广东农业科学 2011 年第 24 期

125

桂东北钨锡矿废弃地重金属污染类型及砷形态研究

吴桂容^{1,2,3},曲芬霞³,解庆林³,李忠芳³,周惟艇⁴

(1.厦门大学生命科学学院,福建 厦门 361005;2.广西环境工程与保护评价重点实验室,广西 桂林 541004; 3.贺州学院桂东特色资源开发与利用重点实验室,广西 贺州 542800;4.贺州市环境监测站,广西 贺州 542800)

摘 要:桂东北水岩坝曾是全国有名的钨锡矿集散地,矿产的停采带来大面积的废弃地,废弃地的治理成为当地面临的重要 问题。为了确定废弃地重金属污染的类型,采取针对性的治理方法,对尾矿库区废弃地进行布点取样调查。结果发现,尾矿库区废 弃地重金属砷严重超标,存在非常严重的生态风险,砷形态主要集中在生物有效性强的易溶态和铝结合态。尾矿库区废弃地成为 一个潜在的重金属污染源,重金属砷污染治理显得尤为紧迫和必要。

关键词:重金属污染;废弃地;砷形态;迁移扩散;地质累积指数 中图分类号:X53 文献标识码:A 文章编号:1004-874X(2011)24-0125-03

土壤重金属复合污染是目前金属矿山土壤污染存在 的主要形式之一^[1]。矿场上覆岩土和尾矿库区土壤中往往 含有有害重金属元素,将这些岩土堆垫到地表,从而造成 土壤污染,影响植物生存,这些有毒有害物质如果随径流 扩散,还将污染更大范围的土壤^[2]。其中毒性最大的是 Cd、 Pb、Hg、As等,它们不但不能被生物降解,相反却能在生 物作用下放大,大量富集,沿食物链最后进入人体,直接 或间接影响人体健康^国。水岩坝钨锡矿田位于桂东北部平 桂地区,沿姑婆山花岗岩岩基西南接触带产出,是南岭钨 锡多金属成矿带的重要组成部分。水岩坝矿田的矿床类 型主要有钨锡石英脉型矿床(烂头山)、锡石硫化物矽卡岩 型矿床(大庙山)及锡石角砾岩型矿床(董家坳)⁽⁴⁾,其中烂头 山的钨锡石英脉型矿床工业价值较大。随着开采数量逐 渐减少直至废弃,从而留下大片废弃地。为了确定废弃地 复合重金属污染中的污染类型、减少生态安全风险,对当 地的土壤进行取样分析测试、以期为当地大规模的土地 复垦和防止水土流失提供科学依据和基础资料。

1 材料与方法

1.1 研究区域概况

桂东北曾是钨锡矿的开采地^[8],后逐渐废弃,开采数量 渐渐减少。研究区域的地理坐标位于 111°33′E~111°35′E、 24°32′30″N~24°35′N,地处广西贺州市东北侧,距贺州市 区 16 km。此地属亚热带季风气候,气候温和,光照充足, 雨量充沛。年平均气温 18.2℃,极端最高气温 39.5℃,极端 最低气温-4℃,年均降雨量 1 704 mm,年蒸发量 1 650 mm,相对湿度 80%以上,年均无霜期 299 d。由于项目区 周围基岩均为花岗岩,主要土壤为红壤和黄红壤。天然植 被主要为中亚热带绿阔叶林,也有针阔混交林和人工杉 林、马尾松林等。由于矿产的开采导致大量废弃地形成, 废弃地的植物种类非常稀少,水土流失严重,自发复垦土 地的农作物长势相对较差,产量较低。

基金项目:广西环境工程与保护评价重点实验室研究基金(桂 科能 0704K029) 1.2 样品采集

参考前人对桂东北钨锡矿区重金属污染状况的研究 与报道,对当地进行走访调查,选取水岩坝原矿区3个不 同类型的矿区(烂头山、大庙山、董家坳)作为土壤样品调 查的取样点。根据《农业土壤化学分析方法》⁶⁶的相关要求, 采用梅花型五点采样法,共采集25个土壤样品。样品采集 点以矿区废弃地土壤为主,去除土壤中的根系和碎石等杂 质,混合均匀,取1kg装入样品袋带回实验室;对照土壤 为距离矿区5km以外的人类干扰较少的林下森林土壤。

