钛酸纳米管前驱体水热制备 TiO₂: 水热媒介对结晶度及 光催化活性的影响

吴玉萍¹ 周忠华*,¹ 孟彦超¹ 王 笛¹ 黄 悦*,² (¹ 厦门大学材料学院,厦门 361005) (² 日本科发伦材料株式会社,东京 141-0032,日本)

摘要:以钛酸纳米管为先驱体,180 $^{\circ}$ C 24 h 同一水热条件下,利用 H_2O_{\circ} HNO $_3$ 、KBF $_4$ 以及 HNO $_3$ +KBF $_4$ 的 4 种水热媒介溶液,制备了高结晶度高光催化活性的 TiO_2 ,并研究了水热媒介对 TiO_2 结晶度、表面羟基和光催化活性的影响。通过扫描电镜(SEM)、X 射线衍射(XRD)、红外测试(FTIR)、X 射线光电子能谱(XPS)、紫外可见漫反射吸收光谱(UV-Vis)进行了结构表征。光催化活性通过降解甲基橙溶液进行了评价。结果表明,与其他 3 种媒介相比,HNO $_3$ +KBF $_4$ 溶液为水热媒介制备的锐钛矿晶型 TiO_2 ,结晶度高,表面羟基含量高,因此,呈现高的光催化活性。

关键词: TiO2; 水热法; 水热媒介; 钛酸纳米管前驱体; 光催化

中图分类号: 0614.41⁺1 文献标识码: A 文章编号: 1001-4861(2011)03-0473-07

Hydrogen Titanate Nanotubes as Precursor to TiO₂ Preparation: Influence of Hydrothermal Media on Crystallinity and Photocatalytic Activity

WU Yu-Ping¹ ZHOU Zhong-Hua^{*,1} MENG Yan-Chao¹ WANG Di¹ HUANG Yue^{*,2}

(¹College of Materials, Xiamen University, Xiamen, Fujian 361005, China)

(²Covalent Materials Corporation, Tokyo 141-0032, Japan)

Abstract: TiO₂ with high crystallinity and high photocatalytic activity was prepared in hydrothermal media of H₂O, HNO₃, KBF₄ and HNO₃ + KBF₄ solutions, respectively, under 180 °C for 24 h using hydrogen titanate nanotubes as the precursor. The influence of hydrothermal media on crystallinity, hydroxyl group content and photocatalytic activity of the obtained TiO₂ was studied. The structures were characterized by SEM, XRD, FTIR, XPS, UV-Vis diffuse reflectance absorption spectroscopy (UV-Vis DRS). The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange. The results show that the anatase TiO₂ prepared in HNO₃+KBF₄ hydrothermal medium has higher crystallinity, more hydroxyl group thus higher photocatalytic activity comparing with that of anatase TiO₂ obtained from other three hydrothermal media.

Key words: TiO2; hydrothermal method; hydrothermal media; hydrogen titanate nanotube precursor; photocatalytic activity

 TiO_2 光催化材料,由于价廉、性能高以及安全性,在大气/水污染净化治理等环保领域的应用越来越广,愈发受到重视[$^{1-5}$]。自从 Kasuga 等[$^{6-7}$ 报道了关于水热法合成钛酸纳米管以来,大比表面积和高孔体

积的钛酸纳米管,由于具有独特的微结构而引起广泛注目。然而钛酸纳米管结晶度很低,没有光催化活性。因此,利用钛酸纳米管为前驱体制备高光催化活性的 TiO。成为近年光催化领域的挑战和热点。

收稿日期:2010-05-31。收修改稿日期:2010-11-28。

教育部留学回国人员科研启动资金;厦门大学人才引进项目(No.0044-X12101)资助。

^{*}通讯联系人。E-mail:zzh@xmu.edu.cn(Zhou),Etsu-Kou@covalent.co.jp (Huang);会员登记号:E494156461S。

