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Introduction

The problem of counting dimer coverings on random graphs

has been intensively studied for a long time by mathematicians and

computer scientists [1, 2, 3]. In the statistical physics language,

the logarithm of the expectation E(K (G )) on random graph G is

also called the annealed entropy of G . In, [1], Zdeborová and

Mézard studied the annealed entropy on random regular and

Erdös-Rényi random graphs by means of the cavity method, in

which an analytic result for the entropy in random regular and

Erdös-Rényi random graph had been obtained. But it is clear that

most of the samples of these two types of random graph are far

away from molecular graph.
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Introduction

Stimulated by the widely existence of benzenoid hydrocarbons

[4] and the produce of two-dimensional material graphene [5]. We

consider a particular random planar honeycomb lattice model

whose samples existed in the real would. The growth procedure of

the model is inspired by the growth of single walledgraphene zigzag

nanotubes [5]. In our knowledge this random model is the first one

whose sample is existed in the real world.
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Introduction

In statistical physics a dimer represents a diatomic molecule.

The dimer model was firstly considered by Roberts in 1935 [6], and

by Fowler and Rushbrook [7], which was introduced in order to

describe the absorption of diatomic molecules on crystal surface.

In graph theoretic terms, a dimer is a molecule which can be

placed on a graph G such that it covers an edge and the two

incident vertices. A dimer arrangement is a set of dimers placed on

G such that no vertex is covered by more than one dimer. A dimer

arrangement which covers all vertices in G is called a (pure) dimer

covering, or perfect matching in terms of graph theory. The dimer

model is a classical statistical mechanics model dealing with the

set of all dimer coverings of a graph [8].
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Introduction

Historically the underlying graph for dimer covering problem

is taken to be a regular lattice in two dimensions, e.g., the square

grid, the honeycomb lattice, or a finite part of such a lattice. The

dimer model for planar quadratic lattice were considered by

Kasteleyn [9] and by Temperley and Fisher independently in the

1960’s who computed the partition function [10, 11] by using

different methods and arrived at the same results. Later in [12],

Elkies et al. provided a proof for the explicit expression of the

number of dimers on Aztec diamond. In [13] Sachs and Zeritz

obtained the entropy constant of dimers of another type of finite

plane quadratic lattices.
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Introduction

Based on these results, it could be observed that the shape of

the boundary of planar quadratic lattices has a strong effect on its

free energy per dimer while the other types of lattices are different.

Another similar phenomenon pointed out by Propp [14] and Klein

[15] is that the shape of the boundary of a finite sub-region of a

quadratic planar lattice has a strong effect on the local entropy

and local statistics (frequencies of local patterns) of a random

dimer configuration. Many fundamental observations about the

dimer and monomer-dimer model in general lattice graphs have

been given by Heilmann and Lieb [16, 17].

张张张 福福福 基基基(合合合作作作者者者: 任任任海海海珍珍珍,钱钱钱建建建国国国) Dimer coverings on random multiple chains of planar honeycomb lattice



Introduction

As the carbon atom framework of a typical benzenoid

hydrocarbon compound, the honeycomb lattice received particular

interests from chemists and mathematicians. A large number of

works on determining K , i.e., the number of perfect matchings, for

various honeycomb lattices were established in literature, e.g., in

[4, 18] and the references cited therein. In [19], Klein considered

the long-range order for spin pairing in valence bond theory in

which three types of dimers are distinguished. Klein et al. also

found some further results for the honeycomb lattice strips of

arbitrary widths, arbitrary lengths, and arbitrary long-range-order

values [20, 21].
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Introduction

The above results show that the shape of the boundary of a

planar honeycomb lattice has a strong effect on its free energy per

dimer. For details, we may refer to a survey article of Kenyon [30],

in which the boundary effects in, and methods for, planar lattices

are summarized.
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Introduction

The partition function of the dimer model was introduced as

to distinguish various type of dimers, which could be viewed as a

density function of energy levels. For the planar honeycomb lattice,

Elser studied the partition function by using generating function

approach and gave the expression for the hexagon shaped

honeycomb lattice [23]. In general, Yan, Yeh and Zhang [18] gave

an unified expression of the partition functions for honeycomb

lattice, which distinguishes the three types of dimers with different

thermodynamic activities. Based on this partition function, they

established an algebraic solution to the free energy per dimer for

many types of planar honeycomb lattices with fixed shape of

boundaries.
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Transfer matrix on random multiple chains

We denote by Ln the straight condensed hexagonal chain of n

hexagons and, for convenience, we always place Ln in such a

position that its interior edges are vertical. A two-layer multiple

chain H2,n is constructed by fusing two copies of Ln. There are two

ways of fusing: one is called the 𝛼-type fusion, as shown in Figure

1(a) and the other is called the 𝛽-type fusion, as shown in Figure

1(b).

