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ABSTRACT

The physical nature of gamma-ray bursts (GRBs) are believed to involve an

ultra-relativistic jet. The observed complex structure of light curves motivate

the idea of jet precession. In this work, we study the gravitational waves of

jet precession based on neutrino-dominated accretion disks around black holes,

which may account for the central engine of GRBs. In our model, the jet and

the inner part of the disk may precess along with the black hole, which is driven

by the outer part of the disk. Gravitational waves are therefore expected to be

significant from this black hole-inner disk precession system. By comparing our

numerical results with the sensitivity of some detectors, we find that it is possible

for DECIGO and BBO to detect such gravitational waves, particularly for GRBs

in the Local Group.

Subject headings: accretion, accretion disks — black hole physics — gamma rays:

bursts — gravitational waves

1. Introduction

Gamma-ray bursts (GRBs), which were first detected in 1967, are intense flashes of

gamma rays followed by fainter multiple-wavelength (X-ray, optical, radio) emission named

“afterglow”. Physically, GRBs are believed to be emitted from ultra-relativistic jets. The af-

terglow emission is also expected as the jet interacts with the ambient medium (Piran 2004).

One popular central engine model that powers GRBs consists of a black hole and a neutrino-

dominated accretion flow (NDAF) with mass accretion rates around 0.01 ∼ 10M⊙ s−1 (see,

e.g., Popham et al. 1999; Narayan et al. 2001; Kohri et al. 2005; Lee et al. 2005; Gu et al.
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2006; Chen & Beloborodov 2007; Liu et al. 2007, 2008, 2012; Lei et al. 2009). Detailed stud-

ies have revealed that the quasi-periodic structure exists in a wide variety of observed light

profiles of GRBs (Romero et al. 1999; Liang et al. 2004). One possible explanation (particu-

larly for those with a fast rise and exponential decay, i.e., “FRED”) involves a precessing jet

(e.g., Blackman et al. 1996; Portegies Zwart et al. 1999; Reynoso et al. 2006; Lei et al. 2007;

Liu et al. 2010).

Blackman et al. (1996) investigated the precession of a relativistic blob-emitting neutron

star jet in a binary pulsar (PSR-binary). They considered Newtonian tidal torque and

gravitomagnetic interaction between PSR-binary to account for precession and nutation

frequencies. Later, Portegies Zwart et al. (1999) studied a black hole-neutron star model

for GRBs by the black hole forcing the accretion disk and the jet to precess due to the

Newtonian tidal torque. Moreover, their study showed that the theoretical light curves can

fit the observational data well if one considers the modulation of jet precession on intrinsic

light curves. The gravitomagnetic interaction between the black hole and the accretion disk

is, however, much stronger than the tidal force (Thorne et al. 1986). Reynoso et al. (2006)

suggested the gravitomagnetic interaction as a new basis for jet precession in GRBs. The

size of the accretion disk needs to be small enough to produce a precession period ∼ 0.5 s,

since in their model the whole disk precesses around the black hole. Furthermore, Lei et al.

(2007) suggested that the modulated evolution of the half-opening angle may play the role,

responsible for light curves of GRBs.

Another jet precession model in GRBs was proposed by Liu et al. (2010), which followed

the previous scheme in X-ray binaries (e.g., Sarazin et al. 1980) and active galactic nuclei

(e.g., Lu 1990; Lu & Zhou 2005). Liu et al. (2010) argued that the outer neutrino-dominated

accretion disk, whose angular momentum is sufficiently larger than that of the black hole,

can maintain its orientation and force the black hole to precess. On the contrary, the inner

disk whose angular momentum is significantly smaller than that of the black hole, should

be aligned with the black hole spin axis (Bardeen & Petterson 1975). Hence, the whole

dynamical system becomes a precessing black hole-inner disk system. The ultra-relativistic

jet, which is launched by the inner disk aligned with the black hole spin axis, will also precess

and produce the observational complex structure in the light curves.

Apart from the electromagnetic emission in GRBs, gravitational waves are also expected

due to the black hole-inner disk precession. Different from gamma-ray and afterglow emis-

sion, which is believed to be produced far from the black hole, the gravitational radiation

should be emitted near the central engine. On the other hand, many efforts have been made

to detect gravitational wave signals with some current detectors such as LIGO and some still

undergoing detectors like DECIGO, BBO, and LISA. The main purpose of this work is to
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study the detectability of the above mentioned gravitational waves.