钛酸纳米管通常应用热处理方法、转变为锐钛 矿相 TiO₂。 Yu 等®将钛酸纳米管在 400~600 ℃热处 理 2 h 得到锐钛矿相 TiO₂. 光催化氧化丙酮的效果 比 P25 好。Zhang 等門报道了钛酸纳米管热处理结构 不稳定性,当温度小于300℃发生层间脱水,温度大 于 300 ℃发生层内脱水,管状结构坍塌;由于形成光 生电子空穴对的复合中心、光催化降解丙烯的效果 变差。Štengl 等[10]将商品钛酸钠与乙二醇的反应物作 为前躯体,在 550 和 900 ℃热处理 2 h,制备了钛酸 钠纳米棒、光降解对氯苯酚有效果、但活性比 P25 差。Qamar 等[11]讨论了纳米管形貌、相组成、表面特 性以及光催化活性与热处理温度以及 Na+含量的关 系;300~900 ℃热处理 2 h, 得到棒状或者颗粒状结 构锐钛矿相 TiO,具有光催化降解紫色染料的效果, 但活性也比 P25 差。Lee 等[12]合成纳米管后进行热处 理,并通过光催化氧化碱性染料 BV10 进行评价;热 处理温度小于 300 ℃时,表观速率常数大于 P25:热 处理温度大于 300 ℃时,表观速率常数小于 P25。

最近,利用钛酸纳米管易发生晶型转变的特征, 选择低温水热的湿化学法,制备结构可控、高活性的 锐钛矿相 TiO2。钛酸和锐钛矿 TiO2,结构相似,都具 有由相邻 TiO₆ 八面体共用 4 条棱而构成的 Z 字带 结构特征、在水热过程中、通过脱水形成锐钛矿 TiO₂[13],水热媒介对晶态 TiO₂产物的结构将产生影 响。Mao 等[14]在水媒介中 170 ℃的温度下钛酸纳米 管水热处理 12~36 h,制备锐钛矿 TiO₂,与商品 TiO₂ 原料相比,提高了光催化活性。Zhu 等[15]在 0.05 mol· L¹硝酸水溶液中,通过钛酸与 TiO₂ 之间的可逆相 转变. 对钛酸 25~120 ℃水热处理. 制备了锐钛矿 TiO₂ 负载的钛酸纳米纤维复合体,光催化降解璜基 罗丹明的效果比商品 TiO2 高,性能提高归因于大的 表面积。Wen 等问通过调节反应溶液的 pH 值,钛酸 与氢氧化四丁基铵混合在 120 ℃温度下, 合成了不 同形貌的锐钛矿 TiO₂;pH=1.8 时得到锐钛矿相 TiO₂ 纳米方形和菱形体;pH=11.5 时得到锐钛矿相 TiO2 的纳米梳状体;pH=13 时形成了锐钛矿相 TiO_2 的纳 米片或纳米线,纳米片(线)与商品 TiO2 原料相比,提 高了光催化活性。另外、Park 等四报道了 TiO。纳米 粉体(P25)在含 F-离子媒介中,通过 F-取代 TiO2 纳米 颗粒表面的羟基(表面氟化),可提高光催化活性;表 面氟化结果,产生自由移动的羟基自由基,引起光催 化活性的提高。

以钛酸纳米管作为前驱体, 高光催化活性 TiO₂

的制备方法中,热处理方法通常需要 300~600 ℃的高温,而水热方法处理温度低,简单易控,但是,相关研究还相对较少,特别是水热媒介对结晶度以及光催化活性的影响还不明确。

本工作先采用水热法制备钛酸纳米管,然后将钛酸置于 H_2O_3 HNO $_3$ 、KBF $_4$ 以及 HNO $_3$ +KBF $_4$ 的 4 种水热媒介溶液中,进一步水热合成 TiO_2 。通过结构表征以及光催化性能评价,讨论了水热媒介对 TiO_2 的结晶度、表面羟基以及光催化活性的影响。

1 实验部分

1.1 试 剂

商用 TiO₂ 粉体 P25(Degussa)、氢氧化钠(国药集团化学试剂有限公司,分析纯)、盐酸(国药集团化学试剂有限公司,分析纯)、硝酸(天津大茂化学试剂厂)和氟硼酸钾(天津联合化学试剂厂,分析纯)

1.2 样品的制备

粉体 TiO_2 1 g 与 80 mL 10 mol·L⁻¹ NaOH 溶液置于 100 mL 的聚四氟乙烯高压釜中。将高压釜 130 ℃保温 24 h,得到白色沉淀。过滤后,经 0.1 mol·L⁻¹ HCl 清洗至酸性,再用蒸馏水洗至中性,然后 80 ℃干燥 12 h,得到钛酸纳米管粉体。