Figure 1
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Transfer matrix on random multiple chains

We denote by [Ln]𝜃 the two-layer multiple chain obtained by

the 𝜃-type fusion and call the second layer (bottom) the 𝜃-type,

where 𝜃 ∈ {𝛼, 𝛽}. A multiple chain with m layers is therefore

constructed by successively fusing m copies of Ln and is denoted

by Hm,n = [· · · [[[Ln]𝜃1 ]𝜃2 ] · · · ]𝜃m−1 , or Hm,n = 𝜃1𝜃2 · · · 𝜃m−1 for

short, where 𝜃i ∈ {𝛼, 𝛽} and i = 1, 2, · · · ,m − 1. Similarly, we call

the i-th layer in such Hm,n the 𝜃i−1-type, i = 2, 3, · · · ,m. The

multiple chain 𝛼𝛼𝛽𝛽𝛼 with n = 6 is depicted in Figure 2.
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Transfer matrix on random multiple chains

Figure 2
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Transfer matrix on random multiple chains

Let us consider the vertical edges in each layer. An edge b is

said to be a dimer edge of a dimer covering K if b is covered by a

dimer in K , see Figure 2. It could be observed that there is exactly

one dimer edge in each layer for any dimer covering K , for details

we may refer to [20]. Let the vertical edges in each layer be

numbered by 1, 2, 3, · · · , n + 1, in an order from the left to the

right. Let K (Hm,n, i) be the number of dimer coverings of Hm,n

which contain the i-th vertical edge in the m-th layer.
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Transfer matrix on random multiple chains

Since Hm,n is a bipartite graph, we may color its vertices using

two colors, say the black and the white, such that the adjacent

vertices have different colors, as illustrated in Figure 2. Let (i , s)

and (i − 1, t) be the unique dimer edges in the i-th and (i − 1)-th

layer of a dimer covering K , respectively. For convenience, we label

the black vertices incident to the vertical edges in the i-th layer by

b1, b2, · · · , bn+1 in an order from the left to the right, respectively.

Similarly, we label the white vertices incident to the vertical edges

in the (i − 1)-th layer by w1,w2, · · · ,wn+1, as shown in Figure 2.

张张张 福福福 基基基(合合合作作作者者者: 任任任海海海珍珍珍,钱钱钱建建建国国国) Dimer coverings on random multiple chains of planar honeycomb lattice



Transfer matrix on random multiple chains

Assume that the i-th layer is of 𝛽-type as illustrated in Figure

2. Since (i , s) is the unique dimer edge in the i-th layer, bn+1 must

match wn+1 (i.e., bn+1wn+1 must be a dimer edge) and therefore,

bn must match wn. In this way, bj must match wj for each

j ∈ {s + 1, s + 2, · · · , n + 1}. This means that the unique dimer

edge (i − 1, t) in the (i − 1)-th layer must locate at the left-hand

side of the edge (i − 1, s + 1) (also the edge (i , s)), i.e., t ≤ s.

The discussion is similar if the i-th layer is of 𝛼-type.
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Conversely, if we choose one vertical edge from each layer as

a dimer edge such that the dimer edge in the (i − 1)-th layer

(i ∈ {2, 3, · · · ,m}) locates at the left-hand (resp., right-hand) side

of the dimer edge in the i-th layer if the i-th layer is of 𝛽-type

(resp., 𝛼-type), then these dimer edges determine an unique dimer

covering.

张张张 福福福 基基基(合合合作作作者者者: 任任任海海海珍珍珍,钱钱钱建建建国国国) Dimer coverings on random multiple chains of planar honeycomb lattice



Transfer matrix on random multiple chains

Let Hm−1,n be obtained from Hm,n by removing the last layer.