1.3 样品处理与分析

1.3.1 土壤样品的处理与分析 土壤样品进行自然风干后,研磨、过 150 μ m 孔径尼龙筛后贮藏于干燥器中备用, 样品加入混合酸(HNO₃+HClO₄+HF)用高压消解罐进行消 解,消解液中重金属(As、Cd、Pb)的总量采用 ICP-MS(电 感耦合等离子体质谱仪 Agilent 7200C)进行测定。

1.3.2 土壤评价方法 采用地质累积指数法ⁿ(Index of Geoaccumulation, Igeo)对土壤样品的重金属进行评价,该方法 广泛应用于研究土壤中重金属污染程度的定量指标,计算 公式为:

 $I_{geo} = \log_2 Cn / (K \cdot Bn)$

式中,*Cn* 为测得的重金属含量,*Bn* 为当地沉积物重金属 含量的背景值,*K* 为考虑到沉积作用可能引起背景值波动 而设定的常数,*K*=1.5。地积累指数与污染程度的分级标准 见表 1。

表1 地质累指数法分级标准

风险级别	地积累指数范围	污染程度
0	$I_{geo} \leq 0$	无污染
1	$0 < I_{geo} \leq 1$	轻度中等污染
2	$1 < I_{geo} \leq 2$	中等污染
3	$2 < I_{geo} \leq 3$	中等–强污染
4	$3 < I_{geo} \leq 4$	强污染
5	$4 < I_{geo} \leq 5$	强极严重污染
6	$5 < I_{geo} \le 10$	极严重污染

1.3.3 重金属砷形态分析 采用五态连续提取法(SEP)^{I8}测 定重金属砷的形态,称取 0.5 g 样品,加入 25 mL 1.0 mol/L NH₄Cl,振荡 0.5 h,离心得到上清液,测定第 1 态(A-As);

收稿日期:2011-10-27

作者简介:吴桂容(1970-),女,在职博士生,副教授,E-mail:hzwgr 510@163.com

残余物加 25 mL 0.5 mol/L NH₄F,振荡 1 h,离心得到上清 液,测定第 2 态(Al-As);残余物加 25 mL 0.1 mol/L NaOH, 振荡 17 h,离心得到上清液,测定第 3 态(Fe-As);残余物 加 25 mL 0.25 mol/L H₂SO₄,振荡 1 h,离心得到上清液,测 定第 4 态(Ca-As);第 5 态(R-As)为土壤总砷减去以上各形 态砷。其他各种形态砷的含量将提取液用定量滤纸过滤 后待测。待测液采用 ICP-MS 进行测定。

2 结果与分析

2.1 废弃地土壤重金属污染情况

根据 GB 15618-1995《土壤环境质量标准》[№]的 类标 准, 土壤中 Cd、As (旱地)、Pb 的的最大限量分别为 0.30、 40、250 mg/kg。由表 2 可知,Cd、As、Pb 的含量范围分别为 0.32~3.02、100.38~907.10、28.34~416.49 mg/kg。样品中 Cd 元素最大值的超标倍数为 10.07, 最小值的超标倍数为 1.07,超标率达 100%;样品中 As 元素最大值的超标倍数为 22.68,最小值的超标倍数为 2.51,超标率亦达 100%;样品 中 Pb 元素最大值的超标倍数为 1.67, 最小值的超标倍数 为 0.11,超标率为 32%,超标率较低。重金属 Cd、As、Pb 的 平均超标倍数分别为 4.66、6.83、0.83,Pb 未超标。采样点 3 种重金属的富集程度为 As>Cd>Pb。说明废弃地受重金属 As 污染最严重,其次为 Cd 污染,部分地区受到 Pb 污染。

2.2 废弃地土壤重金属污染级别

As

含量(mg/kg)

