SiO_2 对 Al_2O_3 凝胶纤维相变的影响^{*}

何 静,林志君,张 力,丁马太,陈立富

(厦门大学 材料学院特种先进材料实验室 高性能陶瓷纤维教育部重点实验室,福建 厦门 361005)

摘 要: 以尿素催化硅酸乙酯水解制得 SiO₂ 溶 k_0^{29} Si NMR、²⁷Al NMR、FT-IR、TEM、DTA、XRD 和 SEM 等对 SiO₂ 溶胶、Al₂O₃ 凝胶纤维化学结构和 微观结构研究结果表明,该 SiO₂ 溶胶稳定性好,含有 大量的单硅酸 Si(OH)₄,能和 Al₂O₃ 表面的 Al—OH 反应生成 Al—O—Si 键而有效地将其包裹,从而阻止 了过渡态 Al₂O₃ 微晶的相互接触,抑制了 α-Al₂O₃ 的 成核和生长。

关键词: Al₂O₃ 纤维;SiO₂;相变;溶胶-凝胶 中图分类号: TQ343⁺.5 文献标识码:A 文章编号:1001-9731(2013)05-0001-04

1 引 言

多晶 Al₂O₃ 纤维耐高温、抗氧化,具有优异的高 温力学性能,以纤维毡、纤维垫、纤维板等产品形式广 泛用作高温隔热材料。以其代替硅酸铝纤维,可以提 高使用温度、延长使用寿命并节能约 20%^[1,2]。此外, 它还可作为金属和陶瓷基复合材料的增强体,应用于 汽车、航天航空等方面^[3-7]。

Al₂O₃ 纤维($m(Al_2O_3) > 70\%$)采用溶胶-凝胶技 术制备^[8-10]。在热处理过程中,Al₂O₃ 凝胶会发生一 系列相变,历经 γ-Al₂O₃、δ-Al₂O₃,θ-Al₂O₃ 等多种过 渡晶型,最后转变为高温稳定的 α-Al₂O₃ 相。研究发 现,α-Al₂O₃ 微晶一旦形成并长大到临界晶核尺度,就 会爆发式长大^[11]。这时,由于密度的差异,会导致较 大的体积收缩,形成典型的蠕虫状多孔结构,从而使纤 维丧失力学性能^[12-14]。为了获得高强度的细晶纤维, 就要提高 Al₂O₃ 过渡晶型的高温稳定性,抑制 α-Al₂O₃ 相的形成。最常用办法是加入相变抑制剂,如 SiO₂(SiO₂)。Saffil[®]纤维就是这样制备的^[15]。

在溶胶-凝胶法制备 Al_2O_3 纤维的过程中, SiO₂ 主要以溶胶的形式引入。SiO₂ 溶胶通常由水玻璃经 过离子交换制备,也可以通过硅酸乙酯(TEOS)的催 化水解获得。研究发现,硅源不同,其抑制 α-Al₂O₃ 相 形成的效果不同,但是对于其稳定机理研究较少。A. Sedaghat^[16]以杜邦的 Ludox[®] AS-30 为硅源,制备含 4%(质量分数)SiO₂ 的 Al_2O_3 纤维,发现其于 1000℃ 就有 α-Al₂O₃ 相形成;于 1200℃保温 4h 则全部转变 为 α-Al₂O₃ 相。Saffil[®] Al₂O₃ 纤维也含有约 4% 的 SiO₂ 作为稳定剂,但其 α-Al₂O₃ 相形成温度可以推迟 到 1200℃以上。Horiuchi^[17]分别以 Al(i-OC₃H₇)₃ 制 备 Al₂O₃ 溶胶,以 TEOS 酸性水解制备 SiO₂ 溶胶,再 令两者混合,得到 Al₂O₃-SiO₂ 凝胶。研究发现,纯 Al₂O₃ 凝胶在 1100℃保温 1h 即全部转变为 α-Al₂O₃; 而加入 5%(质量分数)SiO₂ 后,经历 1400℃热处理后 仍以 θ -Al₂O₃ 相为主,只有少量的 α-Al₂O₃。