This paper is organized as follows. In Section 2 we describe the disk-driven jet precession

model. In Section 3 we show the formulae for calculating gravitational waves emitted by

the black hole-inner disk precession system. In Section 4 we present our numerical results

and discuss the possibility of detecting such gravitational waves by some future detectors.

Conclusions and discussion are made in Section 5.

2. Disk-Driven Jet Precession Model

In this section, we review the main features of the disk-driven jet precession model (for

details, see Liu et al. 2010). The model we considered is a Kerr black hole surrounded by a

tilted accretion disk whose initial orbital axis is misaligned with the black hole spinning axis.

The angular momentum per each ring at radius r with width dr is dJ = 2πr2Σvϕdr, where

Σ is the surface density and vϕ is the azimuthal velocity. A typical angular momentum of

the disk is (e.g., Sarazin et al. 1980)

J =
dJ

d(ln r)
= 2πr3Σvϕ . (1)

There exists a critical radius rp where the typical angular momentum J |r=rp is equal to the

black hole angular momentum J∗, i.e.,

J |r=rp = J∗ =
GM2a∗

c
, (2)

where M is the black hole mass and a∗ is a dimensionless spin parameter (0 < a∗ < 1). The

outer disk (r > rp) will maintain its orientation and therefore force the black hole and the

inner disk (r < rp) to be a whole precessing system. The precession rate is expressed as

(e.g., Sarazin et al. 1980; Lu 1990)

Ω =
2GJ∗

c2r3p
. (3)

The mass conservation equation takes the form,

Ṁ = −2πrΣvr , (4)

where Ṁ is the mass accretion rate and vr is the radial velocity of the flow. The precession

period can be derived by combining Eqs. (1)-(4) to eliminate Σ, rp, and J∗,

P =
2π

Ω
= πM(

a∗
G
)
1
2 (−

cvr|r=rp

Ṁvϕ|r=rp

)
3
2 . (5)
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Following Riffert & Herold (1995), we introduce the general relativity correction as

A = 1−
2GM

c2r
+ (

GMa∗
c2r

)2 , (6)

B = 1−
3GM

c2r
+ 2a∗(

GM

c2r
)3/2 , (7)

C = 1− 4a∗(
GM

c2r
)
3
2 + 3(

GMa∗
c2r

)2 , (8)

D =

∫ r

rms

x2c4/(2G2)− 3xMc2/G+ 4(xa2
∗
M3c2/G)1/2 − 3a2

∗
M2/2

(xr)1/2[x2c4/G2 − 3xMc2/G+ 2(xa2
∗
M3c2/G)1/2]

dx , (9)

where rms is the radius of inner marginally stable orbit. The hydrostatic balance in z-

direction takes the form:
1

ρ

∂p

∂z
= −

GMz

r3
C

B
, (10)

where ρ is the mass density, and p is the total pressure. We make an improvement on

describing the vertical structure by a polytropic relation, i.e., p = Kρ1+1/N , instead of the

one-zone approximation in Liu et al. (2010), where 1 + 1/N is the polytropic index. The

above hydrostatic equation then gives (e.g., Hōshi 1977)

ρ(r, z) = ρ0(r)(1−
z2

H2
)N , (11)

p(r, z) = p0(r)(1−
z2

H2
)N+1 , (12)

where ρ0 and p0 are the density and the pressure on the equatorial plane, respectively. The

half-thickness of the disk, H , is expressed as

Ω2
KH

2 = 2(N + 1)
p0
ρ0

B

C
, (13)

where ΩK is the Keplerian angular velocity. The above equations combined with the energy

and momentum conservation equations and the equation of state (see, e.g., Liu et al. 2007)

enable us to solve the structure of the disk and consequently to obtain the precession period.

Then we can go further to investigate the property of gravitational waves from such a black

hole-inner disk precession system.