以钛酸纳米管为前驱体, HNO_3+KBF_4 溶液为水热媒介制备锐钛矿晶型 TiO_2 ,其方法如下:自制的钛酸纳米管 1 g,氟硼酸钾 0.5 g,置于 100 mL 聚四氟乙烯的水热釜中,再加入 75 mL 0.01 mol·L⁻¹ HNO_3 ,高压釜 180 °C 保温 24 h;得到的沉淀物用蒸馏水洗至中性,然后 80 °C 干燥 12 h,得到 TiO_2 粉末。另外 3 组不同水热媒介实验如下:在水热釜中加入的反应物分别为①75 mL 蒸馏水和钛酸纳米管 1 g;②75 mL 0.01 mol·L⁻¹ 100

1.3 结构表征

结构表征使用设备、条件如下:扫描电镜(SEM, LEO1530)场发射电子显微镜,加速电压为 20 kV。X射线衍射(XRD, Philips, Panalytical X'pert),石墨单色器,Cu 靶, λ (Cu $K\alpha$ 1)=0.154 06 nm,管电压 40 kV,管电流 30 mA;使用步进扫描方式,每步 0.6°,步长 0.0167°,每步停留 8 s,在 5°~70°之间收集数据。红外光谱(FTIR, Nicolet 380),测试样品用 KBr 压片法制备。X 射线光电子能谱(XPS, PHI Quantum 2000),X 射线光源:Al 阳极靶($h\nu$ =486.6 eV),扫描式单色器,

操作功率为 23.2 W, 样品室真空度小于 1.33×10⁻⁶ Pa。紫外可见漫反射(UV-Vis DRS, Cary 5000), BaSO₄ 为标准参比样品。

1.4 光催化活性评价

2 结果与讨论

2.1 平均粒径,结晶度及形貌

在 $180 \, ^{\circ}\mathrm{C}$ 、 $24 \, \mathrm{h}$ 的相同水热条件下, $\mathrm{H_2O}$ 、 $\mathrm{HNO_3}$ 、 $\mathrm{KBF_4}$ 和 $\mathrm{HNO_3}$ + $\mathrm{KBF_4}$ 的 4 种水热媒介制备的 $\mathrm{TiO_2}$, XRD 图如图 1 所示。前驱体的钛酸纳米管(图 $1\mathrm{a}$),经过上述条件水热后,4 种水热媒介(图 $1\mathrm{b}$ 至 e)都得到了锐钛矿型 $\mathrm{TiO_2}$ 。

平均晶粒尺寸采用 Scherrer 方程计算。

根据比表面积和粉末粒度关系公式 (假定为球形): $D=6/(\rho A)(\rho$ 为锐钛矿 TiO_2 密度 3.84 g·cm⁻³,D 为平均粒径,A 为比表面积),估算比表面积。

(a) Precursor of hydrogen titanate nanotubes, (b)Hydrothermal medium of H₂O; (c) Hydrothermal medium of HNO₃ solution; (d) Hydrothermal medium of KBF₄ solution; (e)Hydrothermal medium of HNO₃+KBF₄ solution

图 1 不同水热媒介合成 TiO₂ 的 XRD 图 Fig.1 XRD patterns of TiO₂ prepared by different hydrothermal media

相对结晶度采用锐钛矿(101)晶面衍射峰的相对强度之比进行评价^[19]。水热媒介 H₂O 的样品为基准。

表 1 为 4 种水热媒介合成 TiO_2 的平均粒径,比表面积和相对结晶度。可以看出,水热媒介 HNO_3 + KBF_4 时,样品的结晶度大于其它 3 种水热媒介得到的样品,暗示了酸性溶液中 F-离子的存在有利于提高锐钛矿的结晶度。Yu 等[19]通过 NH_4F+H_2O 溶液中钛酸四异丙酯的水解,制备了 F 掺杂的锐钛矿和板钛矿混合 TiO_2 颗粒,提高 F 含量,能够抑制板钛矿形成,促进锐钛矿的结晶。高的结晶度意味着更少的缺陷,有利于减少光生电子空穴的复合中心。