由 TEOS 通过溶胶-凝胶法所制备的 SiO₂ 溶胶,其 物理性质(例如粒径、形貌等)和化学性质(例如羟基的 含量等)直接受到水解催化剂的影响^[18-21]。酸性水解 (如 HCl)得到的主要是线型 SiO₂ 溶胶,能够有效地抑 制 α-Al₂O₃ 相的形成,但稳定性较差,不适于实际生产; 而碱性水解得到的主要是球型 SiO₂ 溶胶,稳定性好,但 抑制 α-Al₂O₃ 相形成的效果差。本文以尿素催化 TEOS 水解,制备 SiO₂ 溶胶;同时分别以盐酸和氨水催化 TEOS 水解,制备了另外两种 SiO₂ 溶胶,以作为参比,系 统地研究了 SiO₂ 溶胶物理和化学性质对于热处理过程 中 Al₂O₃ 凝胶纤维相变影响的规律和机理。

- 2 实 验
- 2.1 实验试剂
- 2.1.1 Al₂O₃ 溶胶的制备

金属铝粉、结晶氯化铝和去离子水按摩尔比 5:1 :70 混合,回流,待铝粉溶解完全后,滤去残余固体, 即得 Al₂O₃ 溶胶。

2.1.2 SiO₂ 溶胶的制备

分别以氨水、盐酸、尿素催化硅酸乙酯(S40,是一种部分水解的 TEOS, SiO₂ 的含量约 40%(质量分数))水解,制备 3 种 SiO₂ 溶胶,分别记为 S40-NH₄OH、S40-HCl和 S40-Urea。其制备条件及基本性质见表 1。

2.1.3 Al₂O₃ 纤维的制备

于 Al_2O_3 溶胶中加入占最终 Al_2O_3 和 SiO_2 总质 量 4%(质量分数)的 SiO_2 溶胶,70℃下搅拌 30min,即 得到 Al_2O_3 -SiO₂ 溶胶。加入纺丝助剂 PEO 和增塑剂 PEG 等,浓缩至粘度约为 5Pa・s,在离心机上甩丝成 型,得到 Al_2O_3 凝胶纤维。凝胶纤维在马弗炉中以 2℃/min 升温至 700℃,保温 30min,;继以 10℃/min 升温至设定温度,保温 30min;最后炉冷到室温。 9 舷 材 科

3 种 Si	O_2 溶胶	的制备组	条件和基	本性质
--------	----------	------	------	-----

Table 1 Detailed information of the three different silica sols

SiO ₂ 溶胶	$V(S40): V(H_2O): V(C_2H_5OH)$	反应温度 (℃)	反应时间 (h)	SiO_2^*	pH 值	稳定性 (d)
S40-NH ₄ OH	20/15/60	70	24	10.0	10.0	>90
S40-HCl	50/20/0	25	10	24.0	3.5	$5\!\sim\!7$
S40-Urea	20/15/60	70	5	3.6	7.1	>60

注:*为 SiO₂ 的含量通过 900℃煅烧后称重测得。

表 1

2.2 样品的性能及表征

TEM 分析: JEM2100 分析 电镜(日本电子公司);²⁹Si NMR 分析: Bluker Advance II-300 型核磁共 振仪(瑞士),重水为溶剂锁场,乙酰丙酮铬为弛豫 剂^[22,23];相分析: Panalytical X'Pert Pro型 XRD 衍射 仪(德国 Panalytical 公司);FT-IR 分析: Nicolet Avatar 360-FT-IR 红外光谱仪,溴化钾片法;热失重(TG) 和差热(DTA)分析: SETSYS-Evolution 1750 热分析 仪(法国 Setaram 公司);纤维表面和断口形貌观察: XL30 型环境扫描电子显微镜(荷兰 Philips-FEI 公司) 和 LEO-1530 型场发射扫描电子显微镜(德国 Zeiss 公 司)。

3 结果与讨论

3.1 SiO₂ 溶胶化学结构分析

由表1可见,3种SiO₂溶胶具有不同 pH值,稳定 性也不尽相同。由HCl催化S40水解制备的S40-HCl 稳定性相对差得多,不适于实际生产。而以尿素为催 化剂时,尿素自身在 70° 就会缓慢水解,生成 CO₂ 和 NH₃,进而生成 H₂CO₃ 和 NH₄OH 而相互中和:

 $CO(NH_2)_2 + H_2O \longrightarrow CO_2 + 2NH_3$

或者:

 $CO(NH_2)_2 + 4H_2O \longrightarrow H_2CO_3 + 2NH_4OH$

因此,S40 是在接近中性的条件下缓慢水解和聚 合的。

SiO₂ 溶胶的基本结构单元可分为 5 种类型^[24,25]: 单硅酸硅原子(Q⁶),硅原子同时与 4 个羟基连接(Si (OH)₄);端基 Si 原子(Q¹),Si 原子只与 3 个羟基连接 (Si(OH)₃);中间基 Si 原子(Q²),有硅原子只与两个 羟基连接(Si(OH)₂);支基 Si 原子(Q³),Si 原子只与 一个羟基连接(Si—OH);网络 Si 原子(Q⁴),Si 原子同 时连接的是 4 个 O 原子而不是羟基。

图 1 为 3 种不同 SiO₂ 溶胶²⁹Si NMR 谱图。经高 斯分峰拟合后,3 种 SiO₂ 溶胶各峰的相对积分面积列 于表 2。

Fig 1²⁹Si NMR spectra of the three different silica sols

表 2 3 种 SiO_2 溶胶中不同结构单元的相对含量

Table 2 The occupancies of the different sites in the three different silica sols

SiO ₂ 溶胶	相对积分面积(%)					N	
	\mathbf{Q}^0	\mathbf{Q}^1	\mathbf{Q}^2	\mathbf{Q}^3	\mathbf{Q}^4	¹ N _{Si} -OH/Si	
S40-NH ₄ OH	0	0	46.59	1.16	52.25	0.94	
S40-HCl	0	66.82	11.75	12.75	8.68	2.36	
S40-Urea	24.91	4.08	2.49	13.13	55.39	1.30	

其 Si 原子的含量与相应核磁谱峰的积分面积是 成正比的。据此,可计算各硅溶胶所含不同化学结构 单元相对的量,如式(1)所示:

$$N_{s_i} = Q^0 + Q^1 + Q^2 + Q^3 + Q^4$$
(1)
硅羟基总数可用式(2)计算:

$$N_{\rm Si-OH} = 4Q^{0} + 3Q^{1} + 2Q^{2} + Q^{3}$$
 (2)

则平均每个 Si 原子所连的 OH 数目,即 Si-OH/Si,可用式(3)计算:

$$N_{\rm Si-OH/Si} = \frac{4Q^0 + 3Q^1 + 2Q^2 + Q^3}{Q^0 + Q^1 + Q^2 + Q^3 + Q^4}$$
(3)

S40-NH₄OH 中的 Si 原子大部分以 Q² 和 Q⁴ 形 式存在,Si—OH/Si 为 0.94。而 S40-HCl 则以端基硅 原子 Q¹ 为主,Si—OH/Si 为 2.36,表明 S40 在酸性条 件下水解所得的 SiO₂ 溶胶,主要以短链结构为主,所 含硅羟基数目较多,活性更高。与以上两种硅溶胶不 同,S40-Urea 基本为中性,除含 Q¹、Q²、Q³ 和 Q⁴ 外, 还有单硅酸 Q⁰,其活性大,易于通过与其它羟基缩聚 形成化学键接;其大量单硅酸的存在,说明 Si—OH 之

何 静等:SiO2 对 Al2O3 凝胶纤维相变的影响

间缩聚反应不完全,这与 S40 的水解是在接近中性的 条件下进行有关;虽然其 Si-OH/Si 介于 S40-NH4 OH和 S40-HCl之间,为 1.30;但由于大量分子 量小、活性高的单硅酸的存在,其对 Al₂O₃ 溶胶颗粒 的包裹效果优于 S40-HCl。以下的 DTA、XRD 和 SEM 分析结果将证明这一点。