3. Gravitational waves from the black hole-inner disk precession system

Here we consider the black hole-inner disk precessing system as an axisymmetric rigid

system(with moments of inertia I1 = I2). Such a system would precess with a period given
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in Equation (5). In the body frame, the inertia tensor is diagonal with eigenvalues I1, I2, I3,

where

I3 =

∫

r<rp

(x2 + y2)ρ(x, y, z)dxdydz , (14)

I1 = I2 =

∫

r<rp

(z2 + y2)ρ(x, y, z)dxdydz . (15)

The precessing motion of such a rigid system is a classical Newtonian problem and it is easy

to obtain the inertia tensor in the observing frame (e.g., Landau & Lifshitz 1976; Maggiore

2008):

Ixx =
1

2
(I1 − I3) sin

2 θ cos(2Ωt) + C1 , (16)

Ixy =
1

2
sin2 θ sin(2Ωt) , (17)

Iyy = −
1

2
(I1 − I3) sin

2 θ cos(2Ωt) + C2 , (18)

Ixz = −(I1 − I3) sin θ cos θ sin(2Ωt) , (19)

Iyz = −Ixz , (20)

Izz = I1 sin
2 θ + I3 cos

2 θ , (21)

where θ is the misaligned angle between the black hole spin axis and the orientation of the

outer disk, and Ω is the precession rate given by Equation (3). Note that C1 and C2 represent

some constants which are unimportant in our calculation since gravitational waves are only

relevant to the time-dependent components of moments of inertia.

Gravitational waves will be produced since the inertia tensor in the observing frame is

time dependent. With the assumption that the angle between the z-axis of gravitational

wave detector and the signal direction of arrival is ι and the distance of the GRB is d, the

amplitude of gravitational waves is given by (e.g., Zimmermann & Szedenits 1979; Maggiore

2008)

hpre(t) = h+(t) + h×(t) , (22)

where

h+(t) = h0 sin 2θ cos(Ωt) sin ι cos ι

+2h0 sin
2 θ cos(2Ωt)(1 + cos2 ι) ,

(23)

h×(t) = h0 sin 2θ sin(Ωt) sin ι

+4h0 sin
2 θ sin(2Ωt) cos ι ,

(24)
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with

h0 = −
G

c4
(I3 − I1)Ω

2

d
. (25)

Thus the black hole-inner disk system emits gravitational waves at two frequencies, i.e.,

fgw = Ω/2π and Ω/π. Meanwhile, since the hyper-accretion in GRBs exists only for seconds

and would finally stop, the gravitational wave is this work should be a gravitational wave

burst and be significant only when the central engine is active. Thus, the duration of the

gravitational wave burst is roughly equal to the activity time of the central engine of GRBs.

The gravitational wave signal waveform is therefore expected to be (e.g., Maggiore 2008)

h(t) = hpre(t)e
−

t
2

2δ2
pla , (26)

where δpla is the plateau time of GRBs, which is roughly the duration of activity time of the

central engine. In order to assess the detectability, we calculate the root-sum-square (rss)

amplitude as follows (e.g., Acernese et al. 2008; Maggiore 2008):

hrss(f) =

√

∫

∞

−∞

(h2
+(t) + h2

×(t))dt , (27)

where f = Ω/2π = 1/P .

Gravitational waves also carry energy and momentum. The quadrupole power of grav-

itational wave is

Pquad =
G

5c5

〈

...
Mij

...
Mij −

1

3
(
...
Mkk)

2

〉

. (28)

In our case, the momentum Mij satisfies the relation
...
Mij =

...
Iij (e.g., Maggiore 2008).

Therefore, the quadrupole power radiated is

Pquad =
2G

5c5
(I1 − I3)

2Ω6 sin2 θ(1 + 15 sin2 θ) . (29)

4. Numerical Results

The structure of our jet precession model is determined by Ṁ , a∗, M , and the viscosity

parameter α. Following Liu et al. (2010), we adopt α = 0.01 in our calculation. In addition,

the polytropic index 1 + 1/N is set to be 5/3. We then numerically solve the equations

described in Section 2 with given Ṁ , M , and a∗ to obtain the structure of the system. In

order to calculate the strength of gravitational waves, we assume that the misaligned angle

between the black hole spinning axis and the accretion disk orientation is θ = 20◦. We also

fix the duration gravitational wave bursts (roughly the activity time of the central engine
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of GRBs, which is, see e.g., Portegies Zwart et al. 1999, an order of 20 s) δpla = 20 s for

illustration purpose. In addition, for given distance d of the GRB source, we can derive the

rss amplitude and quadrupole power of gravitational waves by equations in Section 3.