表 1 不同水热媒介合成 TiO_2 的平均晶粒尺寸,比表面积和相对结晶度

Table 1 Average grain size, specific surface area and relative crystallinity of TiO_2 prepared by different hydrothermal media

Hydrothermal media	Grain size / nm	Specific surface area / $(m^2 \cdot g^{-1})$	Crystallinity
H ₂ O	13.4	116	1.00
HNO_3	12.8	122	0.91
KBF_4	12.6	124	0.93
HNO ₃ +KBF ₄	13.9	112	1.13

图 2(a)为钛酸纳米管前驱体的 SEM 图 ,图 2(b)为水热反应得到锐钛矿 TiO_2 的 SEM 图。从钛酸转变为锐钛矿的过程是钛酸发生缩水反应^[13],导致了管状结构的坍塌。

2.2 FTIR 分析

图 3 为 4 种水热媒介制备 TiO₂ 的 FTIR 图谱。

主峰 $400~700~cm^{-1}$ 是由 TiO_2 中的 Ti-O 键的拉伸和 弯曲作用引起 [3.20-21]。水热媒介为 KBF_4 和 HNO_3+KBF_4 的样品, 在大约 $890~cm^{-1}$ 有小的特征吸收峰,其它水热媒介的样品没有。 $890~cm^{-1}$ 归属于 Ti-F 的振动 [20]。 F 原子可能有两种存在状态: 物理吸附在 TiO_2 表面或者取代了 O 原子进入了 TiO_2 晶格,由

(a) Precursor of hydrogen titanate nanotubes; (b) TiO₂ prepared by hydrothermal medium of HNO₂+KBF₄ solution

图 2 SEM 形貌 Fig.2 SEM images

(a) Hydrothermal medium of H_2O ; (b) Hydrothermal medium of HNO_3 solution; (c) Hydrothermal medium of KBF_4 solution; (d) Hydrothermal medium of HNO_3+KBF_4 solution

图 3 各种不同水热媒介制备 TiO₂ 的 FTIR 图谱 Fig. 3 FTIR spectra of TiO₂ prepared by different hydrothermal media

FTIR 图谱不能判断。

2.3 XPS 分析

图 4(a) 为水热媒介 H_2O 得到样品的 XPS 宽谱图;水热媒介 HNO_3 结果与图 4(a)类似;检测出元素为 Ti Q 和 C 。图 4(b) 为水热媒介 HNO_3 +KBF $_4$ 得到样品的 XPS 宽谱图;水热媒介 KBF_4 结果与图 4(b) 类似;检测出元素为 Ti Q F 和 C 。结合能用 C1s (284.6 eV)矫正。

(a) Hydrothermal medium of H₂O; (b) Hydrothermal medium of HNO₃+KBF₄ solution

图 4 不同水热媒介制备 TiO₂ 的 XPS 图谱 Fig.4 XPS spectra of TiO₂ prepared by different hydrothermal media

2.4 表面羟基分析

图 5 为 HNO_3+KBF_4 水热媒介制备 TiO_2 的 O1s XPS 图谱。图谱用高斯—洛伦兹分布来拟合,选择 Shirley 类型扣背底;且 χ^2 的值小于 2。结果显示:主峰在 529.8 eV,此是 TiO_2 晶格中的 Ti-O;此外,531.8 eV 小峰是归属于 TiO_2 表面的 $O-H^{[21]}$,即: TiO_2 表面羟基基团。虽然 H_2O 也很容易吸附在 TiO_2 的表

	表 2	不同水热媒介制备 TiO_2 中 O 的 $Ti-O$ 、 $O-H$ 比例
able 2	Ti-O and O-H	nercentage of O for TiO, prepared by different hydrothermal medi

Hydrothermal media	Ti-O / %	О-Н / %
$\mathrm{H_{2}O}$	83.4	16.6
HNO_3	86.0	14.0
KBF_4	86.7	13.7
HNO ₃ +KBF ₄	74.2	24.3

图 5 HNO₃+KBF₄ 水热媒介制备 TiO₂ 的 O1s XPS 图谱 Fig.5 O1s XPS spectra of TiO₂ prepared by HNO₃+KBF₄ hydrothermal medium

