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Abstract—In sensor networks, due to power outage at a sensor 
node, hardware dysfunction, or bad environmental conditions, 
not all sensor samples can be successfully gathered at the sink. 
Additionally, in the data stream scenario, some nodes may 
continually miss samples for a period of time. In this paper, a 
sparsity-based online data recovery approach is proposed. We 
construct an overcomplete dictionary composed of past data 
frames and traditional fixed transform bases. Assuming the 
current frame can be sparsely represented using only a few 
elements of the dictionary, missing samples in each frame can be 
estimated by Basis Pursuit. Our method was tested on data from 
a real sensor network application: monitoring the temperatures 
of the disk drive racks at a data center. Simulations show that in 
terms of estimation accuracy and stability, the proposed 
approach outperforms existing average-based interpolation 
methods, and is more robust to burst missing along the time 
dimension. 

I. INTRODUCTION  

Wireless sensor networks are characterized by a dense 
deployment of sensor nodes that continuously observe a 
physical phenomenon, such as environmental sensing, habitat 
monitoring and other emergency cases [1-3]. These 
distributed sensors collaboratively relay their data to a single 
sink (base station). Some transmitted sensor data may be lost 
or corrupted due to power outrage at a sensor node, hardware 
dysfunction, or bad environmental conditions. Many real-
time applications, such as traffic and safety control, and 
healthcare [4] need to operate on continuous data streams. In 
this paper, we consider a 2-D (two dimensional) data stream 
scenario, and the missing data of each 2-D frame need to be 
estimated at the sink online with low time delay. Fig. 1 shows 
a sensor network with missing samples in time intervals n-1, 
n, and n+1, respectively. 

Traditional methods interpolating the missing data include 
inverse distance weighted averaging (IDWA) [5] and Kriging 
[6]. However, they only consider data within a single frame, 
and do not take advantage of information in the sequential 
data frames. Others take temporal factors into consideration. 
For instance, the work in [7] is restricted to Markov models, 
where the samples at time interval n+1 are independent of 

those for any time earlier than n. This assumption is too 
restrictive. 

 
Figure 1.  A sensor network with missing samples. 

 

Recently, sparse representation approximates a signal with 
a linear combination of a small number of elementary signals 
called atoms [8]. Guo et al. [9] adopted a 2-D Discrete Cosine 
Transform (DCT) basis to sparsely represent the realistic 
climate sensor data, but there is no guarantee that general 
transforms such as DCT, or wavelets can sparsely represent 
the signal of interest [10].  

For the online data, temporal correlation between the 
current and past frames usually exists. This property provides 
us the opportunity to explore the past frames to represent the 
current frame. In this paper, we propose to construct an 
overcomplete dictionary composed of past-data frames and 
the 2-D DCT basis for the online data recovery. This 
dictionary is more effective than the fixed DCT basis, 
because the current frame can be efficiently represented by a 
few weighted linear combination of previous past frames with 
the correlation property. No off-line training phase is 
required. The recovery approach is simple enough to be 
implemented on the sink, with negligible delay compared to 
the sampling interval of the sensors.  

Our methods were tested on the data from a real sensor 
network application: monitoring the temperatures of the disk 
drive racks in a data center. Simulation shows that in terms of 
estimation accuracy and stability, the proposed approach 
outperforms existing average-based interpolation methods, 
and is more robust to burst missing along the time dimension. 
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II. PROPOSED METHOD 

Considering a network with M sensor nodes, each node 
records the physical parameters of an environment at time 
intervals 1, 2, , ,n  . Samples of all the nodes can be 

arranged in a vector      1 2, , ,
T

n Mf n f n f n   f   to form 

the network data (the nth frame). However, if some of the 
samples failed to be collected or transmitted to the sink due to 
hardware failure or environmental limitations, only a subset 
of nf  is observed.  

    To address this issue, we propose a Sparsity-based online 
data Recovery method using an Overcomplete Dictionary 
(SROD). We can group the indices of the entries into two 
subsets: n  consists of those indices of entries observed in 

nf ; n  consists of those indices of entries missed in nf . 

Correspondingly, n
n
f  and n

n
f  are denoted as the available 

data and missing data in nf , respectively.  

Since we have past frames available at the sink, and with 
the temporal correlation, the current frame could be 
efficiently represented by a few weighted linear combination 
of previous past frames, we propose to add some past frames 
to the dictionary besides the 2-D DCT basis, resulting in an 
overcomplete dictionary for online data recovery. 

