J. CHEM. SOC. FARADAY TRANS., 1995, 91(2), 241-243 241

Model to study Delocalization

Wrong Mo* and Qianer Zhang

Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, People's Republic of China

In order to gain insight into the nature of π delocalization and its role with regard to the geometry of a compound, we propose a simple model, M_n, to simulate the π -component of (CH)_n, where M is a hypothetical particle with virtual nuclear charge 3.18 and with only one electron in the atomic orbital $2p_{\pi}$. Test calculations on cyclobutadiene and benzene show that the σ -frame prefers a regular geometry while π electrons tend to be localized.

The delocalization of π electrons in conjugated systems is an important concept in chemistry. The resonance theory developed by Pauling and Wheland,^{1,2} very succesfully illustrates electronic delocalization. However, there are still some controversies over the relationship between delocalization and stability. Several authors³⁻⁸ have argued that π electrons prefer localization and σ electrons prefer bond equalization. Others have claimed that π delocalization is, in part, responsible for the equilibrium symmetric structure.⁹⁻¹¹ Shaik, Hiberty and co-workers¹²⁻¹⁶ studied the factors that cause instability toward a localizing distortion, and concluded that the π -component of benzene ought to be distortive. Subsequently, they devised a $\sigma-\pi$ energy partition scheme which is based on constant nuclear repulsion during the distortion, and which demonstrated the validity of this conclusion for benzene and its heteroatomic analogues at the all-electron *ab initio* level. Later, Jug and Köster¹⁷ proposed a general $\sigma-\pi$ separability criterion to discuss the different energy contributions of a σ component and a π component. Notably, Gerratt and co-workers¹⁸ produced six, essentially localized, non-orthogonal p_{π} orbitals on benzene by means of the spin-coupled valence bond (VB) method, and validated the resonating picture of two Kekule structures. We meadale, dialon and infilia source scale and

1. CHEM. SEC: 1 ARADAY TRANS. 1995 912, 31-250

Yorking Model to statutely Namen University, Xiamen, Fujian 361005, People's Republic of China

Yorking Model to 2018 insigh

In order to understand the properties of π electrons, calculation of the π component of the energy is essential. Nevertheless, the Coulomb and exchange interaction energy between $\sigma-\pi$ electons prevents a unique separation of the energy into two components and as an approximation it is usually divided into two equal parts. Another choice to study the π electrons in (CH)_n is to use the (H)_n model, but the difference between the two atomic orbitals $(AOs) C(2p_z)$ and **H(** 1s) is obvious, subsequently the results are very qualitative. In this paper, we have proposed a simple model to treat the π -component of (CH), and performed π -configuration interaction (CI) calculations with a classical *ab* initio VB method.

Methodology

In this paper, π -CI calculations are performed using a simple spin-free VB method called the bonded tableau unitary group approach $(BTUGA)^{19-23}$ Since this method involves adopting bonded tableaus (BTs) as state functions of a system, where these state functions can describe resonance structures, BTUGA is much closer to classical concepts and ideas than other many-body theories. For an *N* electron system, a BT $\psi(k)$ is defined as

$$
\psi(k) = A_k e_{11}^{[\lambda]} \psi_0(k)
$$

= $A_k e_{11}^{[\lambda]} [u_1(1)u_2(2) \cdots u_n(n)]$ (1)

where A_k is a normalization constant, $e_{11}^{[\lambda]}$ is a standard projection operator and u_i is a one-electron basis function. Also,

if the spin quantum number of the system is *S,* $[\lambda] = [2^{1/2N - S}1^{2S}]$ is an irreducible representation of permutation group S_N . In fact, the above BT corresponds to a VB resonance structure where two AOs u_{2i-1} and u_{2i} overlap to form a bond ($i \le N/2 - S$ and if $u_{2i-1} = u_{2i}$, the 'bond' is a lone electron pair) and the last 2s AOs are unpaired. Thus the true wavefunction of the system can be expressed as a superimposition of all possible BTs, namely