Then the above argument shows that:

If the m-th layer of Hm,n is of 𝛼-type, then

K (Hm,n, i) =
n+1∑︁
j=i

K (Hm−1,n, j)

and if the m-th layer of Hm,n is of 𝛽-type, then

K (Hm,n, i) =
i∑︁

j=1

K (Hm−1,n, j).
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Proposition 2.1. Let

V (Hm,n) = (K (Hm,n, 1),K (Hm,n, 2), · · · ,K (Hm,n, n + 1)). If the

m-th layer is of 𝛼-type then V (Hm,n) = V (Hm−1,n)M𝛼 and if the

m-th layer is of 𝛽-type then V (Hm,n) = V (Hm−1,n)M𝛽, where M𝛼

and M𝛽 are the transfer matrices defined by

M𝛼 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0

1 1 0 · · · 0
...

1 1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎠
(n+1)×(n+1)

,

M𝛽 =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · · 1

0 1 1 · · · 1
...

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠
(n+1)×(n+1).
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In the following, we will consider to generate Hm,n randomly

subject to the Bernoulli distribution on the two types of fusing.

That is, the probability that the 𝛼-type fusing occurs in each layer

is equal to a constant, say p ∈ [0, 1], which is independent to the

parameter m. Correspondingly, the probability that the 𝛽-type

fusing occurs in each layer is equal to the constant 1− p. In this

way, we get the ensemble of random multiple chains Hm,n and

denote it by ℋ(m, n, p).
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Let E(K (Hm,n)) (or Em for simplicity) and E(K (Hm,n, i)) (or

Em(i) for simplicity) be the expected values of K (Hm,n) and

K (Hm,n, i), respectively, where i = 1, 2, · · · , n + 1. Let

Mp = pM𝛽 + (1− p)M𝛼.

Theorem 2.1. Let Hm,n ∈ ℋ(m, n, p). Then

E(K (Hm,n)) = UMm−1
p UT ,

where U = (1, 1, · · · , 1) and UT is the transpose of U.
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By the linear algebra theory, the power of Mp could be

represented in terms of the eigenvalues of Mp. To this end, we

have the following proposition.

Proposition 2.2. The characteristic polynomial of the transfer

matrix Mp is

P(𝜆) = det(𝜆I −Mp)

= (𝜆− 1)(𝜆− 1 + p)n − p
n∑︀

i=1

(𝜆− p)i (𝜆− 1 + p)n−i

and the largest (in modulus) eigenvalue of Mp is

𝜆max =

⎧⎪⎪⎨⎪⎪⎩
1, if p = 0, 1,

1 + 1
2n, if p = 1

2 ,
pq−q+p

1−q , otherwise,

(1)

where q = ( 1p − 1)
1

n+1 .
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Applying Cayley-Hamilton Theorem to Mp, we have

Mn+1
P + c1M

n
P + c2M

n−1
P + · · ·+ cnMP + cn+1I = O,

where I is the (n + 1)× (n + 1) identity matrix, O is the

(n + 1)× (n + 1) matrix of all 0’s and ci is the coefficient of 𝜆i in

(2), i = 1, 2, · · · , n + 1. Then by Theorem 2.1, we get the

recurrence relation of the form

Em + c1Em−1 + c2Em−2 + · · ·+ cnEm−n + cn+1Em−n−1 = 0. (2)
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By Proposition 2.2 and the theory of linear difference

equation with constant coefficients, the homogeneous solution of

(2) is given by:

Case 1. If p = 0 or 1 then is

E(K (Hm,n)) =
n+1∑︁
k=1

akm
n+1−k1m,

where ak are the constant coefficients, k = 1, 2, · · · , n + 1.