3.2 SiO₂ 溶胶的微观形貌分析

图 2 是 3 种不同 SiO₂ 溶胶的 TEM 图。

Fig 2 TEM micrographs of the three different silica sols

S40-NH₄OH 平均粒径约为 12nm,颗粒之间由于 硅羟基彼此的氢键作用而聚集。S40-HCl 粒径远小于 S40-NH₄OH,只有 1~2nm,是球型颗粒的团聚体,并 没有观察到线型的链状结构,可能是硅氧链干燥时形 成无规线团的缘故。S40-Urea 粒径大于 S40-HCl,但 小于 S40-NH₄OH,约为 5~7nm,颗粒间也有明显的 团聚。

3.3 Al₂O₃-SiO₂ 溶胶表征

图 3 为 3 种 Al₂O₃-SiO₂ 溶胶的²⁹ Si NMR 谱图。 在 Al₂O₃-SiO₂ 溶胶中, SiO₂ 溶胶原有的 Q⁰、Q¹、Q² 和 Q³ 谱峰都明显减弱, 只保留了硅氧四面体网络中 的 Q⁴。表明 Al₂O₃ 溶胶和 SiO₂ 溶胶并不是简单的物 理混合, 而是发生了化学反应, 即 Al₂O₃ 溶胶中 Al— OH 与 SiO₂ 溶胶中 Si—OH 之间发生缩合, 彼此以 Al—O—Si 键连接:

Fig 3 ²⁹Si NMR spectra of alumina-silica sols 图 4 为纯 Al₂O₃ 溶胶和 Al₂O₃ 溶胶-SiO₂ 溶胶 的²⁷Al NMR 谱图。就纯 Al₂O₃ 溶胶而言,0.7×10⁻⁶ 处的尖吸收峰对应的是有如 Al(H₂O)₆³⁺、Al(OH) (H₂O)₅²⁺、Al(OH)₂(H₂O)₄⁺等的单核铝;7×10⁻⁶ 左右吸收峰对应的是水解聚合形成的有如二聚体 Al₂ (OH)₂(H₂O)₈⁴⁺、三聚体 Al₃(OH)₄(H₂O)₁₀⁵⁺等的 低聚铝离子^[26];1.16×10⁻⁵和(7.6~8.0)×10⁻⁶ 处 的共振峰分别对应多核铝 Al₃₀ 结构中铝氧八面体和 铝氧四面体[$(Al_{30}O_8(OH)_{56}(H_2O)_{24}$]¹⁸⁺,其粒径约 2nm^[27]。Al₃₀聚合态的总含量为7.6×10⁻⁵处峰所代 表 Al含量的15倍。可见,Al₂O₃溶胶是以多核铝 Al₃₀为主,低聚体仅为少量。

图 4 Al₂O₃-SiO₂ 溶胶的²⁷ Al NMR 谱图 Fig 4 ²⁷ Al NMR spectra of alumina-silica sols

就 Al_2O_3 -SiO₂ 溶胶而言,代表低聚铝的吸收峰 (约 7×10⁻⁶)强度相对减弱;同时,铝氧四面体的峰位 (7.6×10⁻⁵)低移,说明 Si—OH 和 Al—OH 缩合,彼 此以 Si—O—Al 键连接,导致低聚铝减少。SiO₂ 溶胶 羟基含量越高,铝氧四面体的峰强和峰位变化越明显, 说明上述缩合程度越大。

3.3 SiO₂ 溶胶对 Al₂O₃ 凝胶高温相变的影响

图 5 是 Al₂O₃-SiO₂ 凝胶的 DTA 图。140℃吸热 峰对应的是凝胶中自由水的挥发;260 和 350℃两个吸 热峰对应的是结构羟基的缩水反应;800~900℃放热 峰对应的是 γ -Al₂O₃ 的结晶。以 S40-NH₄OH、S40-HCl 和 S40-Urea 为硅源时, γ -Al₂O₃ 结晶温度分别是 847、870 和 880℃,表明硅源对 γ -Al₂O₃ 结晶温度有所 影响。同样,硅源也影响着 α -Al₂O₃ 的结晶温度,以 S40-NH₄OH 和 S40-HCl 为硅源时, α -Al₂O₃ 的结晶 放热峰分别在 1230 和约 1350℃出现;而以 S40-Urea 为硅源时,直到 1400℃还未能观察到 α -Al₂O₃ 的结晶 峰。

