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　　A theoret ical model for enzyme-entr apped conduct ing po lymer modified elec-

tr odes is proposed and appropriate expressions are derived for the steady-state cur-

rent response of the enzyme elect rode. M ore at tent ion has been paid to the r ole o f

conduct ing po lymer in elect ron t ransfer and the effect of mass tr ansport . On the ba-

sis of kinet ic analysis, the perfo rmance and opt imum design of the second and third

generat ion enzyme elect rodes are discussed.
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Introduction

T he electrochemical immobilization of enzyme has become a suitable method

for the preparation of enzyme electrodes, the immobilization mechanism and the

kinetic behav ior of t he resulted enzyme electrode were review ed
[ 1—3]

. It has been

recog nized t hat the electro-deposited polymers such as polypy rrole and polyani-

line not only act as t he support of immobilized enzyme but also f acilit at e t he elec-

tron transfer of the soluble mediat or
[ 4]

or the direct electron t ransfer of enzymes

w ith t he electrode
[ 5, 6] . Furthermore, t he method has t he advantage of f abricat -

ing t he so-called reagentless biosensors because of the possibility of entrapping

the mediator in t he polymer as a dopant
[ 7—9]

or by covalent fix ation on the

monomer
[ 10] .

　　T o underst and t he enzyme react ions w ithin polymer film and t o correlate the

perf ormance of enzyme elect rodes t o the condit ions of electrochemical immobi-

lization, one way is t o model the combined eff ect s of mass transport and bioelec-

trochemical kinetics and then to compare the t heoretical predictions w it h ex peri-

ment al observations. Thus , Bartlet t and Whitaker
[ 11]

described a theoret ical

model for an insulating polypyrrole/ glucose ox idase electrode, Marchesiello and

Genies
[ 4b]

took into account t he conductivit y of polypy rrole and proposed t hat the



oxidat ion of art ificial mediator may occur inside t he polymeric matrix. In these

models, the ef fect of mass transport in solution was neglect ed. Recent ly Gros

and Bergel
[ 12]

have suggested t hat t he adsorpt ion of g lucose oxidase at bot h the

electrode surface and the polypyrrole / solution int erface should be considered,

as ide from the diffusion of substrates in solut ion involved in t he kinetic model.

However, t he polymer was assumed insulating and t heir numerical analy ses only

presented t he implicit relations betw een some of t he physical parameters . In ad-

dition, a number of w ork on the kinetic analys is of amperomet ric enzyme elec-

trodes are instructive t o t he know ledg e of bioelectrocat alytic process in insulat -

ing polymers
[ 13—17]

. T he aim of t his paper is to re-ex amine the kinet ic conse-

quences of enzyme processes in conducting polymer f ilms, more att ent ion w ill be

paid t o t he role of conduct ing polymers in electron transfer and t he effect of the

mass t ransport in solutions. On the basis of kinet ic analysis, the performance

and design of the second and third generat ion enzyme electrodes are discussed.

Mathematical Modeling

1　Enzyme Entrapped Conducting Polymer Modified Electrodes with a Soluble

Mediator in Solutions

Fig . 1　T he gener al kinet ic scheme for the

enzyme-entrapped conduct ing po ly-

mer modif ied elect rode.

Fig. 1 depict s schematically t he

processes occurring at an amperomet ric

enzyme elect ro de, where the enzyme-

containing polymer film w it h a thick-

ness o f L is coat ed on the surf ace of a

metal elect rode ( at x = 0) . The s teps

involved are the follow ing :

　　( 1) the diffusion of substrate( de-

not ed as S ) and oxidized mediator ( de-

not ed as A ) f rom t he bulk of the solu-

tion to the polymer/ solut ion interf ace

w ith the respect ive diffus ion coefficient

D js.

　　( 2) T he permeation of S and A int o t he polymer film and t he subsequent

diff usion tow ard the metal surface. T he part ition equilibriums exis t across the

polymer/ solution interface, w it h the equilibrium constant k j= Cout / C in. Cout and

C in are concent rat ions at the solution and the polymer side of the interfaces re-

spectively .

　　 ( 3) The enzyme react ions take place w ithin t he polymer f ilm , i. e. , S is

transformed into t he product ( denoted as P) and t he enzyme ( denoted as E1) into

its reduced st ate E2, t hen E2 is ox idized int o E 1 by mediat or A and the lat ter into

its reduced s tat e B:
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S + E1

k 1

k- 1

[ E1S]
k 2

P + E2 ( 1)

E 2 + A
k3

E1 + B ( 2)

　　Of course, Eqs. ( 1) and ( 2) should agree w it h t he actual mechanism of en-

zyme reactions. For ins tance, in t he case of benzoquinone as mediat or of glucose

oxidase t he enzyme reaction has been known to obey the Ping-Pong mecha-

nism
[ 4] , Eq. ( 2) should be rew rit ten accordingly .