面,但是,物理吸附 H_2O 在 XPS 超高真空条件下被脱附^[22]。同样,对其他 3 种水热媒介制备的 TiO_2 进行类似分析,得到了在不同水热媒介制备 TiO_2 样品的羟基基团及钛氧基团的百分含量,结果列举于表 2。可以看出,水热媒介为 H_2O 、 HNO_3 和 KBF_4 时,得到的 TiO_2 表面羟基含量相差不大,约占 O 原子的 14% 左右;而在 HNO_3+KBF_4 水热媒介中,得到的 TiO_2 表面羟基含量明显增多,达到 O 原子的 24.3%。光催化氧化的反应如以下方程表示^[4,22]:

$$TiO_2 + h\nu \rightarrow e^- + h^+ \tag{1}$$

$$e^- + h^+ \rightarrow heat$$
 (2)

$$e^- + O_2 \rightarrow O_2^-$$
 (3)

$$h^++OH \rightarrow OH$$
 (4)

Salvador 等[23]研究了在光电化学电池中,表面羟基能够有效地调节电子,从 TiO_2 的表面转移给电子受体。Boonstra 等[24]证实了 TiO_2 吸附氧分子与表面羟基含量的正比关系,发现 TiO_2 表面羟基越多,吸附氧分子增多。因此, TiO_2 表面羟基含量增多,不仅有利于直接地捕获光生电子空穴;而且能够促进 TiO_2 吸附氧分子从而促进捕获光生电子;也就是,有利于抑制光生电子空穴对的再重合,有利于提高光催化活性。

2.5 F 化学状态分析

图 6(a)和(b)为水热媒介 HNO_3+KBF_4 制备 TiO_2 的 F1s XPS Ar^+ 溅射前后图谱 $(Ar^+$ 溅射条件: 1 min)。图 6(a)和(b)图谱左右不对称,拟合结果得到 3 个子峰:684.3、685.4 和 688.0 eV,分别对应 TiO_2 中 F 原子存在的 3 种不同状态。684.3 eV 峰对应于表面物理吸附状态的 $F^{[19]}$;685.4 eV 峰对应于 TiO_2 晶格中以 $TiOF_2$ 状态存在的 $F^{[25-26]}$;688.0 eV 峰对应于 TiO_2 晶格以 TiO_{2a} F₄ 状态存在的 $F^{[19,27]}$ 。

图 6(a)和(b)相比较,值得注意的是,使用 Ar^* 溅射后,表面物理吸附状态的 F 峰(684.3 eV)降低,同时,以 $TiOF_2$ 状态存在的 F 峰(685.4 eV)明显增大,表明 F 部分进入了 TiO_2 晶格,取代了 TiO_2 晶格中的 O 原子。分析图 6(a)和(b),得到了 TiO_2 在 XPS Ar^* 溅射前后的 F 化学状态,列举于表 3。

图 6(c)和(d)为水热媒介 KBF_4 制备 TiO_2 的 F1s XPS Ar^* 溅射前后图谱。图 6(c)和(d)图谱左右对称,

(a) and (b): TiO2 prepared by hydrothermal medium HNO3+KBF4 solution; (c) and (d): TiO2 prepared by hydrothermal medium KBF4 solution

图 6 F1s XPS Ar+溅射前后图谱

Fig.6 F1s XPS spectra before and after Ar* sputtering

表 3 HNO₃+KBF₄ 水热媒介制备 TiO₂ 的 F 化学状态

Table 3 Chemical states of F of TiO₂ prepared by hydrothermal medium of HNO₃+KBF₄

Chemical states of F	Physical adsorption state	TiOF ₂ state	$TiO_{2-x}F_x$ state
XPS F1s peak position	684.3 eV	685.4 eV	688.0 eV
Before Ar ⁺ sputtering	78.1%	16.9%	5.0%
After Ar ⁺ sputtering	20.0%	71.6%	8.4%

只含有 684 eV 位置的峰,表明 F 为表面物理吸附,没有进入 TiO_2 晶格。

和水热媒介 KBF₄ 相比,HNO₃+KBF₄ 水热媒介制备的 TiO_2 ,F 部分进入了 TiO_2 晶格。这可能与 HNO₃+KBF₄ 水热媒介中,HF 作用有关。Huang^[20]等 通过在 HNO₃+EtOH+NH₄F 溶液中钛酸丁酯的水解,水热制备了 F 掺杂的锐钛矿 TiO_2 ,溶液中 H^+ 、F⁻离子促进 F 掺杂。