4.1. Disk-driven Jet Precession

With fixed M = 6M⊙ and α = 0.01, we illustrate the possible jet precession period P

as a function of the accretion rate (solid line) in Figure 1. In addition, we plot the critical

radius rp as a function of the accretion rate (dashed line). It is seen that NDAFs with

Ṁ = 0.05 ∼ 10M⊙ s−1 can drive jet precession with period P = 10 ∼ 0.1 s. Thus the disk-

driven jet precession may explain the temporal structures in light curves of GRBs. Note that

the corresponding critical radius rp is close to the horizon of the black hole and the inner

precession disk is thus very small.

4.2. Gravitational waves and the black hole spin

It is known that the black hole spin can affect both the structure and the precession

rate. In this section we study the dependence of the gravitational wave rss amplitude on

the black hole spin for a fixed M and d. We vary the spinning parameter from a∗ = 0.1 to

a∗ = 0.95 and calculate the corresponding gravitational wave rss amplitude hrss.

Figure 2 plots the amplitude hrss as a function of a∗, for whichM = 6M⊙ and d = 1Mpc.

The solid, dashed, and dotted lines correspond to Ṁ = 0.1, 1, and 10M⊙ s−1, respectively.

It is seen that hrss rapidly increases with a∗ in the low-spin region, whereas hrss becomes flat

in the high-spin region. This result is easy to understand since the black hole with higher

spin will precess along with a larger inner disk, and consequently the moments of inertia of

the precession system will be larger, which will result in larger hrss.

The formation of an ultra-relativistic jet may require a rapid spinning black hole (e.g.,

Narayan & McClintock 2012). The hyper accretion process would also spinning up the cen-

tral black hole. Therefore, we fix a∗ = 0.95 for the later calculation to focus on the variation

of hrss and frequency with varying Ṁ , M , and d.
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4.3. Gravitational waves and the precession rate

For a given mass of the black hole, the disk structure and the precession period are

determined only by Ṁ (α and a∗ have been fixed), so there exists a certain P (or f = 1/P )

corresponding to each Ṁ . In this case, if the distance is also given, then there also exists a

certain hrss corresponding to each Ṁ . In this section, we investigate the gravitational waves

for each Ṁ (and P , f).

As mentioned at the beginning of this section, we set θ = 20◦ to assess the rss amplitude

of gravitational waves since as shown by Reynoso et al. (2006), θ is an order of 20◦ in some

GRBs. However, θ may be different for different GRBs. In Figure 3 we present the rss

amplitude of gravitational waves as a function of f for θ = 5◦ (solid line) and θ = 20◦

(dashed line). It is seen that the rss amplitude decreases by a factor of 2 to 3 as θ varies

from 20◦ to 5◦. We will keep θ = 20◦ for calculation in the remainder of this paper.

Figure 4 shows the relationship among hrss, f , and Ṁ , for which M = 6M⊙. The

range of Ṁ is roughly 0.01 ∼ 10 M⊙ s−1, which is known as the possible Ṁ for GRBs.

The dash-dotted, solid, and dashed lines correspond to the results for d = 10 kpc, 1Mpc,

and 100Mpc, respectively. The dotted lines represent the detectability of DECIGO, BBO,

and the ultimate DECIGO (e.g., Yagi & Seto 2011). The figure indicates that, for GRBs

in the Local Group (d . 1Mpc), such gravitational waves are under DECIGO and BBO’s

detectability. The event rate is, however, quite low in the Local Group. For larger distance

d . 100Mpc, the event rate may increase to ∼ 1 yr−1, but the rss amplitude hrss is too

small to be detected by practical DECIGO or BBO. Nevertheless, as shown in this figure,

such gravitational waves are under detectability of the ultimate DECIGO, which roughly

represents the quantum level noise of gravitational wave detectors.

It is also seen from Figure 4 that the amplitude hrss and the frequency f both increase

with Ṁ . This is because higher accretion rates generally correspond to higher mass density

and therefore larger moments of inertia and larger gravitational wave rss amplitude. On

the other hand, the critical radius rp, will become smaller for higher accretion rates, which

results in higher precession rates.

