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Abstract—In sensor networks, due to power outage at a sensor
node, hardware dysfunction, or bad environmental conditions,
not all sensor samples can be successfully gathered at the sink.
Additionally, in the data stream scenario, some nodes may
continually miss samples for a period of time. In this paper, a
sparsity-based online data recovery approach is proposed. We
construct an overcomplete dictionary composed of past data
frames and traditional fixed transform bases. Assuming the
current frame can be sparsely represented using only a few
elements of the dictionary, missing samples in each frame can be
estimated by Basis Pursuit. Our method was tested on data from
a real sensor network application: monitoring the temperatures
of the disk drive racks at a data center. Simulations show that in
terms of estimation accuracy and stability, the proposed
approach outperforms existing average-based interpolation
methods, and is more robust to burst missing along the time
dimension.

1. INTRODUCTION

Wireless sensor networks are characterized by a dense
deployment of sensor nodes that continuously observe a
physical phenomenon, such as environmental sensing, habitat
monitoring and other emergency cases [1-3]. These
distributed sensors collaboratively relay their data to a single
sink (base station). Some transmitted sensor data may be lost
or corrupted due to power outrage at a sensor node, hardware
dysfunction, or bad environmental conditions. Many real-
time applications, such as traffic and safety control, and
healthcare [4] need to operate on continuous data streams. In
this paper, we consider a 2-D (two dimensional) data stream
scenario, and the missing data of each 2-D frame need to be
estimated at the sink online with low time delay. Fig. 1 shows
a sensor network with missing samples in time intervals n-1,
n, and n+1, respectively.

Traditional methods interpolating the missing data include
inverse distance weighted averaging (IDWA) [5] and Kriging
[6]. However, they only consider data within a single frame,
and do not take advantage of information in the sequential
data frames. Others take temporal factors into consideration.
For instance, the work in [7] is restricted to Markov models,
where the samples at time interval n+1 are independent of
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those for any time earlier than n. This assumption is too
restrictive.
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Figure 1. A sensor network with missing samples.

Recently, sparse representation approximates a signal with
a linear combination of a small number of elementary signals
called atoms [8]. Guo et al. [9] adopted a 2-D Discrete Cosine
Transform (DCT) basis to sparsely represent the realistic
climate sensor data, but there is no guarantee that general
transforms such as DCT, or wavelets can sparsely represent
the signal of interest [10].

For the online data, temporal correlation between the
current and past frames usually exists. This property provides
us the opportunity to explore the past frames to represent the
current frame. In this paper, we propose to construct an
overcomplete dictionary composed of past-data frames and
the 2-D DCT basis for the online data recovery. This
dictionary is more effective than the fixed DCT basis,
because the current frame can be efficiently represented by a
few weighted linear combination of previous past frames with
the correlation property. No off-line training phase is
required. The recovery approach is simple enough to be
implemented on the sink, with negligible delay compared to
the sampling interval of the sensors.

Our methods were tested on the data from a real sensor
network application: monitoring the temperatures of the disk
drive racks in a data center. Simulation shows that in terms of
estimation accuracy and stability, the proposed approach
outperforms existing average-based interpolation methods,
and is more robust to burst missing along the time dimension.
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II.  PROPOSED METHOD

Considering a network with M sensor nodes, each node
records the physical parameters of an environment at time
intervals 1,2,---,n,---. Samples of all the nodes can be

arranged in a vector f, =[f1 (n), f,(n), -, fir (n)]r to form

the network data (the n™ frame). However, if some of the
samples failed to be collected or transmitted to the sink due to
hardware failure or environmental limitations, only a subset
of f is observed.

To address this issue, we propose a Sparsity-based online
data Recovery method using an Overcomplete Dictionary
(SROD). We can group the indices of the entries into two
subsets: A, consists of those indices of entries observed in

f ; A, consists of those indices of entries missed in f, .

Correspondingly, f"* and fnx" are denoted as the available

data and missing data in f

., respectively.

Since we have past frames available at the sink, and with
the temporal correlation, the current frame could be
efficiently represented by a few weighted linear combination
of previous past frames, we propose to add some past frames
to the dictionary besides the 2-D DCT basis, resulting in an
overcomplete dictionary for online data recovery.

We assume the data in the frames are highly temporally
correlated which is the case in most sensor network
applications, since the sampling rate usually is controlled so
that the sensor data do not change drastically within the
sampling period. We verify this assumption by plotting the
temporal correlation between 200 frames in our temperature
dataset [11] as shown in Fig.2. The temporal correlation is

defined as:
1 ny+An

R(7)= D7z, (1)

C An+l —

where z, is a normalized vector containing the sensor data in
the n
used in calculating R(r) . This temporal correlation averages

™ frame and An+1 is the total number of frame pairs

the inner products for all the pairs of frames with time lag 7 .
The high correlation of the frames shown in Fig. 2(a)
indicates the feasibility of their sparse representation. We
verify the sparse representation of frames in our case by Fig.
2(b), where only a few large coefficients exist when
representing the current frame using our proposed dictionary.
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Figure 2. (a) Data correlation between frames. (b) Coefficients when
representing a frame using the proposed overcomplete dictionary.