Case 2. If p = 1
2 then

E(K (Hm,n)) = bn+1

(︂
1

2

)︂m

+
n∑︁

k=1

bkm
n−k

(︁
1 +

n

2

)︁m
,

where bk are the constant coefficients, k = 1, 2, · · · , n + 1.
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Case 3. If p ̸= 0, 1, 12 , then

E(K(Hm,n)) =

n
2∑︁

t=1

(at (bt − ilt )
m + a′t (bt + ilt )

m) + a0

(︂
pq − q + p

1 − q

)︂m

if n is even and

E(K(Hm,n)) =

n+1
2

−1∑︁
t=1

(at (bt − ilt )
m + a′t (bt + ilt )

m) + a0

(︂
pq − q + p

1 − q

)︂m
+ an+1

(︂−pq + q + p

1 + q

)︂m

if n is odd, where a0, an+1, at , a
′
t , bt and lt , t = 1, 2, · · · , n2 are

the constant coefficients, q = ( 1p − 1)
1

n+1 and bt ± ilt are conjugate

complex roots.
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From the above discussion, we can now give the asymptotic

property of the annealed entropy:

1.

lim
m,n→∞

2

M
log(E(K (Hm,n))) = 0.

2. If m is fixed,

lim
n→∞

2

M
log(E(K (Hm,n))) = lim

n→∞

m

mn +m + n
log(n + 1) = 0.

3. If n is fixed, then

lim
m→∞

2

M
log(E(K (Hm,n)) =

⎧⎪⎪⎨⎪⎪⎩
0, if p = 0, 1,

1
(1+n) log(1 +

1
2n), if p = 1

2 ,

1
(1+n) log

pq−q+p
1−q , otherwise,

where q =
(︁
1
p − 1

)︁ 1
n+1

.
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We now present some numerical results of K (Hm,n) for the

multiple chains Hm,n and E(K (Hm,n)) for random multiple chain

Hm,n ∈ ℋ(m, n, p). Note that

K (Hm,n) = K (Hm,n, 1) + K (Hm,n, 2) + · · ·+ K (Hm,n, n + 1).

Then K (Hm,n) can be calculated by applying Proposition 2.1 and

the numerical result for n = 3 and m ≤ 7 is presented in Table 1.

The expected value E(K (Hm,n)) for random multiple chain

Hm,n ∈ ℋ(m, n, p) is calculated by applying Theorem 2.1 and the

numerical result for n = 3 and m ≤ 7 is presented in Table 2, in

which we choose the probability p = 0.1× i , i = 0, 1, 2, · · · , 10.
The asymptotic behavior is illustrated in Figure 3.
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Numerical results

m Hm,3 K(Hm,3) Hm,3 K(Hm,3) Hm,3 K(Hm,3) Hm,3 K(Hm,3)