$$
\Psi_i = \sum_{k=1}^{M} C_{ik} \psi(k) \tag{2}
$$

The structural weigtht of a $BT\psi(k)$ in the Ψ_i can be defined as

$$
T_i(K) = \sum_{l=1}^{M} C_{ik} C_{il} S_{kl}
$$
 (3)

where S_{kl} is the overlap integral between BTs $\psi(k)$ and $\psi(l)$. The condition of normalization requires

$$
\sum_{k=1}^{M} T_i(k) = 1 \tag{4}
$$

To treat the π -component of $(CH)_{n}$, we suppose that in the hypothetical system $(M)_n$, without σ frame, there are only *n* electrons occupying p_{π} AOs, and the forces of the virtual nuclear charges *Z** of **M** acting on these electrons are very similar to those of the nuclear charges and **o** electrons in the real systems $(CH)_n$. For a single atom, the effective charge in an A0 can be determined by the well known Slater rules for effective nuclear charges, thus the value for C(2p) is *ca.* **3.0. As** a simple model to study the behaviour of π electrons, we here define a hypothetical particle, M, whose virtual nuclear charge is *ca.* **3.0,** while there is only one electron on the specific AO $C(2p_{\pi})$. Obviously, it should be noted that M is neutral and its true nuclear charge *2,* equal to one, is used exclusively in determining the nuclear repulsion in $(M)_{n}$.

To optimize further the virtual nuclear charge, *Z*,* of $C(2p_{\pi})$ in (CH)_n and to perform subsequent π -CI calculations, we apply the classical *ab* initio VB method to (CH), and **(M),** $(n = 4, 6)$, where the σ electrons in (CH) _n are confined in the molecular orbitals (MOs).^{24,25} When a minimal basis set is used, there are a total of 175 and 20 resonance structures for $n = 6$ and 4, respectively.²⁶ A detailed comparison between the individual structural weights of (CH) _n and (M) _n shows that the optimal value of the effective charge Z^* of $C(2p_*)$ in (CH), is **3.18.27** Simultaneously, the excitation energies of several low-lying excited states of (M) _n are almost identical with those of $(CH)_n$. Note that the forms of $C(2p_n)$ in $(CH)_n$ and (M) _n are the same, thus the method can be applied with large basis sets. In the calculations, GAUSSIAN-80²⁸ program and the internal STO-6G basis set are used to obtain the A0 integrals and MOs, while an *ab* initio VB program has been prepared by ourselves.

Since H_6 and C_4H_4 vibrate with B_{2u} and B_{1g} modes, we calculate the distortion energies of C_6H_6 , C_4H_4 , M₆ and M₄ from the regular geometries with the same bond length, R, to alternative geometries whose short-bond and long-bond lengths are $R_1 = R - \Delta r$ and $R_2 = R + \Delta r$, respectively, where Δr is a measure of the degree of alteration in the structure. In such a way, the centre of mass is kept fixed for all distortions from equilibrium. The *R* value for C_6H_6 and M_6 is 1.397 Å while the value for C_4H_4 and M_4 is 1.453 Å.²⁶ Table **1** lists the results.

From Table 1 we find that when C_6H_6 and C_4H_4 distort, the π component of the energies, which are taken as the electronic energies of M_6 and M_4 , will decrease according to the extent of the distortion. This result confirms that the π electrons prefer a localized structure, or a bond-alternating geometry. Interestingly, the distortion energy of M_6 is almost coincident with that of $M₄$ if the variations in bond lengths are the same.