149.50

157.61

224.47

100.38

145.30 143.26

138.29

180.34

100.65

857.80

135.15

125.79

124.95

124.77 139.23

112.22

120.75

107.32

844.60

826.30

907.10

110.79

606.48

192.20

153.71

样号

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

25

均值

选取当地远离矿区、人类活动影响较少的土壤作为

表 2 采样点重金属污染超标情况

对照。 Cd_As_Pb 在对照土壤中的含量分别为 1.25、34.87、 29.59 mg/kg。废弃地各种元素的地质积累指数计算结果及 风险等级如表 3 所示。由表 3 可知, 废弃地受到 Cd_As_x Pb3种重金属元素不同程度的污染。对于废弃地样品中 的 As 而言,风险等级为 1,轻度-中等污染的样品为 8%; 风险等级为2,中等污染的样品为68%;风险等级为3,中 等-强污染的样品为4%;风险等级为4,强污染的样品为 8%;风险等级为5,强-极严重污染的样品为12%;废弃地 As 的污染最为严重, 平均地质积累指数为 2.32, 风险等级 已达到3级,属于中等-强污染。对于废弃地样品中的Cd 而言,风险等级为0,无污染的样品为72%;风险等级为 1,轻度-中等污染的样品为 28%;废弃地样品 Cd 的平均 地质累积指数为-0.42,风险等级为0,无污染。对于废弃 地样品中的 Pb 而言,风险等级为0,无污染的样品为8%; 风险等级为1,轻度-中等污染的样品为12%;风险等级为 2,中等污染的样品为 20%;风险等级为 3,中等-强污染的 样品为 56%;风险等级为 4,强污染的样品为 4%;废弃地 样品 Pb 的平均地质积累指数为 2.08,风险等级为 3,属于 中等-强污染。废弃地 25 个样品中重金属的风险等级依 次为 As>Pb>Cd。考虑对照值的影响,废弃地重金属 As、Pb 污染主要由外源污染物造成,而Cd污染与土壤背景值的 影响密切相关。

2.3 重金属砷的不同形态含量及占比

砷对植物的毒性与多种因素有关,但主要决定于土壤

	Cd		Pb				As			Cd	Pb	
F	含量(mg/kg)	F	含量(mg/kg)	F	木	样号	I_{geo}	风险等级	I_{geo}	风险等级	I_{geo}	风险等级
3.74	1.51	5.03	28.34	0.11	_	1	1.51	2	-0.31	0	-0.80	0
3.94	0.46	1.52	95.82	0.38		2	1.59	2	-2.04	0	0.96	1
5.61	1.74	5.80	128.19	0.51		3	2.10	3	-0.11	0	1.38	2
2.51	0.87	2.90	214.32	0.86		4	0.93	1	-1.11	0	2.12	3
3.63	1.49	4.97	176.53	0.71		5	1.47	2	-0.33	0	1.84	2
3.58	1.28	4.27	242.14	0.97		6	1.45	2	-0.55	0	2.30	3
3.46	1.26	4.20	208.73	0.83		7	1.40	2	-0.57	0	2.09	3
4.51	2.26	7.53	126.44	0.51		8	1.78	2	0.27	1	1.36	2
2.52	0.50	1.66	345.60	1.38		9	0.94	1	-1.92	0	2.81	3
21.45	0.32	1.07	416.49	1.67		10	4.03	5	-2.55	0	3.08	4
3.38	1.42	4.73	189.52	0.76		11	1.36	2	-0.40	0	1.95	2
3.14	1.28	4.27	144.88	0.58		12	1.26	2	-0.55	0	1.56	2
3.12	0.53	1.77	72.56	0.29		13	1.25	2	-1.82	0	0.56	1
3.13	0.47	1.57	63.42	0.25		14	1.25	2	-2.00	0	0.37	1
3.48	0.95	3.17	389.01	1.56		15	1.41	2	-0.98	0	2.98	3
2.81	1.56	5.20	204.63	0.82		16	1.10	2	-0.27	0	2.06	3
3.02	1.42	4.73	212.86	0.85		17	1.20	2	-0.40	0	2.11	3
2.68	1.12	3.73	385.53	1.54		18	1.03	2	-0.74	0	2.97	3
21.12	1.92	6.40	337.85	1.35		19	4.01	5	0.03	1	2.78	3
20.66	2.28	7.60	257.77	1.03		20	3.98	4	0.28	1	2.39	3
22.68	2.03	6.77	267.97	1.07		21	4.11	5	0.11	1	2.45	3
2.77	2.31	7.70	315.52	1.26		22	1.08	2	0.30	1	2.68	3
15.16	0.70	2.33	119.43	0.48		23	3.53	4	-1.42	0	1.28	3
4.81	3.02	10.07	222.57	0.89		24	1.87	2	0.69	1	2.18	3
3.84	2.26	7.53	47.47	0.19		25	1.55	2	0.27	1	-0.05	0
6.83	1.40	4.66	208.54	0.83	t	均值	2.38	3	-0.42	0	2.08	3