1 L3 4

2 𝛼 10

3 𝛼𝛼 20 𝛼𝛽 30

4 𝛼𝛼𝛼 35 𝛼𝛽𝛼 85 𝛼𝛼𝛽 65 𝛼𝛽𝛽 65

5 𝛼𝛼𝛼𝛼 56 𝛼𝛽𝛼𝛼 179 𝛼𝛼𝛽𝛼 179 𝛼𝛽𝛽𝛼 206

𝛼𝛼𝛼𝛽 119 𝛼𝛽𝛼𝛽 246 𝛼𝛼𝛽𝛽 146 𝛼𝛽𝛽𝛽 119

6 𝛼𝛼𝛼𝛼𝛼 84 𝛼𝛽𝛼𝛼𝛼 322 𝛼𝛼𝛽𝛼𝛼 372 𝛼𝛽𝛽𝛼𝛼 457

𝛼𝛼𝛼𝛽𝛼 322 𝛼𝛽𝛼𝛽𝛼 707 𝛼𝛼𝛽𝛽𝛼 457 𝛼𝛽𝛽𝛽𝛼 399

𝛼𝛼𝛼𝛼𝛽 196 𝛼𝛽𝛼𝛼𝛽 573 𝛼𝛼𝛽𝛼𝛽 523 𝛼𝛽𝛽𝛼𝛽 573

𝛼𝛼𝛼𝛽𝛽 273 𝛼𝛽𝛼𝛽𝛽 523 𝛼𝛼𝛽𝛽𝛽 273 𝛼𝛽𝛽𝛽𝛽 196

7 𝛼𝛼𝛼𝛼𝛼𝛼 120 𝛼𝛽𝛼𝛼𝛼𝛼 524 𝛼𝛼𝛽𝛼𝛼𝛼 664 𝛼𝛽𝛽𝛼𝛼𝛼 848

𝛼𝛼𝛼𝛽𝛼𝛼 664 𝛼𝛽𝛼𝛽𝛼𝛼 1498 𝛼𝛼𝛽𝛽𝛼𝛼 1008 𝛼𝛽𝛽𝛽𝛼𝛼 909

𝛼𝛼𝛼𝛼𝛽𝛼 524 𝛼𝛽𝛼𝛼𝛽𝛼 1588 𝛼𝛼𝛽𝛼𝛽𝛼 1498 𝛼𝛽𝛽𝛼𝛽𝛼 1669

𝛼𝛼𝛼𝛽𝛽𝛼 848 𝛼𝛽𝛼𝛽𝛽𝛼 1669 𝛼𝛼𝛽𝛽𝛽𝛼 909 𝛼𝛽𝛽𝛽𝛽𝛼 680

𝛼𝛼𝛼𝛼𝛼𝛽 300 𝛼𝛽𝛼𝛼𝛼𝛽 1086 𝛼𝛼𝛽𝛼𝛼𝛽 1196 𝛼𝛽𝛽𝛼𝛼𝛽 1437

𝛼𝛼𝛼𝛽𝛼𝛽 946 𝛼𝛽𝛼𝛽𝛼𝛽 2037 𝛼𝛼𝛽𝛽𝛼𝛽 1277 𝛼𝛽𝛽𝛽𝛼𝛽 1086

𝛼𝛼𝛼𝛼𝛽𝛽 456 𝛼𝛽𝛼𝛼𝛽𝛽 1277 𝛼𝛼𝛽𝛼𝛽𝛽 1117 𝛼𝛽𝛽𝛼𝛽𝛽 1196

𝛼𝛼𝛼𝛽𝛽𝛽 517 𝛼𝛽𝛼𝛽𝛽𝛽 946 𝛼𝛼𝛽𝛽𝛽𝛽 456 𝛼𝛽𝛽𝛽𝛽𝛽 300

The numerical results of K (Hm,n) for n = 3 and m ≤ 7.

张张张 福福福 基基基(合合合作作作者者者: 任任任海海海珍珍珍,钱钱钱建建建国国国) Dimer coverings on random multiple chains of planar honeycomb lattice



Numerical results

m p E(K(Hm,3)) p E(K(Hm,3)) p E(K(Hm,3))

1 ∈ [0, 1] 4

2 ∈ [0, 1] 10

3 0, 1 20 0.1, 0.9 21.8 0.2, 0.8 23.2

0.3, 0.7 24.2 0.4, 0.6 24.8 0.5 25

4 0, 1 35 0.1, 0.9 44.9 0.2, 0.8 52.6

0.3, 0.7 58.1 0.4, 0.6 61.4 0.5 62.5

5 0, 1 56 0.1, 0.9 90.4196 0.2, 0.8 118.49

0.3, 0.7 139.236 0.4, 0.6 151.962 0.5 156.25

6 0, 1 84 0.1, 0.9 180.647 0.2, 0.8 266.502

0.3, 0.7 333.551 0.4, 0.6 376.07 0.5 390.625

7 0, 1 120 0.1, 0.9 360.08 0.2, 0.8 599.236

0.3, 0.7 799. 0.4, 0.6 930.676 0.5 976.562

The numerical results of E(K (Hm,n)) for n = 3 and m ≤ 7.
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Asymptotic behavior

Figure 3 The asymptotic behavior of 2
M log(E(K (Hm,n))
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Partition function on random multiple chains

In a planar honeycomb lattice, all dimers can be distinguished

to be three classes corresponding to the three orientations:

x-dimers, y -dimers and z-dimers. Dimers in the same class are all

parallel. Let H be a honeycomb lattice with M sites. Denote by

gH(nx , ny , nz) the number of ways placing nx , ny and nz

(2nx + 2ny + 2nz = M) independently x-, y - and z-dimers on H so

that each site of H is occupied exactly once.
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Partition function on random multiple chains

The partition function of H with three types of dimers is

defined as the generating function [18]

Zx ,y ,z(H) =
∑︁

nx ,ny ,nz

gH(nx , ny , nz)x
nx yny znz ,

where, x , y and z are thermodynamically the activities of x-dimers,

y -dimers and z-dimers, respectively. In graph theory, Z1,1,1(H) is

the number of perfect matchings of H.