We also study the strength of such gravitational waves for various central black hole

masses. Figure 5 presents the variation of hrss with f for a fixed distance d = 1Mpc. The

dashed, solid, and dash-dotted lines correspond to the black hole mass M = 3, 6, and 10M⊙,

respectively. It is seen that hrss increases with the black hole mass, which can be understood

as follows. The critical radius rp increases with the black hole angular momentum J∗ (or

M since a∗ is fixed), so the larger M corresponds to the larger moments of inertia of the

inner disk, and therefore stronger gravitational waves. We would like to point out that, even
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though larger black hole may produce stronger gravitational wave rss amplitude, hrss cannot

be essentially enhanced since the black hole mass in GRBs is limited, normally M . 10M⊙.

4.4. The power of gravitational wave

In order to further explore the gravitational wave from our model, we calculate the

quadrupole power of gravitational waves Pquad. Figure 6 plots Pquad as a function of f , for

which M = 6M⊙ and a∗ = 0.95. In addition, the luminosity range of GRBs is shown as

the shaded region (e.g., Zhang 2011). It is seen that the power of the gravitational wave

is significantly less than the isotropic luminosity of the GRBs. The gravitational potential

energy released in the accretion disk is mainly converted into the neutrino radiation rather

than the gravitational radiation. Therefore, our assumption that the structure of NDAFs is

not affected by the production of gravitational waves should be self-consistent.

5. Conclusions and Discussion

In this paper, we have studied the gravitational waves from GRBs with disk-driven jet

precession. Based on the model in Liu et al. (2010), we have calculated gravitational wave

rss amplitude and obtained the variation of the amplitude with the frequency for different

values ofM and d. By comparing our numerical results with the sensitivity of some detectors,

we have found that it is possible for DECIGO and BBO to detect such gravitational waves,

particularly for GRBs in the Local Group.

The rate of GRBs in the Local Group is apparently low. Hence, the detection rate of

gravitational waves by our model is quite low (see Leonor et al. 2009, for a detailed discussion

on the gravitational wave event rate that associates with GRBs). However, such gravitational

waves may still be detected from systems absence of GRB events. On one hand, there is

strong evidence showing that X-Ray Flashes (XRFs) and GRBs are just two types of bursts

with the same physical nature (e.g., Lamb et al. 2003). On the other hand, observational

and theoretical arguments both indicate that the so-called “failed” GRBs exist if the jet is

dirty (baryon-rich) and cannot breakthrough the envelope (e.g., Huang et al. 2002; Totani

2003). Meanwhile, we argue that disk-driven jet precession may be common in black hole

accretion system since the only necessary condition is that the angular momentum of the

initial accretion flow is misaligned with the black hole spinning axis. Thus the similar

gravitational waves may also be produced both in “failed” GRBs and XRFs. Then the

detection rate is probably related to the total rate of “failed” GRBs and XRFs and therefore



– 10 –

increase significantly. For example, if the total rate approaches the SNe Ib/c event rate (of

course this should just be regarded as an upper limit), the expected detection rate by our

model will increase to 10−2 ∼ 10−1 yr−1 (for the SNe Ib/c rate, see, e.g., Podsiadlowski et al.

2004). More importantly, the gravitational wave signals may be the unique way to explore

the nature of off-axis GRBs and “failed” GRBs except for the possible orphan afterglow

emission. For example, the trigger time of the orphan afterglow can be measured if the

above mentioned gravitational waves are detected. Then one can make a distinguish between

off-axis GRBs and “failed” GRBs by studying the time evolution of the orphan afterglow

(see details in Huang et al. 2002).

Some studies (e.g., Sago et al. 2004; Hiramatsu et al. 2005; Suwa & Murase 2009) also

focused on the low frequency gravitational waves (typically, f . 10 Hz) emitted from GRBs.

