bi₂Te₃ 的电化学沉积机理进行了初步探讨.结 果表明 Bi-Te 和 Bi-Te-Se 体系具有相似的电化学沉积机理,即 Bi³⁺和 HTeO₂⁺ 或 H₂SeO₃ 首先被还原为 Bi 单质和 Te 或 Se 单质,然后 Bi 单质与 Te 或 Se 单质反应生成 Bi₂Te₃基化合物,而 Bi-Sb-Te 体系中,HTeO₂⁺ 首先被还原为 Te 单质,生 成的 Te 再与 Bi³⁺和 Sb(III)反应生成 Bi₂Te₃基化合物,三种体系的沉积都受电化学极化控制. **关键词** Bi₂Te₃;电化学交流阻抗;电沉积

Electrochemical Impedance Spectroscopic Study of Electrodeposited Bi₂Te₃-based Thin Films

Lin, Qinghan^a Qiu, Liqin^a Cheng, Xuan^{*,a,b} Zhou, Jian^{*,a}

(^a Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005) (^b Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005)

Abstract The Bi₂Te₃-based thin films have been prepared by electrochemical deposition on stainless-steel substrates. The microstructure and composition of the films were studied by X-ray diffraction (XRD) and electron probe microanalysis (EPMA). The deposition mechanisms of Bi₂Te₃ thin films on stainless-steel substrates were preliminary investigated using electrochemical impedance spectroscopy (EIS). The results showed that the similar deposition mechanisms were obtained for Bi-Te binary and Bi-Te-Se ternary systems, *i.e.*, the Bi³⁺, HTeO₂⁺ and H₂SeO₃ were electrochemically reduced to form simple substances Bi(0), Te(0) and Se(0), respectively, then the Bi₂Te₃-based compounds were formed by reacting Te(0) or Se(0) with Bi(0). For Bi-Sb-Te ternary system, the HTeO₂⁺ was first electrochemically reduced to form simple substance Te(0), and then the Bi₂Te₃-based compounds were formed by reacting Te(0) with Bi³⁺ and Sb(III). The deposition processes were controlled by electrochemical polarization.

Keywords Bi₂Te₃; electrochemical impedance spectroscopy; electrodeposition

碲化铋(Bi₂Te₃)基合金是室温附近性能最好的热电 材料^[1]. 微电子技术的发展促进了 Bi₂Te₃ 基薄膜材料的 研究. 电沉积法以成本低、设备简单、易于控制、生产 率高和在常温常压下进行等优点,在 Bi₂Te₃ 基薄膜材料 的研究中引起了广泛重视^[2~19]. p型 Bi_{0.5}Sb_{1.5}Te₃和 n型 Bi₂Te_{2.7}Se_{0.3} 因其优异的热电性能成为目前室温下最适合的热电制冷材料^[7,8]. 了解并研究 Bi₂Te₃ 基合金的电沉积机理对进一步提高热电薄膜的质量具有重要意义,

* E-mail: xcheng@xmu.edu.cn

Received October 10, 2011; accepted March 7, 2012.

Project supported by the Fujian Key Laboratory of Advanced Materials, China (No. 2006L2003). 福建省特种先进材料重点实验室基金(No. 2006L2003). 然而,关于 Bi₂Te₃ 的电沉积机理目前还存在争议. Takahashi 等^[12]研究了钛基 Bi₂Te₃ 薄膜的电沉积机制, 认 为在外电场的作用下,离子首先从溶液中扩散到电极表 面,然后吸附在电极上的 Bi³⁺和 HTeO₂⁺分别被还原为 Bi(0)和 Te(0)单质, 两者直接反应生成 Bi₂Te₃ 化合物. Golia^[13]和 Jin^[14]等发现 Bi₂Te₃化合物在导电玻璃和金基 片上也有相似的沉积步骤. 但是, Miyazaki 和 Kajitani^[5] 却提出了钛基 Bi₂Te₃ 化合物的另一种电沉积机理:即只 有吸附在电极表面上的HTeO₂⁺ 被还原为 Te(0), 然后与 Bi³⁺反应生成 Bi₂Te₃. 李菲辉^[15]和 Martin-Gonzalez^[16]等 通过制备金基片上Bi2Te3薄膜也支持这种沉积机理.由 于 Bi₂Te₃ 基薄膜的电沉积机理至今尚不清楚, 因此, 有 必要进一步阐明电沉积机理. 本文利用简单的电化学沉 积方法在廉价的不锈钢基体上制备 Bi2Te3 基薄膜材料, 对其进行结构和组成的分析,并利用电化学阻抗谱技术 对酸性介质中不锈钢基表面 Bi₂Te₃ 的电化学沉积机理 进行了初步探讨.