Fig 5 DTA curves of alumina-silica gels 图 6 是 Al₂O₃-SiO₂ 凝胶经热处理后的 XRD 谱

图。

图 6 Al₂O₃-SiO₂ 凝胶分别经 1300 和 1400℃ 热处理 后的 XRD 图

Fig 6 XRD patterns of alumina-silica gels after firing to 1300 and 1400℃

以 S40-NH₄OH 为硅源时,在 1250℃下,已经完 全转变为 α -Al₂O₃(图略),与 DTA 结果吻合。以 S40-HCl 和 S40-Urea 为硅源时,在 1300℃下,其结晶相仍 然主要是过渡晶型 δ -Al₂O₃ 和 θ -Al₂O₃,同时,还检测 到莫来石的结晶峰。进一步证实,S40-HCl 和 S40-Urea 对于 α -Al₂O₃ 结晶的形成具有抑制作用,从而提高 了该相形成的温度。同时显示,S40-HCl 和 S40-Urea 村

怃

中的 SiO₂ 更易于与 Al₂O₃ 发生固相反应生成莫来石, 这与在溶胶中就已有较多的 Al—O—Si 键生成有关。 以 S40-Urea 为硅源时,即使在 1400 $^{\circ}$ 仍可检测到少 量的过渡态 θ -Al₂O₃,说明了 S40-Urea 抑制 α -Al₂O₃ 相形成的效果比 S40-HCl 更好。

利用 Scherrer 公式计算, Al₂O₃-SiO₂ 凝胶中 Al₂O₃ 过渡晶型的微晶尺度与热处理温度有如图 7 所 示的关系。在 1100℃以下, Al₂O₃ 过渡晶型的微晶尺 寸都<10nm,不同硅源对其影响不大。历经 1300℃热 处理后,以 S40-HCl 或 S40-Urea 为硅源时, Al₂O₃ 仍 然保持其过渡晶型 δ -Al₂O₃ 或 θ -Al₂O₃,微晶尺寸仍< 10nm; 而以 S40-NH₄OH 为硅源时, Al₂O₃ 则完全转 变为 α -Al₂O₃,微晶尺寸增大至约 50nm。这一尺度, 与文献报道的 α -Al₂O₃ 粒子初始粒径约 50nm 的数值 接近^[28]。

图 7 Al₂O₃-SiO₂ 凝胶晶粒尺寸与热处理温度的关系 Fig 7 Size of alumina crystals as a function of temperature

3.4 SiO₂ 对 Al₂O₃ 纤维微观结构的影响

与上述相一致的是以 S40-NH₄OH 为硅源、经 1300℃热处理后,由于 Al₂O₃ 已经完全转变为 α -Al₂O₃,密度的差异导致体积收缩,故纤维呈白粉化, 失去了柔韧性,且表面出现了许多微孔。同样经历 1300℃热处理后,以 S40-HCl 为硅源的,在纤维断面 和表面都可观察到少量的针状 α -Al₂O₃;而以 S40-Urea 为硅源的,则根本观察不到 α -Al₂O₃ 的生成,纤维 透明,表面光滑,没有明显的缺陷,有良好的柔韧性,如 图 8 所示。说明 S40-Urea 更能有效地抑制 α -Al₂O₃ 晶粒的形成及生长,有利于获得高强度的细晶 Al₂O₃ 纤维。

 S40-NH4OH
 (b) S40-HCI

 图 8
 Al₂O₃-SiO₂ 凝胶纤维经 1300℃热处理后 SEM 图

 Fig 8 SEM micrographs of alumina fibers for firing at 1300℃

(c) S40-Urea

何 静等:SiO₂对Al₂O₃凝胶纤维相变的影响

图 9 是纤维经 1250° 热处理后的 TEM 图。以 S40-NH₄OH 为硅源时,可以看到许多纳米级的孔洞, 与 SEM 图相符;其 α -Al₂O₃ 的晶粒尺寸大约 50nm,与 Scherrer 公式计算值吻合。这是因为球型 SiO₂ 经过 高温烧结之后,虽然发生了一定的变形,但基本上还是 保持其球型的形貌,未能将 Al₂O₃ 颗粒的表层完全覆 盖,所以大部分 α -Al₂O₃ 微晶还是可以相互接触,并在 热处理温度进一步提高时,相互聚集而粗化,表现为 α -Al₂O₃ 的晶粒长大。以 S40-Urea 为硅源时,Al₂O₃ 过 渡晶型的外表被 1~2nm 厚的 SiO₂ 非晶层所包裹,阻 碍其通过晶粒间的聚集而长大,即有效地抑制了 α -Al₂O₃ 的成核生长,晶粒尺寸只有 10~20nm。