表 3 废弃地土壤中重金属的累积指数与风险等级

<u>1</u>273.166 注:F为超标倍数。 中砷与土壤胶体的结合形态。土壤中砷的结合态可分为 5 种:易溶性砷,包括水溶性和松散结合态砷(A-As),这部分 砷易被作物吸收,因此也可称为可给态砷;铝型砷 (Al-As),用 0.5 mol/L NH₄ F 提取的砷酸铝盐;铁型砷(Fe-As), 用 0.1 mol/L NaOH 提取的砷酸铁盐;钙型砷 (Ca-As),用 0.25 mol/L H₂SO₄ 提取的砷酸钙盐;残余砷(R-As),不能直 接被化学试剂浸提出来,被闭蓄在矿物晶格中的砷^[7,9]。由 表 4 可知,废弃地土壤样品中砷的提取形态主要为易溶 性砷和铝型砷,其中 A-As 的含量为 9.42~228.35 mg/kg, 占比为 12.15%~92.86%,平均含量为 70.26 mg/kg,平均占 比为 32.14%;Al-As 的含量为 7.29~555.11 mg/kg,占比为 5.85%~77.84%,平均含量为 122.61 mg/kg,平均占比为 40.10%;A-As 和 Al-As 的平均占比之和为 72.24%,占废 弃地土壤砷含量的绝大部分。不同砷提取形态的含量为 Al-As>A-As>Fe-As>Ca-As>R-As,说明废弃地土壤中砷 的潜在风险较大。

	A-As		AL-As		Fe-	As	Ca-	As	R-As		
样号	含量	占比	含量	占比	含量	占比	含量	占比	含量	占比	总含量
1	95.13	63.63	25.42	17.00	5.70	3.81	22.24	14.88	1.02	0.68	149.50
2	104.21	66.12	29.72	18.86	4.53	2.87	18.08	11.47	1.07	0.68	157.60
3	111.76	49.79	64.2	28.60	6.78	3.02	40.84	18.19	0.89	0.40	224.47
4	28.57	28.46	36.67	36.54	16.03	15.97	18.76	18.69	0.35	0.35	100.38
5	64.65	44.49	56.35	38.78	15.13	10.41	8.73	6.01	0.45	0.31	145.30
6	19.79	13.81	72.82	50.83	28.62	19.98	21.31	14.88	0.71	0.50	143.26
7	17.84	12.90	107.65	77.84	10.12	7.32	2.54	1.84	0.15	0.11	138.29
8	24.24	13.44	66.33	36.78	58.84	32.63	30.17	16.73	0.76	0.42	180.34
9	19.92	19.79	40.70	40.44	27.24	27.07	11.56	11.49	1.22	1.22	100.65
10	134.36	15.66	252.09	29.39	321.69	37.50	134.6	15.69	15.02	1.75	857.77
11	39.75	29.41	55.88	41.35	9.34	6.91	29.64	21.93	0.54	0.40	135.15
12	81.56	64.83	36.62	29.11	3.26	2.59	3.90	3.10	0.45	0.36	125.79
13	109.77	87.85	13.28	10.63	0.32	0.26	1.54	1.23	0.03	0.03	124.95
14	115.86	92.86	7.29	5.85	0.35	0.28	1.19	0.96	0.08	0.06	124.77
15	9.42	6.76	82.58	59.31	24.41	17.54	22.12	15.89	0.70	0.50	139.23
16	19.37	17.26	59.97	53.44	19.05	16.98	13.43	11.96	0.40	0.36	112.22
17	14.32	11.86	58.10	48.12	34.92	28.92	13.17	10.90	0.25	0.21	120.75
18	13.37	12.46	45.33	42.24	31.8	29.63	16.17	15.06	0.65	0.60	107.32
19	102.58	12.15	555.11	65.73	130.65	15.47	53.79	6.37	2.45	0.29	844.57
20	148.62	17.98	422.49	51.13	137.31	16.62	115.26	13.95	2.68	0.32	826.34
21	228.35	25.17	447.43	49.33	131.28	14.47	95.29	10.51	4.71	0.52	907.07
22	31.34	28.29	45.08	40.69	17.04	15.38	16.88	15.24	0.46	0.41	110.79
23	145.17	23.94	356.7	58.81	25.81	4.26	76.36	12.59	2.45	0.40	606.48
24	39.24	20.42	85.92	44.7	31.49	16.38	34.82	18.12	0.73	0.38	192.20
25	37.24	24.23	41.59	27.06	45.62	29.68	28.47	18.52	0.80	0.52	153.71
均值	70.26	32.14	122.61	40.1	45.49	15.04	33.23	12.25	1.56	0.47	273.16