2.6 UV-Vis 分析

4 种水热媒介制备的 TiO_2 的 UV-Vis 图谱示于图 7。能带间隙 E_g 通过 Kubelka-Munk 方法求出 $^{[28-29]}$ 。结果,水热媒介为 H_2O 、 HNO_3 、 KBF_4 和 HNO_3 + KBF_4 制备 TiO_2 的 E_g 分别为 3.28、3.26、3.24 和 3.22 eV;同样方法求得 P25 的 E_g 为 3.27 eV,此值接近于实验文献值 3.22 eV 和理论值 3.45 eV $^{[29]}$ 。与其他 3 种媒介相比, HNO_3 + KBF_4 溶液为水热媒介制备的 TiO_2 ,引入 F 并没有引起吸收端太大变化,与文献结果一致 $^{[9,25]}$ 。

(a) hydrothermal medium of H_2O ; (b) hydrothermal medium of HNO_3 solution; (c) hydrothermal medium of KBF_4 solution; (d) hydrothermal medium of HNO_3+KBF_4 solution

图 7 不同水热媒介制备 TiO₂ 样品的 UV-Vis 图谱 Fig.7 UV-Vis spectra of TiO₂ prepared by different hydrothermal media

2.7 光催化活性

4 种水热媒介制备的 TiO_2 , 降解甲基橙溶液的 表观速率常数,示于图 8。作为比较,钛酸纳米管前

图 8 4 种水热媒介制备的 TiO₂、钛酸纳米管前驱体 以及 P25 的光催化活性

Fig.8 Photocatalytic activity of TiO₂ prepared by 4 hydrothermal media, comparing with that of hydrogen titanate nanotube precursor and P25

驱体以及 P25 也在图 8 表示。对于没有光催化活性的钛酸纳米管前驱体,4 种水热媒介进行水热处理后,都显示出活性;这归因于都转化成锐钛矿 TiO_2 ;与 XRD 结果相对应(图 1)。水热媒介为 HNO_3+KBF_4 制备的 TiO_2 ,活性最高,表观速率常数(2.74×10^{-2} min^{-1})是 P25(1.14×10^{-2} min^{-1})的 2.4 倍;这归因于和其他 3 种水热媒介相比,得到的 TiO_2 具有高的结晶度以及高的表面羟基基团含量。

图 8 还可以看出,水热媒介为 KBF_4 制备的 TiO_2 活性,与水热媒介 H_2O 以及 HNO_3 相比,虽然结晶度、表面羟基基团含量没有优势,但是,光催化活性较高;这可能由于 TiO_2 表面氟化作用引起。文献 $I^{17,30}$ 报道, TiO_2 表面氟化,即表面羟基基团与 F^- 发生离子置换(反应(5)); $\equiv Ti-F$ 对光生空穴与水反应生成的羟基自由基无吸附作用(反应(6)),从而产生可自由移动的羟基自由基,提高光催化活性。

$$\equiv \text{Ti-OH+F}^{-} \rightleftharpoons \equiv \text{Ti-F+OH}^{-} \tag{5}$$

$$\equiv$$
 Ti-F+H₂O(or OH⁻)+ h_{vb}^+ \rightarrow \equiv Ti-F+·OH_{free}+H⁺(6)

$$\equiv \text{Ti-OH} + h_{vb}^{+} \rightarrow \equiv \text{Ti-OH}^{-+}$$
 (7)

3 结 论

以 钛 酸 纳 米 管 为 前 驱 体 ,H₂O 、HNO₃、KBF₄ 和 HNO₃+KBF₄ 4 种水热媒介 ,180 ℃、24 h 水热制备得

到了锐钛矿 TiO_2 。与其他 3 种水热媒介相比, HNO_3 + KBF_4 水热媒介,提高了 TiO_2 结晶度;增大了 TiO_2 表面羟基基团含量;得到的 TiO_2 光催化活性最高,是 P25 的 2.4 倍。另外, HNO_3 + KBF_4 水热媒介制备的 TiO_2 中,F 部分进入了 TiO_2 晶格, 而 KBF_4 水热媒介制备的 TiO_2 中,F 为 TiO_2 表面物理吸附。