图 9 Al₂O₃-SiO₂ 纤维经 1250℃热处理后 TEM 图 Fig 9 TEM micrographs of alumina fibers for firing at 1250℃

4 结 论

以尿素催化硅酸乙酯水解,得到含有大量活性单 硅酸的 SiO₂ 溶胶。其单硅酸通过大量的 Si—OH 与 铝溶胶表面的 Al—OH 缩合形成 Si—O—Al 键,成为 包覆 Al₂O₃ 溶胶颗粒的无定型界面层,从而可以在后 续的热处理过程中,有效阻止 Al₂O₃ 过渡晶型微晶的 聚集,起着抑制 α-Al₂O₃ 相成核与长大的作用。实验 事实表明,它的这种效果,明显优于碱性或酸性催化条 件下获得的 SiO₂ 溶胶,可将 α-Al₂O₃ 的相变温度推迟 至 1400℃以上。

参考文献:

- [1] Chatterjee M, Naskar M K, Chakrabarty P K, et al. Solgel alumina fibre mats for high-temperature applications
 [J]. Mater Lett, 2002, 57(1): 87-93.
- [2] Venkatesh R, Ramanan S R. Effect of organic additives on the properties of sol-gel spun alumina fibres[J]. J Eur

Ceram Soc, 2000, 20(14-15): 2543-2549.

- [3] Venkatesh R, Ramanan S R. Influence of processing variables on the microstructure of sol-gel spun alumina fibres
 [J]. Mater Lett, 2002, 55(3): 189-195.
- [4] Wallenberger F T, Weston N E, Dunn S A. Melt spun calcium aluminate fibers: infrared transmission [J]. J Non-Cryst Solids, 1990, 124(1): 116-119.
- [5] Dinwoodie J. Alumina fiber for high-temperature furnace insulation[J]. Ceram Ind, 1996, 146(4): 58-71.
- [6] Weiss D, Chamberlain B, Bruski R. Justifying aluminum metalmatrix composites in an era of cost reduction [J]. Modern Casting, 2000, 22(2): 58-60.
- [7] Ünal Ö, Peter K, Lagerlöf D. Tensile properties of alumina fibers using hot-grips[J]. J Am Ceram Soc, 1994, 77(10): 2609-2614.
- [8] Mackenzie J D. Applications of the sol-gel process[J]. J Non-Cryst Solids, 1988, 100(1-3):162-168.
- [9] Maki T, Sakka S. Preparation of alumina fibers by sol-gel method[J]. J Non-Cryst Solids, 1988, 100(1-3): 303-308.
- [10] Chandradass J, Balasubramanian M. Sol-gel processing of alumina fibres [J]. J Mater Process Technol, 2006, 173(3): 275-280.
- [11] Levin I, Brandon D. Metastable alumina polymorphs: crystal structures and transition sequences [J]. J Am Ceram Soc, 1998, 81(8): 1995-2012.
- [12] Bagwell R B, Messing G L. Effect of seeding and water vapor on the nucleation and growth of α-Al₂O₃ from γ-Al₂O₃[J]. J Am Ceram Soc, 1999, 82 (4): 825-832.
- [13] Dynys F W, Halloran J W. Alpha alumina formation in alum-derived gamma alumina [J]. J Am Ceram Soc, 1982, 65 (9): 442-448.
- [14] Ishitobi Y, Shimada M, Koizumi M. Reactive pressure sintering of alumina[J]. Am Ceram Soc Bull, 1980, 59 (12):1208-1211.
- [15] Birchall J D, Morton M J. Process for preparing shaped body of alumina[P]. USP: 4320074, 1982-03-16.
- [16] Sedaghat A, Taheri-Nassaj E, Naghizadeh R. An alumina mat with a nano microstructure prepared by centrifugal spinning method[J]. J Non-Cryst Solids, 2006, 352 (26-27): 2818-2828.
- [17] Horiuchi T, Chen L, Osaki T, et al. A novel alumina catalyst support with high thermal stability derived from silica-modified alumina aerogel[J]. Catal Lett, 1999, 58 (2): 89-92.
- [18] Brinker C J, Keefer K D, Schaefer D W, et al. Sol-gel transition in simple silicates [J]. J Non-Cryst Solids, 1982, 48(1): 47-64.
- [19] Buckley A M, Greenblatt M. The sol-gel preparation of silica gels[J]. J Chem Educ, 1994, 71 (7): 599.
- [20] Duran A, Serna C, Fornes V, et al. Structural considerations about SiO₂ glasses prepared by sol-gel[J]. J Non-Cryst Solids, 1986, 82(1-3): 69-77.
- [21] Pope E J A, Mackenzie J D. Sol-gel processing of silica:

310			\$1)	酝
	$[\![$ the role of the catalyst[J].	J	Non-Cryst	Solids
	1986, 87(1-2): 185-198.			

- $\lceil 22 \rceil$ Brinker C J. Hydrolysis and condensation of silicates: Effects on structure J]. J Non-Cryst Solids, 1988, 100 (1-3): 31-50.
- [23] Green D L, Jayasundara S, Lam Y F, et al. Chemical reaction kinetics leading to the first stober silica nanoparticles - NMR and SAXS investigation [J]. J Non-Cryst Solids, 2003, 315 (1-2):166-179.
- Engelhardt G, Zeigan D, Jancke H, et al. Silicon-29- $\begin{bmatrix} 24 \end{bmatrix}$ NMR spectroscopy of silicate solutions II dependence on the sodium-silicon ratio of the structure of silicate ions in aqueous sodium silicate solutions [J]. Z Anorg Allg Chem, 1975, 418 (17): 17-28.
- Ramsay John D F, Swanton Stephen W, Matsumoto A, [25]

科 材 2013 年第 5 期(44)卷 The colloid chemistry of silica [M]. American et al. Chemical Society, 1995. 67-82.

- [26] Bi S, Wang C, Cao Q, et al. Studies on the mechanism of hydrolysis and polymerization of aluminum salts in aqueous solution: correlations between the "Core-links" model and "Cage-like" Keggin-Al13 model [J]. Coord Chem Rev, 2004, 248 (5-6): 441-455.
- [27] Allouche L, Gérardin C, Loiseau T, et al. Al30: a giant aluminum polycation[J]. Angew Chem Int Ed, 2000, 39(3): 511-514.
- Chang PL, Yen FS, Cheng KC, et al. Examinations on [28] the critical and primary crystallite sizes during θ - to α phase transformation of ultrafine alumina powders [J]. Nano Lett, 2001, 1 (5): 253-261.

Effects of silica on phase transformation of alumina gel fiber

HE Jing, LIN Zhi-Jun, ZHANG Li, DING Ma-Tai, CHEN Li-Fu

(Advanced Materials Laboratory, College of Materials, Key Laboratory of High Performance Ceramic Fibers, Ministry of Education, Xiamen University, Xiamen 361005, China)

Abstract: Silica sol is prepared by the hydrolysis of tetraethyl orthosilicate (TEOS) and using urea as the catalyst. It was used to suppress the α -Al₂O₃ phase formation during the heating of alumina gel fibers. ²⁹Si NMR, ²⁷ Al NMR, FT-IR, DTA, XRD, SEM and TEM are used to characterize the silica sol and the alumina-silica fibers. It has been found that the silica sol is nearly neutral and highly stable. It contains silicic acid $Si(OH)_4$ as the major silicon species. The silica sol can coat the alumina sol particles efficiently and interact chemically with the Al-OH groups of alumina sol to form the Al-O-Si linkages. The Al-O-Si film separates the transitional alumina crystallites from coarsening, suppressing the nucleation and crystal growth of α -Al₂O₃.

Key words: alumina fiber; silica; phase transformation; sol-gel