We assume the data in the frames are highly temporally 
correlated which is the case in most sensor network 
applications, since the sampling rate usually is controlled so 
that the sensor data do not change drastically within the 
sampling period. We verify this assumption by plotting the 
temporal correlation between 200 frames in our temperature 
dataset [11] as shown in Fig.2. The temporal correlation is 
defined as: 

 
0

0

1

1

n n
T
n n

n n

R
n 







   z z                      (1) 

where nz  is a normalized vector containing the sensor data in 

the nth frame and 1n   is the total number of frame pairs 

used in calculating  R  . This temporal correlation averages 

the inner products for all the pairs of frames with time lag  . 
The high correlation of the frames shown in Fig. 2(a) 
indicates the feasibility of their sparse representation. We 
verify the sparse representation of frames in our case by Fig. 
2(b), where only a few large coefficients exist when 
representing the current frame using our proposed dictionary. 
  

    
                               (a)                                                          (b) 
Figure 2. (a) Data correlation between frames. (b) Coefficients when 
representing a frame using the proposed overcomplete dictionary. 

To get started, we assume there is no missing data or the 
missing data have been recovered in the past L frames. Let 
Ψ  denote the DCT basis, then the overcomplete dictionary 
for nf  is  2 1n n L n n  Φ f f f Ψ , where nΦ  is an 

 M L M   matrix with  rank n MΦ , so that any signal 

can be represented by more than one combination of different 
atoms. We assume that the current frame can be represented 
as a sparse linear combination of the atoms in nΦ ,  

n n nf Φ α                                       (2) 

where હ௡ ∈ Թሺ௅ାெሻ	is expected to be sparse, i.e. ‖હ௡‖଴ ≪ ܮ ൅
 .ܯ

With the notation of the available data n
n
f  and the missing 

data n
n
f , the rows of nΦ  can also be partitioned into two 

parts n
n
Φ  and n

n
Φ correspondingly. Thus, the current frame 

to be recovered in Eq. (1) can be rewritten as, 
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Since n
n
f  is not known, we are unable to make any use of 

n n
n n n
 f Φ α . Our hope for finding nα  relies on the equation 

corresponding to the available data,  
n n

n n n
 f Φ α                                    (4) 

The number of unknowns is more than the number of 
equations in (4), thus the system of equations is under-
determined. Since we expect a priori that the presentation of 
the current frame will be sparse, nα  can be estimated by 

solving the ℓଵ norm optimization problem: 

1
arg min s.t. n n

n
n n n n

 
α

α f Φ α ,                       (5) 

as long as n
n
Φ  satisfies the Restricted Isometry Property 

(RIP) [10]. In other words, among all the solutions that 
satisfy the constraints, we select the one that has the smallest 
ℓଵ  norm, i.e., the sparsest solution. One appealing method for 
solving (5) is Basis Pursuit Denoising (BPDN) [8],  
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ˆ arg min
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n n

n
n n n n n  

α
α f -Φ α α                      (6) 

This solution is robust in the presence of noise, and also gives 
good performance even when the coefficient vector is not as 
sparse, which means nf  can be approximated with some error 

by truncating the small magnitude coefficients in nα . The 

final recovered output nA  is,  

ˆ
n n nA Φ α                                   (7) 

 

III. RESULTS 

A. Dataset and preprocessing 

The dataset used in simulations comes from the Microsoft 
Research Data Center Genome (DC Genome) system [11]. To 
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With this dictionary, Table I shows the performance of the 
SROD and KNN, by summarizing the mean values of the 
above performance metrics for all the 451st ~700th  recovered 
frames. The missing rate u = 10% and 20%, the burst missing 
length v = 5 and 10. The proposed approach outperforms 
KNN in terms of these evaluation metrics with more than 
20% improvement. The mean error values of KNN and SROD 
both increase as the missing rate and missing burst length go 
up, but the error of the proposed method is still much lower 
than that of KNN. The maximal error values demonstrate that 
the proposed approach is more robust to different missing 
rates and missing burst lengths.  

 
TABLE I. PERFORMANCE COMPARISON OF KNN AND SROD  

 
From 451st to 700th frame. u = 10% and 20%, v = 5 and 10. The numbers 
between brackets are percentage improvement of the evaluation criteria of 
the SROD relative to that of KNN, at the same u and v.            
       

