## In Situ Confocal Microprobe Raman Spectroscopy Study of the Oxygen Species over Cerium Oxide\*

## Rui Qiang LONG and Hui Lin WAN\*\*

Department of Chemistry and State Key Laboratory for Physical Chemistry of the Solid Surface, Xiamen University, Xiamen, 361005

Abstract: In situ confocal microprobe Raman spectroscopy results showed that  $O_2^{2-}$ ,  $O_2^{-}$  and  $O_2^{\delta-}$  (0 <  $\delta$  < 1) adspecies formed on the  $O_2$  pretreated cerium oxide sample when the temperature was below 423 K. At 1023 K, only  $CeO_2$   $F_{2g}$  peak (at 449 cm<sup>-1</sup>) and  $O_2^{-}$  species (at 1159 cm<sup>-1</sup>) were observed on the surface. The reactivity of methane with the oxygen species was lower than that of ethane with the oxygen species.

Cerium oxide, as a nonstoichiometric rare earth oxide, has been extensively used as catalysts or promoters in heterogeneous catalysis [1]. A study of surface oxygen species at high temperature is desirable for understanding the oxidation mechanism. In this paper, we will report the adsorption of oxygen and the reactions of oxygen species with methane and ethane on cerium oxide at the temperature range of 298-1023 \*K by means of in situ confocal microprobe Raman spectroscopy.

Raman spectra were recorded using a confocal microprobe Raman system (LabRam I, Dilor, France) equipped with CCD cameras having essentially photon-noise-limited signal detection, confocal microscope and holographic notch filter. Since the elastically scattered laser radiation can be filtered out by a simple single spectrograph together with a holographic notch filter, the throughput efficiency has been significantly improved as compared with the traditional Raman systems with double or triple monochromators. The exciting wavelength was 514.5 nm from an Ar<sup>+</sup> laser with a power of 20 mW and a spot of ca. 3 µm on the surface. The spectra were obtained in situ with the collection time of 1 s for one scan and the accumulation times of 10 scans.

The sample was treated successively with He and  $O_2$  at 1023 °K, and then cooled down to room temperature. A strong Raman peak at 456 cm<sup>-1</sup> and five peaks at 952, 1176, 1329, 1428, and 1468 cm<sup>-1</sup> were detected on the surface of  $CeO_2$  sample (Fig. 1). The former three bands might be attributed to the  $CeO_2$   $F_{2g}$ ,  $O_2^{2-}$  and  $O_2^{-}$  species, respectively  $^{[2,3]}$ , and the other bands above 1300 cm<sup>-1</sup> could be assigned to  $O_2^{\delta_1}$  (0 <  $\delta$  < 1) adspecies  $^{[4]}$ . This result suggested that the adsorption equilibria of  $O_2$  (g) =  $O_2$ (a) =  $O_2^{\delta_1}$ (a) =  $O_2^{-\epsilon}$ (a) might exist on the surface of  $O_2$ -pretreated cerium oxide. As the sample was warmed to 423 °K in a flow of He, the intensities of the above dioxygen adspecies peaks were all found to decrease more or less but remain existing on the cerium oxide surface. The  $O_2^{2-}$  and

<sup>\*</sup> This work is supported by the National Natural Science Foundation of China.

Correspondence author.

 $O_2^{\delta-}$  (0< $\delta$ <1) adspecies peaks were found to disappear at 573 °K. During the temperature elevation, the  $CeO_2$   $F_{2g}$  and  $O_2^-$  peaks were found to broaden and shift to lower wavenumbers. The frequency shift with respect to temperature is a well known phenomenon in Raman spectroscopy of solids and it is related to the thermal expansion of lattice parameters. At 1023 °K, the  $O_2^-$  adspecies (at 1159 cm<sup>-1</sup>) and  $CeO_2$   $F_{2g}$  (at 449 cm<sup>-1</sup>) peaks were found to remain existing on the surface of cerium oxide.

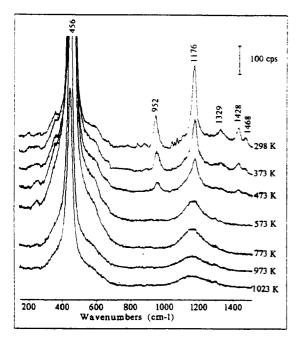



Fig. 1 Microprobe Raman spectra of O<sub>2</sub>-pretreated CeO<sub>2</sub> sample at the indicated temperature under He atmosphere.

When the O<sub>2</sub>-pretreated CeO<sub>2</sub> sample was warmed successively in a flow of CH4, the reactions of CH<sub>4</sub> with lattice oxygen and O<sub>2</sub>. species were found to take place at 1023 K, leading to the decrease of the intensities of CeO<sub>2</sub> F<sub>2g</sub> and O<sub>2</sub> adspecies peaks. After the sample was heated at 1023 K in a flow of CH<sub>4</sub> for about 60 min, only a very weak CeO<sub>2</sub>  $F_{2g}\,$  peak ( at 449 cm<sup>-1</sup> ) was observed on the cerium oxide surface. When the cerium oxide was exposed to O<sub>2</sub> atmosphere at 1023 °K for 5 min and cooled down to room temperature, the Raman peaks attributed to CeO<sub>2</sub> F<sub>20</sub> and dioxygen adspecies were found to appear again. After the O2-pretreated sample was switched to C<sub>2</sub>H<sub>6</sub> atmosphere and heated to 373 K successively, the Raman peaks of dioxygen adspecies including  $O_2^{2-}$ ,  $O_2^{-}$  and  $O_2^{\delta-}$  were found to decrease in intensity conspicuously,

indicating that the interaction between gaseous ethane and these dioxygen adspecies began to take place. At 473 °K, almost no Raman bands attributed to dioxygen adspecies were detected. The reaction between lattice oxygen and ethane also happened below 373 °K, and the peak at 449 cm<sup>-1</sup> was found to vanish at 1023 °K. These results indicated that the reactivity of methane with oxygen species was lower than that of ethane with oxygen species on cerium oxide, which might be related to the fact that the bond energy of C-H in CH<sub>4</sub> molecule (104 kcal/mol) is higher than that in C<sub>2</sub>H<sub>6</sub> molecule (98 kcal/mol).

## References:

- [1] M.P. Posynek, Catal. Rev. -Sci. Eng., 16 (1977) 111.
- [2] J.Z. Shyu, W.H. Weber and H.S. Gandhi, J. Phys. Chem., 92 (1988) 4964.
- [3] M. Che and A.J. Tench, Adv. Catal., 32 (1983) 1.
- [4] F. Al-Mashta, N. Sheppard, V. Lorenzelli and G. Busca, J. Chem. Soc., Faraday Trans. 1, 78 (1982) 979.

(Received 11 June 1996)