张张张 福福福 基基基(合合合作作作者者者: 任任任海海海珍珍珍,钱钱钱建建建国国国) Dimer coverings on random multiple chains of planar honeycomb lattice



Partition function on random multiple chains

The free energy per dimer of H is defined as

fH(x , y , z) = lim
M→∞

2

M
logZx ,y ,z(H)

and the entropy per dimer of H, denoted by E (H), is defined as

E (H) = fH(1, 1, 1)

by physicists [23, 22, 25, 24, 26, 27].
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Partition function on random multiple chains

Let H be a honeycomb lattice with a pure dimer covering K .

The dimers in K can be partitioned into three subsets Kx , Ky and

Kz such that in each subset all the dimers are mutually parallel

[28]. Zhang et al. [29] introduced the concept of Z -transformation

graph and proved that Z -transformation graph is connected. This

result implies that all the pure dimer coverings of H have the same

number of dimers in Kx , Ky and Kz , respectively. Hence, Yan et

al. obtained the following Lemmas [18].
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Partition function on random multiple chains

Lemma 3.1.([18]) If H is a planar honeycomb lattice of M sites

with three activities x, y and z respectively, then

Zx ,y ,z(H) = Z1,1,1(H)xnx yny znz ,

where nx , ny and nz are the numbers of x-dimers, y-dimers and

z-dimers in an arbitrary pure dimer covering of H. And the free

energy per dimer

fH(x , y , z) = lim
M→∞

2

M
logZ1,1,1(H)xnx yny znz

= E (H) + lim
M→∞

2nx log x

M
+ lim

M→∞

2ny log y

M
+ lim

M→∞

2nz log z

M

if these limits exist.
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Partition function on random multiple chains

Lemma 3.2.([18]) Let H be a planar honeycomb lattice with M

sites and let the numbers of dimers belonging to the three different

orientations be simply nx , ny and nz . If there exists one (say nx)

among nx , ny and nz such that nx = o( M
logmx

), where mx is the

maximum number of hexagons intersected by one of the cut

segments which are perpendicular to x-dimers of Hm,n. Then the

entropy per dimer of H

E (H) = lim
M→∞

2

M
logZ1,1,1(H) = 0.

张张张 福福福 基基基(合合合作作作者者者: 任任任海海海珍珍珍,钱钱钱建建建国国国) Dimer coverings on random multiple chains of planar honeycomb lattice



Partition function on random multiple chains

In the following, we consider H as a random multiple chain

Hm,n ∈ ℋ(m, n, p) and determine its expected value of the free

energy per dimer. Without loss of generality, we assume that the

x-dimers in Hm,n are vertical, the y -dimers and z-dimers are then

parallel with the other two directions of the hexagon, respectively,

as illustrated in Figure 4. As we pointed out in section 2, any

dimer covering K contains exactly one vertical dimer edge in each

layer. Hence, we have nx = m. On the other hand, one can see

that mx = n and, therefore, nx = m = o( M
logmx

). So by Lemma

3.2, the entropy per dimer of Hm,n is zero, i.e., E (Hm,n) = 0.

Hence, by Lemma 3.1,
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Partition function on random multiple chains

Figure 4
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Partition function on random multiple chains

fHm,n(x , y , z)

= E (Hm,n) + limM→∞
2nx log x

M + limM→∞
2ny log y

M + limM→∞
2nz log z

M

= limM→∞
2m log x

M + limM→∞
2(n+mn−nz ) log y

M + limM→∞
2nz log z

M

= log y + limM→∞
2nz (log z−log y)

M .

Therefore,

E(fHm,n(x , y , z)) = log y + lim
M→∞

E
(︂
2nz
M

)︂
(log z − log y).
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Partition function on random multiple chains

Recall that any two dimer coverings of Hm,n have the same

number nz of dimers in Kz . So, in order to determine the value

limM→∞ E(2nz/M), it would be convenient to choose the first

vertical edge in each layer as the dimer edge of K . Thus, one can

check that nz = (k + 1)n, where k is the number of the 𝛼-type

layers, see Figure 4 for an example. In other word, nz depends only

on the number of the 𝛼-type layers in Hm,n. On the other hand,

there are exactly
(︀m−1

k

)︀
random multiple chains with k 𝛼-type

layers, each of which has probability pk(1− p)m−k−1. Thus,
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Partition function on random multiple chains

limM→∞ E
(︀
2nz
M

)︀
= limm,n→∞

1
mn+m+n

m−1∑︀
k=0

(︀
m−1
k

)︀
pk(1− p)m−k−1(k + 1)n

= limm,n→∞
n(1−p)m−1

mn+m+n

(︂
t
m−1∑︀
k=0

(︀
m−1
k

)︀ (︁
pt

1−p

)︁k
)︂′ ⃒⃒⃒⃒

t=1

= limm,n→∞
(m−1)np
mn+m+n = p.