To get started, we assume there is no missing data or the
missing data have been recovered in the past L frames. Let
¥ denote the DCT basis, then the overcomplete dictionary
for £, is ®, =[f_, - f_,f_ W], where ®, is an
M x(L+M) matrix with rank (®,)=M , so that any signal
can be represented by more than one combination of different
atoms. We assume that the current frame can be represented
as a sparse linear combination of the atoms in @,

f=da, (2)
where a,, € RE+M is expected to be sparse, i.e. |lay|lo < L +
M.

With the notation of the available data " and the missing
data ff" , the rows of @, can also be partitioned into two

parts @’ and (I)nK” correspondingly. Thus, the current frame
to be recovered in Eq. (1) can be rewritten as,

) (@)
B0 ) .

Since f is not known, we are unable to make any use of

f,x” = (I)f:\”an . Our hope for finding a, relies on the equation

corresponding to the available data,
" =@ a, “)
The number of unknowns is more than the number of
equations in (4), thus the system of equations is under-
determined. Since we expect a priori that the presentation of
the current frame will be sparse, @, can be estimated by
solving the £; norm optimization problem:

1 AH —_ All
argr21n||an||l st. f"=®a,, 5)

as long as @’ satisfies the Restricted Isometry Property
(RIP) [10]. In other words, among all the solutions that
satisfy the constraints, we select the one that has the smallest

£, norm, i.e., the sparsest solution. One appealing method for
solving (5) is Basis Pursuit Denoising (BPDN) [8],

1 (6)

This solution is robust in the presence of noise, and also gives
good performance even when the coefficient vector is not as
sparse, which means f, can be approximated with some error

N . 1fA” o™ 2 p)
an—argmalngun -D, an||2+ |(ln

by truncating the small magnitude coefficients in @, . The
final recovered output A, is,
A =®a )

III.  RESULTS

A. Dataset and preprocessing

The dataset used in simulations comes from the Microsoft
Research Data Center Genome (DC Genome) system [11]. To



get an idea of the scenario, Fig. 3 shows that the temperature
across the racks and across different heights of the same rack
varies significantly [11].

This dataset was recorded by sensors deployed in an 8x11
grid over a one-day period. Since about 10% of samples in
the original dataset are missing, we use 2-D K-Nearest
Neighbor (KNN) spatial interpolation algorithm [8], one of
IDWA interpolation methods, to fill in these missing samples
before simulation, so that we have a complete dataset as the
ground truth. Then, we generate random and burst missing
data patterns for 451% frame to 700™ frame, and apply our
proposed data recovery scheme to estimate the missing data.

Figure 3. The thermal image of an aisle in a data center. The infrared
thermal image shows significant variations on intake air temperature across
racks and at different height [11].

B. Simulation setup

In the simulations, to extend 2-D KNN to 3-D KNN for our
online data recovery scenario, the neighbors can only be
chosen from the current frames and the past frames. Let

(x,») be the spatial location of a node, and n be the frame

index. Adapting to anisotropic spatial and temporal
correlation, we use a parameter 77 as the weighting of the

temporal correlation relative to the spatial correlation, thus
the distance is computed as,

d=\/(x—x0)2+(y—yo)2+77(n—n0)2 8)
where (x,,y,,n,) and (x,y,n)

are the coordinates of a

node with missing sample and a neighboring node,
respectively.

In order to evaluate the accuracy and stability of 3-D KNN
and the proposed methods, we use Root Mean Squared Error
(RMSE) and Maximal Absolute Error (MAE) calculated over

all missing entries. Suppose f and f are the original and
recovered data vectors, respectively, and / is the total number
of missing samples in f . The RMSE is defined as,

RMSE(f,f) =

where f, and f stand for ith missing entry of f and f,

respectively. Besides, the MAE of all missing entries is used
to assess the estimation stability. The MAE is defined as,

MAE(f.f) = maxmfi —f‘ﬂ for i=1,2,.1,

Specifically, we choose four evaluation metrics, including:
(a) MAE of all nodes in each frame, (b) MAE of all frames in

(10)

each node, (c) RMSE of all nodes in each frame, and (d)
RMSE of all frames in each node. They evaluate the accuracy
and stability of the methods node-by-node and frame-by-
frame.