We also consider distortions that keep the nuclear repulsions constant. The conformations are slightly different from the values of Shaik *et*

Table 2 gives the total energies of regular and distorted structures, where the data for M_6 and M_4 are their electronic energies. $E_{\sigma}(\text{MO})$ is the σ -component energy defined by Shaik *et* **d.14 as**

$$
E_{\sigma}(\text{MO}) = \sum h_{\sigma} + R_{\sigma\sigma} + V_{\text{NN}}
$$

Thus if we use the formula $\Delta E_{\pi} = \Delta E_{\text{tot}} - \Delta E_{\sigma}$ (MO), the variations in the π component of the energy of benzene and

Table 1 $mol⁻¹$ Distortion energies for C_6H_6 , C_4H_4 , M_6 and M_4 (kcal

					namin and and
$r/\text{\AA}$	$C_{4}H_{4}$	M_{4}	C_6H_6	$M_{\rm g}$	
0.00	0.0	0.0	0.0	0.0	References L. Pauling, 7 Press, Ithaca G. W. Whel York, 1955.
0.025 0.050	-0.68 -2.49	-3.43 -12.76	0.94 3.98	-3.19 -12.55	
0.075 0.100	-3.82 -3.58	-26.22 -42.58	9.66	-27.49	

Table 2 Total energies for C_6H_6 , C_4H_4 , M_6 and M_4

242 J. CHEM. SOC. FARADAY TRANS., 1995, VOL. 91

Results and Discussion cyclobutadiene will be -11.11 **kcal mol⁻¹ and** -13.61 **kcal** $mol⁻¹$, respectively. However, in the above evaluation the interaction between σ and π electrons is totally ascribed to the π component. If we take the model M_n , to represent the π -component of (CH)_n, the variations in the π component of the energy of benzene and cyclobutadiene will be -6.20 kcal mol⁻¹ and -11.34 kcal mol⁻¹, respectively. These values are quite surprising to us and they were originally supposed to be almost equal since the distortions are almost the same for $M₄$ and $M₆$. Careful analyses found that this abnormal phenomenon results from the violation of vibration modes. When M_4 and M_6 vibrate with the B_{2u} and B_{1g} modes, the distorted geometries may be **(1.393 A** and **1.513 A)** for **M,** and $(1.337 \text{ Å}$ and 1.457 Å) for $M₆$. However, small differences in the long-bond lengths are needed to achieve the requirement of constancy in the nuclear repulsion. Such violation of the vibration mode will lead to a sharp rise in energy. For $M₄$, when the structure changes from **(1.393 A** and **1.513** *8)* to **(1.393 A** and **1.51597 A),** the variation of the electronic energy will be 5.18 kcal mol⁻¹, while for M_6 the variation of electronic energy will be as high as 10.75 kcal mol⁻¹ from **(1.337 A** and **1.457 A)** to **(1.337 A** and **1.45837** A). In fact, Shaik *et al.*¹⁴ had pointed out that the selected distortion is very crucial and a wrong distortion will lead to a wrong conclusion. However, it is still unexpected that these small variations in the geometries will result in such big energy changes. Consequently, it can be concluded that the $\sigma-\pi$ energy partition scheme which is based on constant nuclear repulsion during the distortion seems to be too rough an approximation. 242

Results and Discussion

Since K₁ additions we can be considered will be -11.11 kcal mod⁻¹ and 2.5 View Considered by the state of CH₂ and C₃H₃. Online with the state of the state on the state of the state

Conclusions

We have defined a hypothetical particle M whose virtual nuclear charge, *Z** is **3.18,** while there is only one electron on the specific $AO C(2p_n)$ and the true nuclear charge *Z* of M is one. The difference between *Z** and *Z* is that the former determines the forces acting on electrons and the latter determines the nuclear replusion in (M),. Classical *ab initio* VB calculations on $(CH)_{n}$ and $(M)_{n}$ $(n = 4, 6)$ have been performed. Numerical results indicated that, in benzene and cyclobutadiene, the π electrons are distortive to almost the same degree, while the σ -frame prefers a regular geometry. The competition between the above two factors determines whether a system takes a regular *(e.g.* benzene) or an alternant geometry (e.g. cyclobutadiene).

We thank the National Natural Science Foundation of China for its financial support. This work is also a State Major Key Project for Basic Researches. We thank the referee for his helpful and critical suggestions to update the manuscript.

