J. CHEM. SOC. FARADAY TRANS., 1995, 91(2), 241-243

Model to study Delocalization

Yirong Mo* and Qianer Zhang

Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, People's Republic of China

In order to gain insight into the nature of π delocalization and its role with regard to the geometry of a compound, we propose a simple model, M_n , to simulate the π -component of (CH)_n, where M is a hypothetical particle with virtual nuclear charge 3.18 and with only one electron in the atomic orbital $2p_{\pi}$. Test calculations on cyclobutadiene and benzene show that the σ -frame prefers a regular geometry while π electrons tend to be localized.

The delocalization of π electrons in conjugated systems is an important concept in chemistry. The resonance theory developed by Pauling and Wheland,^{1,2} very succesfully illustrates electronic delocalization. However, there are still some controversies over the relationship between delocalization and stability. Several authors³⁻⁸ have argued that π electrons prefer localization and σ electrons prefer bond equalization. Others have claimed that π delocalization is, in part, responsible for the equilibrium symmetric structure.9-11 Shaik, Hiberty and co-workers¹²⁻¹⁶ studied the factors that cause instability toward a localizing distortion, and concluded that the π -component of benzene ought to be distortive. Subsequently, they devised a $\sigma-\pi$ energy partition scheme which is based on constant nuclear repulsion during the distortion, and which demonstrated the validity of this conclusion for benzene and its heteroatomic analogues at the all-electron ab initio level. Later, Jug and Köster¹⁷ proposed a general $\sigma - \pi$ separability criterion to discuss the different energy contributions of a σ component and a π component. Notably, Gerratt and co-workers¹⁸ produced six, essentially localized, non-orthogonal p_{π} orbitals on benzene by means of the spin-coupled valence bond (VB) method, and validated the resonating picture of two Kekulé structures.

In order to understand the properties of π electrons, calculation of the π component of the energy is essential. Nevertheless, the Coulomb and exchange interaction energy between σ - π electons prevents a unique separation of the energy into two components and as an approximation it is usually divided into two equal parts. Another choice to study the π electrons in (CH)_n is to use the (H)_n model, but the difference between the two atomic orbitals (AOs) C(2p_z) and H(1s) is obvious, subsequently the results are very qualitative. In this paper, we have proposed a simple model to treat the π -component of (CH)_n and performed π -configuration interaction (CI) calculations with a classical *ab initio* VB method.

Methodology

In this paper, π -CI calculations are performed using a simple spin-free VB method called the bonded tableau unitary group approach (BTUGA).^{19–23} Since this method involves adopting bonded tableaus (BTs) as state functions of a system, where these state functions can describe resonance structures, BTUGA is much closer to classical concepts and ideas than other many-body theories. For an N electron system, a BT $\psi(k)$ is defined as

$$\psi(k) = A_k e_{11}^{[\lambda]} \psi_0(k)$$

= $A_k e_{11}^{[\lambda]} [u_1(1)u_2(2) \cdots u_n(n)]$ (1)

where A_k is a normalization constant, $e_{11}^{[\lambda]}$ is a standard projection operator and u_i is a one-electron basis function. Also,

if the spin quantum number of the system is S, $[\lambda] = [2^{1/2N-S}1^{2S}]$ is an irreducible representation of permutation group S_N . In fact, the above BT corresponds to a VB resonance structure where two AOs u_{2i-1} and u_{2i} overlap to form a bond ($i \leq N/2 - S$ and if $u_{2i-1} = u_{2i}$, the 'bond' is a lone electron pair) and the last 2S AOs are unpaired. Thus the true wavefunction of the system can be expressed as a superimposition of all possible BTs, namely

$$\Psi_i = \sum_{k=1}^{M} C_{ik} \psi(k) \tag{2}$$

The structural weight of a $BT\psi(k)$ in the Ψ_i can be defined as

$$T_{i}(K) = \sum_{l=1}^{M} C_{ik} C_{il} S_{kl}$$
(3)

where S_{kl} is the overlap integral between BTs $\psi(k)$ and $\psi(l)$. The condition of normalization requires

$$\sum_{i=1}^{M} T_i(k) = 1$$
 (4)

To treat the π -component of $(CH)_n$, we suppose that in the hypothetical system $(M)_n$, without σ frame, there are only *n* electrons occupying p_{π} AOs, and the forces of the virtual nuclear charges Z^* of M acting on these electrons are very similar to those of the nuclear charges and σ electrons in the real systems $(CH)_n$. For a single atom, the effective charge in an AO can be determined by the well known Slater rules for effective nuclear charges, thus the value for C(2p) is *ca*. 3.0. As a simple model to study the behaviour of π electrons, we here define a hypothetical particle, M, whose virtual nuclear charge is *ca*. 3.0, while there is only one electron on the specific AO $C(2p_{\pi})$. Obviously, it should be noted that M is neutral and its true nuclear charge Z, equal to one, is used exclusively in determining the nuclear repulsion in $(M)_n$.