1 实验

1.1 电解质溶液的配制

制备 Bi₂Te₃ 基薄膜的电解液为含 Bi(NO₃)₃•5H₂O, TeO₂, Sb₂O₃和 SeO₂的 HNO₃溶液,浓度按表 1 配制.由 于 Sb₂O₃ 难溶于水,故添加 0.5 mol•L⁻¹的酒石酸作为络 合剂.

1.2 薄膜的制备及表征

采用三电极体系,工作电极为不锈钢薄片,辅助电

极为铂网,参比电极为饱和甘汞电极.不锈钢片先用丙酮超声清洗以除去油污,再用无水乙醇超声清洗后用 0.1 mol·L⁻¹稀硝酸浸泡,最后用超纯水超声清洗,晾干 使用.采用荷兰 Eco Chemie 公司的 Autolab PGSTAT30 电化学工作站,通过控电位法在表 1 所示溶液中分别制 备 Bi-Te, Bi-Sb-Te 和 Bi-Te-Se 薄膜.交流阻抗谱的采集 频率范围为 10⁴~0.1 Hz,交流激励信号为±10 mV.测 试溶液的温度为室温,无强制搅拌.阻抗谱采用分析软 件 ZSimpWin 进行拟合.采用荷兰 Philips 公司的 XL30 型环境扫描电子显微镜和 Panalytical X'Pert 型粉末 X 射线衍射仪对电沉积薄膜进行微观形貌和物相分析.采 用日本电子生产的 JXA-8100 电子探针显微分析仪对薄 膜的成分进行分析.

2 结果与讨论

2.1 一元体系的阻抗谱分析

图 1 给出的是各一元体系在其还原电位^[19]下的 Nyquist 阻抗谱图,其等效电路见图 2,其中 *R*_s为溶液电 阻, *R*_{et} 为电荷传递电阻,用恒相位元(CPE)替代纯电容, 与 CPE 相关的阻抗可表示为:

$$Z_{\rm CPE} = \frac{1}{Q(j\omega)^n} \tag{1}$$

其中 $j=\sqrt{-1}$, ω 为角频率, Q 的量纲为 $F \cdot s^{n-1} \cdot cm^{-2}$. 当 n=1 时即为纯电容. R_L 和 L 分别为与不锈钢电极表面 吸附相关的电阻和感抗. 拟合图 1 阻抗谱得到各参数列 于表 2 中.

Table 1 Composition and concentration of the electrolytes								
Solution	$[\mathrm{Bi}^{3^+}]/(\mathrm{mmol} \cdot \mathrm{L}^{-1})$	$[HTeO_2^+]/(mmol \cdot L^{-1})$	$[Sb(III)]/(mmol \cdot L^{-1})$	$[H_2SeO_3]/(mmol \cdot L^{-1})$	$[HNO_3]/(mol \cdot L^{-1})$			
Bi	8	—	—	—	1			
Те	—	10	—	—	1			
Sb	—	—	9.75	—	1			
Se	—	—		5	1			
Bi-Te	8	10		—	1			
Bi-Sb-Te	2.6	10	10.4	—	1			
Bi-Te-Se	8	9	_	1	1			

表1 电解液的组成及浓度 Sable 1 Composition and concentration of the electrolyte

表2 四种一元体系溶液在对应还原电位下得到的拟合参数

tions
itior

System	$R_{\rm S}/(\Omega \cdot {\rm cm}^2)$	$Q_{\rm dl}/({\rm F} \cdot {\rm s}^{n-1} \cdot {\rm cm}^{-2})$	п	$R_{\rm ct}/(\Omega \cdot {\rm cm}^2)$	$R_{\rm L}/(\Omega \cdot {\rm cm}^2)$	$L/(\mathrm{H} \cdot \mathrm{cm}^2)$
Bi	0.38	1.01×10^{-3}	0.705	440	—	—
Те	0.50	7.00×10^{-4}	0.800	26.80	24.57	24.01
Sb	0.86	6.00×10^{-4}	0.889	54.50	37.50	9.10
Se	0.71	4.37×10^{-4}	0.871	9.202		