参考文献:

- [1] ZOU Zhi-Gang(邹志刚), ZHAO Jin-Cai(赵进才), FU Xian-Zhi (付贤智), et al. Functional Materials Information (Gongneng Cailiao Xinxi), 2005,06:15-19
- [2] FU Xian-Zhi(付贤智), DING Zheng-Xin(丁正新), SU Wen-Yue(苏文悦), et al. *Chinese J. Catal.* (*Cuihua Xuebao*), **1999.20**(3):321-324
- [3] ZHOU Zhong-Hua(周忠华), HUANG Yue(黄悦), MENG Yan-Chao(孟彦超), et al. *Chinese J. Inorg. Chem.* (Wuji Huaxue Xuebao), **2010,26**(2):211-216
- [4] Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995,95 (3):735-758
- [5] Hoffmann M R, Martin S T, Choi W Y, et al. Chem. Rev., 1995,95(1):69-96
- [6] Kasuga T, Hiramatsu M, Hoson A, et al. *Langmuir*, 1998,14 (12):3160-3163
- [7] Kasuga T. Thin Solid Films, 2006,496(1):141-145
- [8] Yu J G, Yu H G, Cheng B, et al. J. Mol. Catal. A: Chem., 2006,249(1/2):135-142
- [9] Zhang M, Jin Z S, Zhang J W, et al. J. Mol. Catal. A: Chem., 2004,217(1/2):203-210
- [10] Štengl V, Bakardjieva S, Šubrt J, et al. Appl. Catal. B: Environ., 2006,63(1/2):20-30
- [11]Qamar M, Yoon C R, Oh H J, et al. Catal. Today, 2008,131 (1/2/3/4):3-14
- [12]Lee C K, Lyu M D, Liu S S, et al. *Taiwan Inst. Chem. Eng.*, 2009,40(4):463-470

- [13]Zhu H Y, Gao X P, Lan Y, et al. J. Am. Chem. Soc., 2004.126(27):8380-8381
- [14]Mao Y B, Wong S S. J. Am. Chem. Soc., **2006,128** (25): 8217-8226
- [15]Zhu H Y, Lan Y, Gao X P, et al. J. Am. Chem. Soc., 2005, 127(18):6730-6736
- [16] Wen P H, Itoh H, Tang W P, et al. Langmuir, 2007,23(23): 11782-11790
- [17]Park H, Choi W. J. Phys. Chem. B, 2004,108 (13):4086-4093
- [18]Yu J G, Yu J C, Leung M K P, et al. *J. Catal.*, **2003,217**(1): 69-78
- [19]Yu J C, Yu J G, Ho W K, et al. *Chem. Mater.*, **2002**,**14**(9): 3808-3816
- [20]Huang D G, Liao S J, Quan S Q, et al. J. Mater. Sci., 2007, 42(19):8193-8202
- [21]Yu J G, Yu H G, Cheng B, et al. J. Phys. Chem. B, **2003**, **107**(50):13871-13879
- [22]Yu J G, Yu H G, Cheng B, et al. J. Mol. Catal. A: Chem., 2006,253(1/2):112-118
- [23]Salvador P, Gutierrez C. Chem. Phys. Let., 1982,86(2):131-134
- [24]Boonstra A H, Mutsaers C A H A. J. Phys. Chem., 1975,79 (16):1694-1698
- [25]Li D, Haneda H, Labhsetwar N K, et al. Chem. Phys. Let., 2005,401(4/5/6):579-584
- [26]Chen D M, Jiang Z Y, Geng J Q, et al. J. Nanopart Res., 2009,11(2):303-313
- [27]Zhou J K, Lü L, Yu J Q, et al. J. Phys. Chem. C, 2008,112(14): 5316-5321
- [28] Serpone N, Lawless D, Khairutdinov R. J. Phys. Chem., 1995, 99(45):16646-16654
- [29]Wang X H, Li J G, Kamiyama H, et al. *J. Am. Chem. Soc.*, **2005,127**(31):10982-10990
- [30]Minero C, Mariella G, Maurino V, et al. Langmuir, 2000,16 (6):2632-2641