D. Impact of noise 

In reality, the data are usually corrupted with noise. We 
add white Gaussian noise to the available data, and the noisy 
measurement vector is written as 

n
n
 y f ε ,                                   (11) 

where ε  is the Gaussian noise, whose power is controlled by 
signal-to-noise ratio (SNR) defined as 

2

2
dB 10 2

2

SNR 10log
n

n



f

ε
,                          (12) 

and then use BPDN algorithm 
2

12

1
ˆ arg min

2
n

n
n n n n 

α
α y -Φ α α   .               (13) 

Fig. 6 shows the estimation error of SROD under different 
noise levels. As the noise increases, i.e., SNR drops, the 
curves of total RMSE basically remain the same, until SNR is 
as low as 10dB. This demonstrates that SROD is robust to 
low and medium noise. 

 
Figure 6.  Total RMSE of SROD for noisy data. u = 20%, v = 10. 

IV. CONCLUSIONS 

We presented a new approach for online data recovery in 
sensor networks. A sparse linear relationship between a 
current frame and its past frames are modeled to estimate the 
missing data in the current frame. We design an overcomplete 
dictionary composed of the past data and the DCT basis to 
sparsely represent the current frame. Data recovery is 
achieved through 1  norm minimization. Simulation results 

on a real sensor data set demonstrate that the proposed 
approaches outperform the average-based interpolation 
methods in terms of both accuracy and robustness. In the 
future, we plan to leverage available data in the next frame to 
correct the current frame, and when delay is acceptable, more 
future frames can be incorporated to further improve the 
recovery accuracy. 

ACKNOWLEDGMENT 

The authors would like to thank Dr. Jie Liu in Microsoft 
providing the real sensor dataset. D. Guo and X. Qu would 
like to thank China Scholarship Council for financial support. 
D. Guo thanks Qirong Ma for discussion.  

REFERENCES 
[1] T. Mitchell. (1999, March 27). "50" km resolution daily precipitation 

for the Pacific Northwest, 1949–94 [Online]. Available: 
http://www.jisao.washington.edu/data/widmann/ 

[2] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, 
and D. Estrin, "Habitat monitoring with sensor networks," 
Communications of the ACM, vol. 47, no. 6, pp. 34–40, 2004. 

[3] K. Lorincz, D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel, 
V. Shnayder, G. Mainland, M. Welsh, and S. Moulton, "Sensor 
networks for emergency response: Challenges and opportunities," 
Pervasive Comput., vol. 3, no. 4, pp. 16–23, 2004. 

[4] A. Gaddam, S.C. Mukhopadhyay, G.S. Gupta, "Elder Care Based on 
Cognitive Sensor Network," IEEE Sensors J., vol. 11, no. 3, pp. 574–
581, Mar. 2011. 

[5] G. Y. Lu and D. W. Wong, "An adaptive inverse-distance weighting 
spatial interpolation technique," Computers & Geosciences, vol. 34, 
no.9, pp. 1044–1055, 2008. 

[6] M. Umer, L. Kulik, and E. Tanin, "Kriging for Localized Spatial 
Interpolation in Sensor Networks," in Scientific and Statistical 
Database Management. vol. 5069, B. Ludäscher and N. Mamoulis, 
Eds. New York: Springer Berlin / Heidelberg, 2008, pp. 525-532. 

[7] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. 
Hong, "Model-driven data acquisition in sensor networks," in Proc. 
30th int. conf. Very Large Data Bases 2004, pp. 588-599. 

[8] S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition 
by basis pursuit," SIAM Review, vol. 43, no. 1, pp. 129-159, 2001. 

[9] D. Guo, X. Qu, L. Huang, and Y. Yao, "Sparsity-Based Spatial 
Interpolation in Wireless Sensor Networks," Sensors, vol. 11, no.3, pp. 
2385–2407, 2011. 

[10] M. Elad, Sparse and Redundant Representations: From Theory to 
Applications in Signal and Image Processing. New York: Springer, 
2010, pp. 227–228. 

[11] J. Liu, F. Zhao, J. O'Reilly, A. Souarez, M. Manos, C. J. M. Liang, and 
A. Tersiz. (2008, December). Project genome: Wireless sensor network 
for data center cooling. The Architecture Journal [Online], vol. 18, pp. 
28–34. Available: 

         http://research.microsoft.com/apps/pubs/default.aspx?id=78813 
[12] D. Donoho, Stodden, V., Tsaig, Y. (2007, May 26). Sparselab 2.1 

[Online]. Available: http://sparselab.stanford.edu/. 
 

0 20 40 60 80 100
0.6

0.8

1

1.2

Number of past frames

T
ot

al
 R

M
S

E

 

 

Noiseless
30dB
20dB
10dB