图 1 在还原峰电位下不同溶液中含(a) 8 mmol·L⁻¹ Bi³⁺, (b) 10 mmol·L⁻¹ HTeO₂⁺, (c) 9.75 mmol·L⁻¹ SbO⁺+0.5 mol·L⁻¹ 酒石酸 和(d) 5 mmol·L⁻¹ H₂SeO₃ 的 Nyquist 阻抗谱图

Figure 1 Nyquist plots measured at reduction peak potentials in solutions containing (a) 8 mmol· L^{-1} Bi³⁺, (b) 10 mmol· L^{-1} HTeO₂⁺, (c) 9.75 mmol· L^{-1} SbO⁺+0.5 mol· L^{-1} tartaric acid and (d) 5 mmol· L^{-1} H₂SeO₃

Figure 2 Equivalent circuit

从图 1a中可看出, Bi³⁺在-110 mV的还原电位下得 到的阻抗谱由一个不完全且压缩的半圆组成. 由表 2 看 出, Bi³⁺在不锈钢表面沉积的 R_{ct} (440 Ω•cm²)较大, n=0.705, 小于 1, 表明不锈钢表面较粗糙. 由图 1b 可见, HTeO₂⁺ 在-250 mV 下得到的阻抗谱由中高频区的电 容环和中低频的感抗环两部分组成. 拟合得到的 R_{ct} (26.80 Ω•cm²)较 Bi³⁺的沉积小很多, 但出现感抗行为, 表明 HTeO₂⁺ 强烈地吸附在不锈钢电极表面, 其吸附电 阻 R_{L} (24.57 Ω•cm²)与 R_{ct} 大小相当, 表面也很粗糙(n=0.800). 图 1c 的 Sb(III)溶液在-420 mV 下的阻抗图谱与 图 1b 相似,也由高频区的电容环和低频区的感抗环两 部分组成,但出现明显变形.由于 Sb₂O₃ 难溶于水,添 加了络合剂酒石酸,使得 Sb 络合离子在不锈钢表面的 吸附比 HTeO₂⁺ 的吸附更难、吸附行为更复杂,导致 R_{et} (54.50 Ω •cm²)和 R_{L} (37.50 Ω •cm²)变大,表面仍然粗糙, 但较接近电容行为(n=0.889).图 1d 的 H₂SeO₃ 溶液在 -250 mV 下的阻抗图谱与图 1a 类似,表现为一个略微 压缩的半圆.H₂SeO₃ 还原为 Se(0)的反应明显较容易 (R_{et} =9.201 Ω •cm²),界面更接近电容行为.

2.2 多元体系的阻抗谱分析

根据图 3 中 Bi-Te, Bi-Sb-Te 和 Bi-Te-Se 的循环伏安 曲线中可知,峰位 R 和 O 分别对应 Bi₂Te₃ 及其合金的还 原和氧化,图 3 的左上放大图显示三者还原峰 R 的形状 相似,且还原电位都在一60 mV 附近,选择其还原峰电 位附近的不同电位,采用控电位沉积得到 Bi₂Te₃ 基薄 膜,其结构及元素分析结果如图 4 和表 3 所示,对应的 薄膜表面形貌如图 5 所示.

图 3 不锈钢在含 1 mol•L⁻¹ HNO₃ 溶液和含 Bi: Te=8:10, Bi: Sb: Te=2.6:10.4:10 和 Bi: Te: Se=8:9:1 的 1 mol•L⁻¹ HNO₃ 溶液中的循环伏安曲线, 扫速为 20 mV•s⁻¹ Figure 3 Cyclic voltammograms of stainless steel (SS) electrode in 1 mol•L⁻¹ HNO₃ solutions and in 1 mol•L⁻¹ HNO₃ solutions containing Bi: Te=8:10, Bi: Sb: Te=2.6:10.4:10 and Bi: Te: Se=8:9:1 at 20 mV•s⁻¹

图 4 溶液中不同电位下沉积薄膜的 XRD 图谱: Bi-Te (a, b); Bi-Sb-Te (c, d); Bi-Te-Se (e, f)

Figure 4 XRD patterns of the films deposited at various cathodic potentials in solution containing Bi-Te (a, b), Bi-Sb-Te (c, d) and Bi-Te-Se (e, f)