To solve the £; norm minimization in (8), the “Sparselab
2.1” toolbox [12] is used. The parameters are A=1Xx
103,97 = 0.1, K =9. The size of each frame is 8x11. We
generate burst missing patterns, i.e., the same node
continuously missing samples along the temporal dimension,
and the duration of time is defined as the burst missing
length. In the simulations, we choose different missing rates
(u) and burst missing lengths (v), and compare the above four
evaluation metrics of 3-D KNN and the proposed approach.

C. Performance comparison

First, we discuss how the performance and complexity of
SROD change with respect to the number of previous frames
in the overcomplete dictionary. Compared with pure DCT
basis, adding past frames into the dictionary can dramatically
reduce the recovery error. This recovery error can be further
reduced by increasing the number of past frames. However,
further reduction of recovery error is not obvious when the
number of past frame exceeds a threshold, as shown in Fig.
4(a). On the other hand, increasing the number of past frames
will increase the computation time [see Fig. 4(b)]. In our
observations, using 50 past frames is a reasonable choice to
tradeoff the recovery error and the computation time. This is
the default number of past frames in the following
simulations. Fig. 5 shows an overcomplete dictionary, which
is composed of 50 past 8x11 2-D frames and an 8x11 2-D
DCT basis.
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Figure 4. Recovery error and computation time of KNN and SROD when u =
20% and v = 10. (a) Recovery error with respect to the numbers of past
frames in the dictionary. (b) Computation time with respect to the numbers of
past frames in the dictionary.
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Figure 5. The overcomplete dictionary for the 451 frame. Left half contains
50 past data frames which change over time, and each frame is with mean
zero and normalized to 1. Right half is the fixed 8x11 2-D DCT basis.



With this dictionary, Table I shows the performance of the
SROD and KNN, by summarizing the mean values of the
above performance metrics for all the 451* ~700" recovered
frames. The missing rate # = 10% and 20%, the burst missing
length v = 5 and 10. The proposed approach outperforms
KNN in terms of these evaluation metrics with more than
20% improvement. The mean error values of KNN and SROD
both increase as the missing rate and missing burst length go
up, but the error of the proposed method is still much lower
than that of KNN. The maximal error values demonstrate that
the proposed approach is more robust to different missing
rates and missing burst lengths.

TABLE I. PERFORMANCE COMPARISON OF KNN AND SROD

Methods KNN SROD

10% 20% 10% 20%

Mean 5 10 5 10 5 10 5 10

MAE_frame | 131 | 1.40 | 1.54 | 1.88 | 0.88 (32.8%) [ 1.11(20.7%) | 1.19 (22.7%) | 1.49 (20.7%)

MAE node | 1.48 | 1.48 | 1.75 | 1.80 | 1.06 (28.4%) | 1.21(18.2%) | 1.39(20.6%) | 1.50 (16.7%)

RMSE_frame | 0.66 [ 0.69 [ 0.66 | 0.78 | 0.43 (34.8%) | 0.53 (19.7%) | 0.47 (28.8%) | 0.58 (25.6%)

RMSE_node | 0.68 [ 0.67 [ 0.69 | 0.77 | 0.43 (36.8%) | 0.52(23.5%) | 0.47 (31.9%) | 0.56 (27.3%)

Total RMSE | 0.76 | 0.75 | 0.73 | 0.84 | 0.47 (38.2%) | 0.57 (25.0%) | 0.51 (30.1%) | 0.63 (25.0%)

From 451% to 700" frame. u = 10% and 20%, v = 5 and 10. The numbers
between brackets are percentage improvement of the evaluation criteria of
the SROD relative to that of KNN, at the same u and v.

D. Impact of noise
In reality, the data are usually corrupted with noise. We
add white Gaussian noise to the available data, and the noisy
measurement vector is written as

y=f" +e, (11)

where ¢ is the Gaussian noise, whose power is controlled by
signal-to-noise ratio (SNR) defined as

I |
SNR, =10log,, —*, (12)
el
and then use BPDN algorithm
a :argnlll%n%"y-q)ﬁ”un z+/1|un - (13)

Fig. 6 shows the estimation error of SROD under different
noise levels. As the noise increases, i.e., SNR drops, the
curves of total RMSE basically remain the same, until SNR is
as low as 10dB. This demonstrates that SROD is robust to
low and medium noise.
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Figure 6. Total RMSE of SROD for noisy data. u =20%, v=10.

IV. CONCLUSIONS

We presented a new approach for online data recovery in
sensor networks. A sparse linear relationship between a
current frame and its past frames are modeled to estimate the
missing data in the current frame. We design an overcomplete
dictionary composed of the past data and the DCT basis to
sparsely represent the current frame. Data recovery is
achieved through /, norm minimization. Simulation results

on a real sensor data set demonstrate that the proposed
approaches outperform the average-based interpolation
methods in terms of both accuracy and robustness. In the
future, we plan to leverage available data in the next frame to
correct the current frame, and when delay is acceptable, more
future frames can be incorporated to further improve the
recovery accuracy.
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