To optimize further the virtual nuclear charge, Z^* , of $C(2p_{\pi})$ in (CH)_n and to perform subsequent π -CI calculations, we apply the classical *ab initio* VB method to $(CH)_n$ and $(M)_n$ (n = 4, 6), where the σ electrons in $(CH)_n$ are confined in the molecular orbitals (MOs).^{24,25} When a minimal basis set is used, there are a total of 175 and 20 resonance structures for n = 6 and 4, respectively.²⁶ A detailed comparison between the individual structural weights of $(CH)_n$ and $(M)_n$ shows that the optimal value of the effective charge Z^* of $C(2p_r)$ in $(CH)_n$ is 3.18.²⁷ Simultaneously, the excitation energies of several low-lying excited states of $(M)_n$ are almost identical with those of $(CH)_n$. Note that the forms of $C(2p_n)$ in $(CH)_n$ and $(M)_n$ are the same, thus the method can be applied with large basis sets. In the calculations, GAUSSIAN-80²⁸ program and the internal STO-6G basis set are used to obtain the AO integrals and MOs, while an ab initio VB program has been prepared by ourselves.

Results and Discussion

Since H_6 and C_4H_4 vibrate with B_{2u} and B_{1g} modes, we calculate the distortion energies of C_6H_6 , C_4H_4 , M_6 and M_4 from the regular geometries with the same bond length, R, to alternative geometries whose short-bond and long-bond lengths are $R_1 = R - \Delta r$ and $R_2 = R + \Delta r$, respectively, where Δr is a measure of the degree of alteration in the structure. In such a way, the centre of mass is kept fixed for all distortions from equilibrium. The R value for C_6H_6 and M_6 is 1.397 Å while the value for C_4H_4 and M_4 is 1.453 Å.²⁶ Table 1 lists the results.

From Table 1 we find that when C_6H_6 and C_4H_4 distort, the π component of the energies, which are taken as the electronic energies of M_6 and M_4 , will decrease according to the extent of the distortion. This result confirms that the π electrons prefer a localized structure, or a bond-alternating geometry. Interestingly, the distortion energy of M_6 is almost coincident with that of M_4 if the variations in bond lengths are the same.

We also consider distortions that keep the nuclear repulsions constant. The conformations are slightly different from the values of Shaik *et al.*¹⁴

Table 2 gives the total energies of regular and distorted structures, where the data for M_6 and M_4 are their electronic energies. $E_{\sigma}(MO)$ is the σ -component energy defined by Shaik *et al.*¹⁴ as

$$E_{\sigma}(\mathrm{MO}) = \sum h_{\sigma} + R_{\sigma\sigma} + V_{\mathrm{NN}}$$

Thus if we use the formula $\Delta E_{\pi} = \Delta E_{\text{tot}} - \Delta E_{\sigma}$ (MO), the variations in the π component of the energy of benzene and

Table 1 Distortion energies for C_6H_6 , C_4H_4 , M_6 and M_4 (kcal mol⁻¹)

r/Å	C4H4	M4	C ₆ H ₆	M ₆
0.00	0.0	0.0	0.0	0.0
0.025	-0.68	-3.43	0.94	- 3.19
0.050	-2.49	-12.76	3.98	-12.55
0.075	3.82	-26.22	9.66	- 27.49
0.100	-3.58	-42.58		

Table 2 Total energies for C_6H_6 , C_4H_4 , M_6 and M_4

	regular $/E_{h}$	distorted $/E_{\rm h}$	ΔE_{tot} /kcal mol ⁻¹	$\Delta E_{\sigma}(MO)$ /kcal mol ⁻¹
C₄H₄	-153.338 028		- 3.22	10.39
M₄	- 17.369 628	-17.388882	-12.08	
C ₆ H ₆	-230.238402	-230.229 167	5.79	16.90
M ₆ [™]	- 33.452 664	- 33.462 545	-6.20	

J. CHEM. SOC. FARADAY TRANS., 1995, VOL. 91

cyclobutadiene will be -11.11 kcal mol⁻¹ and -13.61 kcal mol⁻¹, respectively. However, in the above evaluation the interaction between σ and π electrons is totally ascribed to the π component. If we take the model M_n to represent the π -component of (CH)_n, the variations in the π component of the energy of benzene and cyclobutadiene will be -6.20 kcal mol^{-1} and -11.34 kcal mol^{-1} , respectively. These values are quite surprising to us and they were originally supposed to be almost equal since the distortions are almost the same for M_{4} and M₆. Careful analyses found that this abnormal phenomenon results from the violation of vibration modes. When M_4 and M_6 vibrate with the $B_{2\mu}$ and B_{1g} modes, the distorted geometries may be (1.393 Å and 1.513 Å) for M_4 and (1.337 Å and 1.457 Å) for M_6 . However, small differences in the long-bond lengths are needed to achieve the requirement of constancy in the nuclear repulsion. Such violation of the vibration mode will lead to a sharp rise in energy. For M_4 , when the structure changes from (1.393 Å and 1.513 Å) to (1.393 Å and 1.51597 Å), the variation of the electronic energy will be 5.18 kcal mol⁻¹, while for M_6 the variation of electronic energy will be as high as 10.75 kcal mol⁻¹ from (1.337 Å and 1.457 Å) to (1.337 Å and 1.45837 Å). In fact, Shaik et al.¹⁴ had pointed out that the selected distortion is very crucial and a wrong distortion will lead to a wrong conclusion. However, it is still unexpected that these small variations in the geometries will result in such big energy changes. Consequently, it can be concluded that the σ - π energy partition scheme which is based on constant nuclear repulsion during the distortion seems to be too rough an approximation.