图 4 的 XRD 结果表明,得到的薄膜都具有斜方六 面体的 Bi₂Te₃ 晶体结构且均为单相组织,由表 3 的 EPMA 分析结果得知,Bi-Te 在不同的电位下沉积都能 得到 Bi₂Te₃ 薄膜;Bi-Sb-Te 沉积得到的薄膜为 Bi_{2-x}Sb_xTe₃ 薄膜,且在-120 mV 下得到接近于化学计 量比 Bi_{0.5}Sb_{1.5}Te₃ 的薄膜;而 Bi-Te-Se 在不同电位下沉 积可得到 Bi₂Te_{3-y}Se_y薄膜,在-25 mV 下得到接近化学 计量比 Bi₂Te_{2.7}Se_{0.3} 的薄膜.图 5a~5b 中 Bi-Te 二元体 系薄膜呈树叶状分布,薄膜致密、平整,但颗粒大小不 均匀;图 5c~5d中Bi-Sb-Te 三元体系薄膜呈菜花状,颗 粒分布比较疏松,大小均匀;图 5e~5f中Bi-Te-Se 三元 体系薄膜虽然与Bi₂Te₃薄膜表面形貌相似,也呈树枝状 分布,致密度和平整度比较相似,但颗粒较小,分布较 均匀.

с 5 <u>µт</u>

图 5 不同沉积电位下薄膜的表面形貌 Figure 5 SEM images of thin films deposited at various potentials (a, b) Bi-Te, (c, d) Bi-Sb-Te, (e, f) Bi-Te-Se

	Table 3	The chemical co	mpositions of the	films deposited at	various potentials	
Deposition potential/mV (vs. SCE)			Staishiomatry			
		Bi	Те	Sb	Se	Stotemometry
a: -50	Di To	40.18	59.82			Bi ₂ Te ₃
b: -100	DI-1C	40.00	60.00	—		Bi ₂ Te ₃
c: -80	Di Ch Ta	13.96	63.54	22.70		Bi _{0.7} Sb _{1.13} Te _{3.17}
d: -120	Ы-50-1е	11.92	60.15	27.93		$Bi_{0.6}Sb_{1.4}Te_3$
e: -25	Di Ta Sa	40.35	53.27	—	6.39	Bi _{2.02} Te _{2.66} Se _{0.32}
f: -50	DI-16-36	41.63	53.01	—	5.35	Bi _{2.08} Te _{2.65} Se _{0.27}

表 3 不同沉积电位下的薄膜成分 Table 3 The chemical compositions of the films deposited at various potentials

在还原电位-60 mV 下分别对 Bi-Te, Bi-Sb-Te 和 Bi-Te-Se 三个体系进行了交流阻抗测试, 阻抗结果和等 效电路如图 6 所示, 拟合参数列于表 4. 图 6b 中 Rs 为溶 液电阻, Ret 和 Od (nd)分别表示电化学反应电阻和与反 应有关的双电层充电电容. 由图 6a 和表 4 可知, 三个体 系的 Rs 均很小(对应阻抗谱高频区数据, 见图 6a 插图), Bi-Sb-Te 三元体系中,由于添加了酒石酸作为络合剂来 增加 Sb₂O₃在水溶液中的溶解,导致 R_S稍有增加. Bi-Te 二元体系的阻抗最大, Bi-Te-Se 三元体系的阻抗最小. Bi-Te二元体系中 R_{ct}^1 (927 Ω •cm²)较大, 与表2比较, R_{ct}^1 与单元体系 Bi³⁺在不锈钢表面还原为 Bi 单质的电阻 (440 Ω •cm²)较接近,而HTeO₂⁺的还原反应电阻较小 (26.80 Ω•cm²), 故反应较 Bi³⁺的迅速, 因此, 虽然 Bi³⁺ 和 HTeO₂⁺ 分别还原为 Bi 和 Te 单质, 但 R_{et}^1 主要体现的 是反应速率较慢的 Bi^{3+} 的还原, Q_{dl}^{1} (83 μ F•sⁿ⁻¹•cm⁻²), nd =0.879, 接近双电层电容行为, 表面较平整、致密 (与图 5a 观察到的形貌一致); R²_{ct} (3614 Ω•cm²)非常大, 表明 Bi 单质与 Te 单质反应生成 Bi2-xTe3-x 化合物的速 率较慢, Q_{dl}^2 (0.71 mF•sⁿ⁻¹•cm⁻²)也比一般双电层充电电 容值大几个数量级, 说明不锈钢表面有其他物质形成, 可能是 Bi2-*Te3-* 固溶体[12]. 与 Bi-Te 二元体系的阻抗 谱相比, Bi-Sb-Te 三元体系的阻抗相对较小, R¹_{et} (12.61 Ω •cm²)比Bi-Te减小近2个数量级,与HTeO₂⁺的还原电 阻(26.80 Ω•cm²)接近, 表明 Sb 的引入导致吸附在不锈 钢电极表面的 HTeO₂⁺ 更容易还原形成 Te; R_{ct}^{1} 对应 HTeO₂⁺ 还原为 Te 单质的反应; R²_{ct} (39.87 Ω•cm²)也降低 了2个数量级,表明生成的Te与Bi3+和Sb(III)反应生成 Bi2-xSbxTe3 固溶体更易进行,其表面性质明显不同于 Bi-Te 二元体系(图 5c), 因此, Q¹_{dl} (352 µF•sⁿ⁻¹•cm⁻²)和 Q_{dl}^2 (19 mF•sⁿ⁻¹•cm⁻²)迅速变大, 特别是 $n_{dl}^2 = 0.5945$, 显 著减小, Bi-Sb-Te 体系的沉积机理与 Miyazaki 和 Kajitani^[5]的结论相似. 与前两个体系不同, Bi-Te-Se 三 元体系的阻抗谱可明显区分为高频区的容抗和低频区 的容抗(图 6a 插图), 其阻抗值也远小于 Bi-Te 二元体系 和 Bi-Sb-Te 三元体系, R_{ct}^{1} (630.8 Ω•cm²)和 Q_{dt}^{1} (113 μF•s^{*n*-1}•cm⁻²)与 Bi-Te 二元体系的数值接近,而由表 2 可知 Bi³⁺还原为 Bi 单质的反应较慢,电阻较大,而吸附 在不锈钢电极表面的 HTeO₂⁺ 还原为 Te 的反应电阻 (26.80 Ω•cm²)及溶液中 H₂SeO₃ 还原为 Se 的反应电阻 (9.202 Ω•cm²)均较小,表明该体系的第一步反应与 Bi-Te 体系相似, R_{ct}^{1} 指代的反应为 Bi³⁺, HTeO₂⁺ 和 H₂SeO₃ 分别还原为单质的反应,主要体现为 Bi³⁺的还 原反应; R_{ct}^{2} (13.03 Ω•cm²)显著减小,表明 Te 和 Se 与 Bi