表 4 重金属砷的不同提取形态含量(mg/kg)及占比(%)

3 结论与讨论

通过本研究可以得出以下结论:(1)桂东北水岩坝矿 区废弃地的土壤已受到不同程度的重金属 Cd、As、Pb 污 染,其中 As 污染超标倍数最大,污染最严重。(2)废弃地 重金属元素的风险等级为 As>Pb>Cd,其中 As 的污染最 严重,平均地质积累指数为 2.32,风险等级已达到 3 级,属 于中等-强污染。(3)废弃地土壤重金属 As 的主要形态为 易溶性砷和铝型砷,生物有效性强,容发生易生物富集和 迁移扩散。

金属矿山的开采带来一系列重金属污染问题,不同 矿山类型的重金属污染类型不同。桂东北钨锡矿废弃地 存在不同程度的重金属复合污染,其中比较突出的为砷 污染。砷在土壤中的累积不仅影响植物、动物的生长和发 育,而且还可以通过食物链进入人体,对人类的生存和健 康构成威胁。砷在环境和生态中的效应并非取决于总量 而是取决于它存在的形态。土壤中砷的形态分析是利用 反应性不断增强的化学试剂将土壤中的砷分为不同活性 的结合态,从而评价它的移动性和生物有效性。一方面形 态分析是生物有效性的基础,另一方面生物有效性是形 态分析在相关研究领域的具体延伸。因而,土壤砷的形态 分析和生物有效性的关系十分密切^[10]。

土壤中砷过量积累可导致土壤退化、作物减产、污染 水体和大气,最终危害人体健康。不同存在形态的砷可产 生不同的环境效应,而土壤中砷的可移动性主要取决于 其存在形态,并决定了其生物有效性——As 的毒性程度 和生物对其的吸收利用^[11]。土壤中砷的形态及其生物有效 性既是诊断土壤砷污染的依据,也是评估砷污染土壤修 复效率的重要参数^[12]。土壤中砷的有效态,通常是指植物 体对砷实际可以吸收的形态。植物对砷的吸收很大程度 上受到土壤砷存在形态的影响。土壤中的重金属的毒性 (下转第 141 页)

台湾各地有野生于山间的野生苦瓜四。

3 刺花莲子草(苋科)

Alternanthera pungens H. B. K.(封三,图 3), Nov. Gen. et Sp. 2:206. 1818; Fl. Reip. Pop. Sin. 25(2): 234, 1979^[8-9]。

图 3 刺花莲子草 Alternanthera pungens H. B. K.

标本:广东汕头市南澳岛后宅镇,2011-10-25,曾宪锋 12227(CANT),采于海拔4m的沿海沙质荒地。

分布:该种花被片顶端坚硬锐利扎人,原产南美,在美国、澳大利亚、印度支那、不丹、缅甸、泰国等地归化¹⁹。我国 福建(厦门、东山岛)、四川有发现;广东省首次记录为归化 植物、入侵植物。

参考文献:

- [1] 中国科学院中国植物志编辑委员会. 中国植物志: 第 42 卷第 2 分册[M].北京:科学出版社,1998:350-352.
- [2] Wu Z Y, Raven P H, Hong D Y. Flora of China: Vol.10 [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, 2010.
- [3] 中国科学院中国植物志编辑委员会. 中国植物志: 第 73 卷第 1 分册[M].北京:科学出版社,1986:188-190.
- [4] Wu Z Y, Raven P H, Hong D Y. Flora of China: Vol.19 [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, 2011.
- [5] 吴德邻.广东植物志:第3卷[M].广州:广东科技出版社,1995:122.
- [6] 庄东红,宋娟娟,叶君营,等.一种野生苦瓜部分形态特征、营养成 分和染色体核型[J].热带作物学报,2005,26(3):39-42.
- [7] Huang T C, Editorial Committee of the Flora of Taiwan. Flora of Taiwan: Vol.3, 2nd ed.[M]. Taipei: Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University,1993.
- [8] 中国科学院中国植物志编辑委员会. 中国植物志: 第 25 卷第 2 分册[M].北京:科学出版社,1979:232-237.
- [9] Wu Z Y, Raven P H, Hong D Y. Flora of China: Vol.5 [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, 2003.

(上接第 127 页)

不取决于它们在土壤中的总量,而取决于它们的有效态 含量^[13-14]。影响土壤全砷含量及有效态砷含量的因素都会 影响土壤砷的有效度^[14-15]。生物对不同形态砷的吸收利用 程度不同,植物对土壤中各种形态砷的吸收能力为水溶 性砷>亚砷酸钙=亚砷酸铝>亚砷酸铁^[11]。许多研究表明,土 壤铁、锰、铝等无定形氧化物越多,其吸附砷的能力越强。 魏显有等^[16]通过试验证明,土壤砷与 Fe、Al、Ca 的结合强 度为 Fe 型砷>Al 型砷>Ca 型砷,其中铁、铝氢氧化物对砷 的吸附有突出作用。土壤中腐殖质对 As 的最大吸附量发 生在 pH 5.5 左右,并与腐殖质类型有关^[12]。废弃地土壤重 金属 As 的不同提取形态主要为 A-As 和 Al-As,说明桂 东北钨锡矿废弃地存在严重的砷污染,容易通过食物链 富集危害人体健康以及通过迁移扩散带来更大范围的污 染,需要采取相应措施将土壤中的砷稳定下来。

参考文献:

- [1] 许仙菊,张永春,沈睿,等.水稻不同生育期土壤砷形态分布特征 及其生物有效性研究[J].生态环境学报,2010,19(8):1983–1987.
- [2] 胡振琪,魏忠义.煤矿区采动与复垦土壤存在的问题与对策[J].能 源环境保护,2003,17(3):3-7.
- [3] 范英宏,陆兆华,程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报,2003,23(10):2144-2152.
- [4] 顾晟彦,华仁民,戚华文.广西新路-水岩坝钨锡矿田的成因探 讨[J].矿床地质,2007,26(3):265-276.

- [5] 叶洪波.梧州地区地方性砷中毒调查[J].广西预防医学,1999,5(6): 379.
- [6] 鲁如坤.农业土壤化学分析方法[M].北京:中国农业技术出版社, 2000.
- [7] 张新英,刘勇,吴浩东,等.广西河池大环江板力村近岸农田重金 属污染分析[J].农业环境科学学报,2010,29(S):80-83.
- [8] Williams J D H, Syers J K, Walker T W, et al. Fractination of soil inorganic phosphate by a modification of chang and jackson's procedure[J].SSSAP,1967,31:736–739.
- [9] 国家环境保护局,国家技术监督局.土壤环境质量标准[Z].北京: 中国标准出版社,1995.
- [10] 胡留杰,白玲玉,李莲芳,等.土壤中砷的形态和生物有效性研究 现状与趋势[J].核农学报,2008,22(3):383-388.
- [11] Sadiq M. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations[J].Water,air,soil pollution,1997,93:117-136.
- [12] 王金翠,孙继朝,黄冠星,等.土壤中砷的形态及生物有效性研究[J].地球与环境,2011,39(1):32-36.
- [13] 尚爱安.土壤中重金属的生物有效性研究进展[J].土壤,2000,32 (6):294-300.
- [14] 郭曙林,杜葱远.淹水土壤中砷的形态及有效性研究进展[J].闽西 职业技术学院学报,2008,10(1):116-119.
- [15] 涂从,金燕.土壤砷有效性研究[J].西南农业大学学报,1992,14(6): 477-482.
- [16] 魏显有,王秀敏,刘云惠,等.土壤中砷的吸附行为及其形态分布 研究[J].河北农业大学学报,1999,22(3):28-30.