Sago et al. (2004) studied the gravitational waves from the acceleration stage of GRB jets

based on the internal shock model. The gravitational waves they studied have a “memory

effect” (that is, gravitational waves would survive at the end of the jet acceleration stage)

and do not depend on the energy form of jets (that is, whether the jet is powered by BZ

process or neutrino annihilation). Hiramatsu et al. (2005) considered that the gravitational

waves with “memory effect” from the neutrino-driven GRB jets. Such gravitational waves

are expected to be stronger than that of Sago et al. (2004) since the neutrino luminosity is

much higher than the energy released by matter in jets. Suwa & Murase (2009), however,

suggested gravitational waves with “memory effect” would generated because of anisotropic

neutrino emission above the NDAF in GRBs. All these gravitational waves can be detected

by the gravitational wave detectors such as LISA and DECIGO if the frequency is less than

1 Hz and the source is located at a few Mpc (note that for Suwa & Murase 2009, gravitational

waves whose frequencies f ∼ 100 Hz can also be detected by LIGO). There are many common

features between our model and these studies. For example, gravitational waves are both

generated near the central engine (especially for our model and that of Suwa & Murase

2009), frequencies of gravitational waves are both very low and the detectable distances are

both about several Mpc. One obvious difference is that in our model gravitational waves

whose frequencies f = 1 ∼ 10 Hz are more likely to be detected. Therefore, a simultaneously

detection of all these type of gravitational waves may give us a new sight into the central

engine of GRBs.

Other types of gravitational waves emitted from the central engine of GRBs have been

studied by van Putten & Levinson (2003) and Romero et al. (2010). The former suggested

that an inner GRB engine consists of a Kerr black hole surrounded by a uniform magnetized

torus, whose accretion is suspended because the black hole-torus interaction can transfer an-

gular momentum to the torus or the disk and prevent the accreted materials from falling into

the horizon. The instability develops in the black hole-torus system because magnetic fields
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break up the axisymetry and a large fraction of energy of this system is released by gravi-

tational waves, which make GRBs to be the most powerful gravitational radiation sources.

Obviously, the gravitational waves studied in this work are systematically lower than that

of van Putten & Levinson (2003) both on the amplitude and the frequency (the frequency

of gravitational waves suggested by van Putten & Levinson 2003, is a few hundred Hz). On

the other hand, gravitational waves in van Putten & Levinson (2003) that powered by the

spinning black hole would slow down the spin and change the structure of the surrounding

torus significantly. In this work, however, as Figure 6 shown, the power of gravitational

waves is much lower than that of van Putten & Levinson (2003). Gravitational waves in

this work almost have no affect on the structure of NDAFs. We can study the structure of

NDAFs and the production of gravitational waves separately.

Moreover, Romero et al. (2010) considered a new type of gravitational wave by assuming

that the whole accretion disk precesses as a rigid body. They showed that gravitational waves

from such a precessing system can be detected by advanced LIGO in the near future (e.g.,

Figure 5 in their paper). Since the calculation of gravitational wave emission in Romero et al.

(2010) is relevant to the formulae developed for a torque-free precession system, the frequency

in their model is significantly different from that in the present work. Furthermore, the rss

amplitude of gravitational waves of Romero et al. (2010) should, in principle, decrease with

increasing frequency since the size of the accretion disk decreases with increasing frequency

(e.g., Figure 5 in their paper). On the contrary, the rss amplitude in our model increases

with frequency as shown in Figures 4 and 5. Such a difference may help distinguish our

model from theirs.
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Fig. 1.— Variation of the precession period P (solid line) and critical radius rp (dashed line)

with the accretion rate Ṁ , for which M = 6 M⊙ and a∗ = 0.9.
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Fig. 2.— Variation of the gravitational wave rss amplitude with the spin parameter a∗, for

which the black hole mass M = 6 M⊙ and the distance d = 1 Mpc. The solid, dashed, and

dotted lines correspond to the mass accretion rate Ṁ = 0.1, 1, and 10 M⊙ s−1, respectively.
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Fig. 3.— The gravitational wave rss amplitude as a function of the frequency for which

M = 6 M⊙ and d = 1Mpc. The solid and dashed lines correspond to θ = 5◦ and θ = 20◦,

respectively.
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Fig. 4.— The gravitational wave rss amplitude as a function of the frequency (or the accretion

rate), for which M = 6 M⊙. The dashed, solid, and dash-dotted lines correspond to d =

10 kpc, 1Mpc, and 100Mpc, respectively. The dotted lines represent the detectability of

gravitational wave detectors.
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Fig. 5.— Same as Figure 2, except for M = 3, 6, and 10M⊙ with a fixed d = 1Mpc.
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