0.00 0.0 0.0 0.0 *0.0* **References**

- **0.025 0.68 3.43 0.94 -3*19 1 L. Pauling,** *The Nature ofthe Chemical Bond,* **Cornell University**
- **0.075 3.82 26.22 9.66 -27*49 2 G. W. Wheland,** *Resonance in Organic Chemistry,* **Wiley, New 12.76 3.98 12.55 Press, Ithaca, NY, 1948. 0.050 2.49**
- **3 H.** C. **Longuet-Higgins and L. Salem,** *Proc.* **R. Soc.** *London,* **1959,251, 172.**
- **4 R. S. Berry,** *J. Chern. Phys.,* **1961,35,29; 2253.**
- *5* **N. D. Epiotis,** *Noun J. Chim.,* **1984,8,411.**
- **6 N. D. Epiotis,** *Lect. Notes Chem.,* **1983,34,358.**
- **7 N. D. Epiotis,** *Pure Appl. Chem.,* **1983,35,229.**
-
-
-
- **17.469 8.15. Mulliken and R. G. Parr,** *J. Chem. Phys.***, 1951, 19, 1271.
10 H. Kollmar,** *J. Am. Chem. Soc.***, 1979, 101, 4832.
11 E. D. Glendening, R. Faust, A. Streitwieser, K. P. C. Vollha**
- **12 S. S. Shaik and R. Bar,** *Nouu. J. Chim.,* **1984,8,411.**
- **13** S. S. Shaik and P. C. Hiberty, *J. Am. Chem. Soc.*, 1985, 107, **3089.**
- **14 S. S.** Shaik, P. C. Hiberty, J-M. Lefour and G. Ohanessian, J. *Am. Chem. SOC.,* **1987,109,363.**
- **15** P. C. Hiberty, **S. S.** Shaik, J-M. Lefour and G. Ohanessian, J. *Org. Chem.,* **1985,50,4657.**
- **16** P. V. Hiberty, **S. S.** Shaik, J-M. Lefour and G. Ohanessian, J. *Org. Chem.,* **1985,51,3908.**
- **17** K. Jug and **A.** M. Koster, *J. Am. Chem. SOC.,* **1990,112,6772.**
- **18** D. L. Cooper, J. Gerratt and M. Raimondi, *Nature (London),* **1986,323,699.**
- **19** Q. Zhang and X. Li, J. *Mol. Struct. (Theochem),* **1989,198,413.**
- **20** *X.* Li and Q. Zhang, *Znt.* J. *Quantum Chem.,* **1989,36,599.**
- **21** R. McWeeny, *Int. J. Quantum Chem.*, 1988, 34, 25.
- **22 R.** McWeeny, *Theoret. Chim. Acta,* **1988,73, 115.**
- **²³**W. **Wu, Y.** Mo and Q. Zhang, J. *Mot. Stnrct. (Theochem),* **1993, 283,227.**
- **24 Y.** Mo, Doctorate Thesis, Xiamen University, **1992.**
- 25 **R.** McWeeny, *Proc. R. SOC. London, A,* **1959,253,242.**
- **26 Y.** Mo, W. Wu, J. Li and Q. Zhang, *Chinese Sci.* Bull., **1993,38, 203.**
- **²⁷Y.** Mo, **W.** Wu and Q. Zhang, J. *Phys. Chem.,* **1994,98,10048.**
- **28** J. **S.** Binkley, **R. F.** Whiteside, **R.** Krishnan, H. **B.** Schlegel, **R.** Seeger, D. J. DeFrees and J. A. Pople, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana. D. CHEME ARC FARADAY TRANS, 1995, VOL. 91

18 S. S. Shaik and P. C. Hiberty, J. A.s., Chem. 26, 1995, 167, 29 W. Way, Y. Mo and Q. Zhang, J. Med. Struct (Theodore), 1995

18 S. S. Shaik P. C. Hiberty, J. A.s., Chem. and G
	- **²⁹**W. **T.** Borden and E. *R.* Davidson, J. *Am. Chem. SOC.,* **1978, 100, 388.**

Paper **4/04404E;** *Received* **18th** *July,* **1994**