Therefore,

E(fHm,n(x , y , z)) = (1− p) log y + p log z . (3)
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Partition function on random multiple chains

Remark. The (k, h, n)-chevron region C (k , h, n) is a particular

type of (non-random) multiple chains consisting of k + h− 1 layers

whose i-th layers with i ∈ {2, 3, · · · , k} are of 𝛼-type and the last

h − 1 layers are of 𝛽-type. The (4, 3, 5)-chevron region is depicted

in Figure 4, for an example. It has been known [18] that the free

energy per dimer of the (at, bt, ct)-chevron region with

a+ b + c = 1, c > 0 and t → ∞ is

fC(bt,at,ct)(x , y , z)) =
b

a+ b
log y +

a

a+ b
log z .

Combining with (3), we have

E(fHm,n(x , y , z)) = fC(bt,at,ct)(x , y , z) = (1− p) log y + p log z ,

where a = p
1+c , b = 1−p

1+c and t → ∞.
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Hydrocarbons (Springer, Berlin)

M. S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon

Nanotubes: Synthesis, Structure, Properties, and Applications,

Springer-Verlag Berlin 2001

Roberts J K, Composite Films of Oxygen and Hydrogen on

Tungsten, 1935 Proc. Roy. Soc. (London)A 152 477-480
张张张 福福福 基基基(合合合作作作者者者: 任任任海海海珍珍珍,钱钱钱建建建国国国) Dimer coverings on random multiple chains of planar honeycomb lattice



Fowler R H and Rushbrooke G S, An attempt to extend the

statistical theory of perfect solutions, 1937 Trans. Faraday

Soc. 33 1272-1294

Kasteleyn P W, 1967 Graph Theory and Crystal Physics, (In

Graph Theory and Theoretical Physics (Harary F, eds.), pages

43-110. Academic Press, London)

Kasteleyn P W, The statistics of dimers on a lattice, 1961

Physica 27 1209-1225

Temperley H N V and Fisher M E, Dimer problem in statistical

mechanics - an exact result, 1961 Phisolophical Magazine 6

1061-1063

Fisher M E, Statistical Mechanics of Dimers on a Plane

Lattice, 1961 Phys.Rev. 124 1664-1672

张张张 福福福 基基基(合合合作作作者者者: 任任任海海海珍珍珍,钱钱钱建建建国国国) Dimer coverings on random multiple chains of planar honeycomb lattice



Elkies N, Kuperberg G, Larsen M and Propp J,

Alternating-sign matrices and domino tilings, 1992 J. Algebraic

Combin. 1 111-132

Sachs H and Zeritz H, Remark on the dimer problem, 1994

Discrete Appl. Math. 51 171-179

Propp J, Boundary-dependent local behavior for 2-D dimer

models, 1997 International Journal of Modern Physics B 11

183-187

Klein D J and Schmalz T G, Exact enumeration of

long-range-ordered dimer coverings on the square-planar

lattice, 1990 Phys. Rev. B 41 2244-2248

Heilmann O J and Lieb E H, Monomers and dimers, 1970

Phys. Rev. Letters 24 1412-1414

张张张 福福福 基基基(合合合作作作者者者: 任任任海海海珍珍珍,钱钱钱建建建国国国) Dimer coverings on random multiple chains of planar honeycomb lattice



Heilmann O J and Lieb E H, Theory of monomer dimer

systems, 1972 Comm. Math. Phys. 25 190-232

Yan W G, Yeh Y N and Zhang F J, Dimers belonging to three

orientations on plane honeycomb lattices, 2011 J. Stat. Phys.

145 1343-1356

Klein D J, Long-range order for spin pairing in valence bond

theory, 1979 Int. J. Quantum Chem. Symp. 13 293-303

Klein D J, Hite G E, Seitz W A and Schmalz T G, Dimer
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