Conclusions

We have defined a hypothetical particle M whose virtual nuclear charge, Z^* is 3.18, while there is only one electron on the specific AO $C(2p_n)$ and the true nuclear charge Z of M is one. The difference between Z^* and Z is that the former determines the forces acting on electrons and the latter determines the nuclear replusion in $(M)_n$. Classical *ab initio* VB calculations on $(CH)_n$ and $(M)_n$ (n = 4, 6) have been performed. Numerical results indicated that, in benzene and cyclobutadiene, the π electrons are distortive to almost the same degree, while the σ -frame prefers a regular geometry. The competition between the above two factors determines whether a system takes a regular (e.g. benzene) or an alternant geometry (e.g. cyclobutadiene).

We thank the National Natural Science Foundation of China for its financial support. This work is also a State Major Key Project for Basic Researches. We thank the referee for his helpful and critical suggestions to update the manuscript.

References

- 1 L. Pauling, *The Nature of the Chemical Bond*, Cornell University Press, Ithaca, NY, 1948.
- 2 G. W. Wheland, Resonance in Organic Chemistry, Wiley, New York, 1955.
- 3 H. C. Longuet-Higgins and L. Salem, Proc. R. Soc. London, 1959, 251, 172.
- 4 R. S. Berry, J. Chem. Phys., 1961, 35, 29; 2253.
- 5 N. D. Epiotis, Nouv. J. Chim., 1984, 8, 411.
- 6 N. D. Epiotis, Lect. Notes Chem., 1983, 34, 358.
- 7 N. D. Epiotis, Pure Appl. Chem., 1983, 35, 229.
- 8 J. Paldus and E. Chin, Int. J. Quantum Chem., 1983, 24, 373.
- 9 R. S. Mulliken and R. G. Parr, J. Chem. Phys., 1951, 19, 1271.
- 10 H. Kollmar, J. Am. Chem. Soc., 1979, 101, 4832.
- 11 E. D. Glendening, R. Faust, A. Streitwieser, K. P. C. Vollhardt and F. Weinhold, J. Am. Chem. Soc., 1993, 115, 10952.
- 12 S. S. Shaik and R. Bar, Nouv. J. Chim., 1984, 8, 411.

- S. S. Shaik and P. C. Hiberty, J. Am. Chem. Soc., 1985, 107, 13 3089.
- S. S. Shaik, P. C. Hiberty, J-M. Lefour and G. Ohanessian, J. Am. Chem. Soc., 1987, 109, 363. 14
- P. C. Hiberty, S. S. Shaik, J-M. Lefour and G. Ohanessian, 15 J. Org. Chem., 1985, 50, 4657.
- P. V. Hiberty, S. S. Shaik, J-M. Lefour and G. Ohanessian, 16 J. Org. Chem., 1985, 51, 3908.
- K. Jug and A. M. Köster, J. Am. Chem. Soc., 1990, 112, 6772. 17
- D. L. Cooper, J. Gerratt and M. Raimondi, Nature (London), 18 1986, 323, 699.
- Q. Zhang and X. Li, J. Mol. Struct. (Theochem), 1989, 198, 413. 19
- 20 X. Li and Q. Zhang, Int. J. Quantum Chem., 1989, 36, 599.
- 21 R. McWeeny, Int. J. Quantum Chem., 1988, 34, 25.
- R. McWeeny, Theoret. Chim. Acta, 1988, 73, 115. 22

- 23 W. Wu, Y. Mo and Q. Zhang, J. Mol. Struct. (Theochem), 1993, 283, 227.
- Y. Mo, Doctorate Thesis, Xiamen University, 1992. R. McWeeny, Proc. R. Soc. London, A, 1959, **253**, 242. 24
- 25
- Y. Mo, W. Wu, J. Li and Q. Zhang, Chinese Sci. Bull., 1993, 38, 26 203.
- Y. Mo, W. Wu and Q. Zhang, J. Phys. Chem., 1994, 98, 10048. 27
- 28 J. S. Binkley, R. F. Whiteside, R. Krishnan, H. B. Schlegel, R. Seeger, D. J. DeFrees and J. A. Pople, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana.
- 29 W. T. Borden and E. R. Davidson, J. Am. Chem. Soc., 1978, 100, 388.

Paper 4/04404E; Received 18th July, 1994

243