图 6 (a) Bi-Te, Bi-Sb-Te 和 Bi-Te-Se 体系在-60 mV 下得到 的阻抗图比较, 溶液配比 Bi:Te=8:10; Bi:Sb:Te=2.6: 10.4:10; Bi:Te:Se=8:9:1; (b) 等效电路图

Figure 6 (a) Comparison of Nyquist plots measured at -60 mV in Bi-Te, Bi-Sb-Te and Bi-Te-Se systems, the ratios: Bi : Te=8 : 10; Bi : Sb : Te=2.6 : 10.4 : 10; Bi : Te : Se=8 : 9 : 1; (b) equivalent circuit

Table 4 The simulated results measured at -60 mV in Bi-Te, Bi-Sb-Te and Bi-Te-Se systems							
System	$R_{\rm S}/(\Omega \cdot {\rm cm}^2)$	$Q_{\rm dl}^1/(\mathrm{F} \cdot \mathrm{s}^{n-1} \cdot \mathrm{cm}^{-2})$	$n_{\rm dl}^1$	$R_{\rm ct}^1/(\Omega \cdot {\rm cm}^2)$	$Q_{\rm dl}^2/(\mathrm{F} \cdot \mathrm{s}^{n-1} \cdot \mathrm{cm}^{-2})$	$n_{\rm dl}^2$	$R_{\rm ct}^2 / (\Omega \cdot {\rm cm}^2)$
Bi-Te	0.11	0.83×10^{-4}	0.879	927	0.71×10^{-3}	0.978	3614
Bi-Sb-Te	0.40	3.52×10^{-4}	0.855	12.61	0.19×10^{-1}	0.5945	39.87
Bi-Te-Se	0.14	1.13×10^{-4}	0.833	630.8	0.12×10^{-2}	1	13.03

表 4 Bi-Te, Bi-Sb-Te 和 Bi-Te-Se 体系在一60 mV 控电位下得到的拟合参数 able 4 The simulated results measured at 一60 mV in Bi-Te. Bi-Sb-Te and Bi-Te-Se system

单质生成 Bi₂Te_{3-y}Se_y 固溶体的电化学反应电阻较小, Q_{dl}^2 (1.20 mF•sⁿ⁻¹•cm⁻²)与 Bi-Te 二元体系的数值接近, $n_{dl}^2 = 1$,表现出纯电容行为,表面致密均匀,与图 5f 观 察到的表面形貌吻合.

3 结论

采用电化学控电位沉积模式可分别实现 Bi-Te, Bi-Sb-Te, Bi-Te-Se 的共沉积,其中 Bi-Te 和 Bi-Te-Se 体 系在还原峰附近的电化学沉积机理相似,即 Bi³⁺和 HTeO₂⁺或 H₂SeO₃首先被还原为 Bi 单质和 Te 或 Se 单 质,然后 Bi 与 Te 或 Se 单质反应生成 Bi₂Te₃基化合物; 而 Bi-Sb-Te 体系中 HTeO₂⁺首先被还原为 Te 单质,生成 的 Te 单质再与 Bi³⁺和 Sb(III)反应生成 Bi₂Te₃基化合物. 纯 Bi³⁺和 H₂SeO₃体系的还原反应速率由电化学极化控 制.HTeO₂⁺和 Sb(III)在低频出现感抗环,说明这两种 离子能够吸附在不锈钢电极表面.Bi-Te, Bi-Te-Se 和 Bi-Sb-Te 的沉积都受电化学极化控制.

References

- 1 Tritt, T. M.; Subramanian, M. A. MRS Bull. 2006, 31, 188.
- 2 Yoo, B. Y.; Huang, C. K.; Lim, J. R.; Herman, J.; Ryan, M. A.; Fleurial, J. P.; Myung, N. V. *Electrochim. Acta* 2005, *50*, 4371.
- 3 Michel, S.; Diliberto, S.; Boulanger, C.; Bolle, B. J. Cryst. Growth 2006, 296, 227.
- 4 Michel, S.; Diliberto, S.; Boulanger, C.; Stein, N.; Lecuire, J. M. J. Cryst. Growth 2005, 277, 274.

- 5 Miyazaki, Y.; Kajitani, T. J. Cryst. Growth 2001, 229, 542.
- 6 Del Frari, D.; Diliberto, S.; Stein, N.; Boulanger, C.; Lecuire, J. M. J. Appl. Electrochem. 2006, 36, 449.
- 7 Martín-González, M.; Prieto, A. L.; Gronsky, R.; Sands, T.; Stacy, A. M. Adv. Mater. 2003, 15, 1003.
- 8 Del Frari, D.; Diliberto, S. b. D.; Stein, N.; Boulanger, C.; Lecuire, J.-M. *Thin Solid Films* **2005**, *483*, 44.
- 9 Bu, L.; Wang, W.; Wang, H. Appl. Surf. Sci. 2007, 253, 3360.
- 10 Bu, L.; Wang, W.; Wang, H. Mater. Res. Bull. 2008, 43, 1808.
- Montiel Santillan, T.; Solorza Feria, O.; Sanchez Soriano, H. *Int. J. Hydrogen Energy* 2002, 27, 461.
- 12 Takahashi, M.; Oda, Y.; Ogino, T.; Furuta, S. J. *Electrochem. Soc.* **1993**, *140*, 2550.
- 13 Golia, S.; Arora, M.; Sharma, R. K.; Rastogi, A. C. Curr. Appl. Phys. 2003, 3, 195.
- 14 Jin, C. G; Xiang, X. Q.; Jia, C.; Liu, W. F.; Cai, W. L.; Yao, L. Z.; Li, X. G. J. Phys. Chem. B 2004, 108, 1844.
- 15 Li, F. H.; Jia, F. L.; Wang, W. Appl. Surf. Sci. 2009, 255, 7394.
- 16 Martin-Gonzalez, M.; Prieto, A. L.; Gronsky, R.; Sands, T.; Stacy, A. M. J. Electrochem. Soc. 2002, 149, C546.
- Li, S. H.; Toprak, M. S.; Soliman, H. M. A.; Zhou, J.; Muhammed, M.; Platzek, D.; Muller, E. *Chem. Mater.* 2006, *18*, 3627.
- 18 Li, S. H.; Soliman, H. M. A.; Zhou, J.; Toprak, M. S.; Muhammed, M.; Platzek, D.; Ziolkowski, P.; Muller, E. *Chem. Mater.* 2008, 20, 4403.
- 19 Qiu, L. Q.; Zhou, J. A.; Cheng, X. A.; Ahuja, R. J. Phys. Chem. Solids 2010, 71, 1131.

(A1110103 Cheng, B.; Fan, Y.)