　　( 4) The elect ro chemical ox idation of B in conducting polymer ( rat e const ant

k4) and on met al surf ace( rate constant k5) :

B
k 4

A + ne- 　　　( in conduct ing polymer) ( 3)

B
k 5

A + ne- 　　　( on electrode surface) ( 4)

　　 ( 5) Diffus ion of P and B, in film, tow ards t he polymer/ solution int erface

and then into the bulk of the solution. Ow ing to t he parallel reactions ( 3) and

( 4) , t he current response of enzyme electrode, i, cons ists of the Farady current

at metal surface i1 and at the polymer film i2, i . e. , i = i1+ i2:

i1 = nFDB
5b
5x x= 0

( 5)

i2 = nF∫
L

0
k4bdx ( 6)

　　Obviously t he know ledge of the distribution of reacting species in the poly-

mer film is necessary t o calculate current s. In principle, the s teady-state concen-

trat ions of various species in the f ilm can be worked out w ith the follow ing dif-

ferential equat ions :

5s
5t = DS

52s
5x 2 -

k2se1

K M
= 0 ( 7)

5a
5t = DA

52a
5x 2 - k3ae2 + k4b = 0 ( 8)

5b
5t = D B

52b
5x 2 + k3ae2 - k4b = 0 ( 9)

5e2
5t =

k2se1

K M
- k3e2a = 0 ( 10)

where t he letters s , a, b and e st and for the concentrat ions of t he species in film

denoted by the corresponding capital lett ers. K M= ( k2+ k- 1) / k1 is the M ichealis

constant for S. From t he enzyme balance, i. e. , t he total concentration of en-

zyme species e2 = e1+ e2+ [ E1S ] ( the last term, [ E1S] , is t he concent ration of

complex E 1S) , Eqs. ( 8) t o ( 10) w ill be rew rit ten as :

DS
d2s

dx
2 - R = 0 ( 11)

DB
d

2
b

dx 2 - k4b + R = 0 ( 12)
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DA
d2a

dx
2 + k4b - R = 0 ( 13)

R =
k2e2

1 + k2/ ( k3a) + K M / s
( 14)

　　It should be noted that the form o f R is dependent on the mechanism of en-

zyme reaction, for the Ping-Pong mechanism the term ( k2/ k3a) in Eq. ( 14) w ill

be substit ut ed by ( K M, A /a ) , in which K M , A is the M ichealis constant for A. T o

solve the equations, it is essential to establish appropriate boundary conditions.

Since the operat ion potent ial of t he enzyme electrode is usually set at such a val-

ue that the oxidation of B is diffusion-limiting and other react ions can not occur,

w e have
bx= 0 = 0 ( 15a)

( ds / dx ) x= 0 = 0 ( 15b)

( da / dx ) x= 0 = 0 ( 15c)

　　On t he other hand, the steady flux es of various species across the polymer/

solut ion interface ( x= L ) must be satisfactory to t he cont inuit y condition:

DS
ds
dx x= L

= hS( s∞ - kSsL ) ( 16)

DA
da
dx x= L

= hA ( a∞ - kAaL ) ( 17)

D B
dB
dx x= L

= hB( b∞ - kBbL ) ( 18)

　　T he mass transport coefficient in t he solut ion hj is the ratio of respective dif-

fus ion coefficient D js t o t he t hickness of the Nernst dif fusion layer Dj. In the con-

centration terms t he subscript s∞ and L indicate the bulk of t he solut ion and the

inner side of the f ilm ( x = L ) , respect ively. T he equations from ( 11) to ( 13) are

nonlinear and dif ficult to obt ain analytical solut ions . Approximate analyt ical

treatments need to identify suitable limiting cases, and various cases can be as-

sumed on the basis of diff erent kinet ic limit s, various cases can be assumed. For

our purposes , only t he follow ing common cases are considered in accordance to

the practical measurements :

　　 ( 1) If reaction ( 1) is rate-limiting and sn K M so t hat ( K M / s) m [ 1+ ( k2/

k3a ) ] , t hen R = ( k2e2 s /K M ) and Eqs. ( 11) and ( 12) can be reduced t o Eqs.

( 19) and ( 20) :

DS
d2s

dx
2 -

k2e2 s

K M
= 0 ( 19)

DB
d2b

dx
2 - k4b +

k2e2 s
K M

= 0 ( 20)

　　As seen in appendix , if t he follow ing dimensionless parameters are int ro-

duced, i. e. , H= ( k4L 2/ DB) 1/ 2, A= ( k2e2L 2/ kMD s) 1/ 2, and Bi≡D i /h ik iL ; t hen we

obt ain that when H≠A, t he total current is
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i =
nFDBb∞HchH

kBL ( shH+ HBBchH) +

nFDSs∞AH[ A- AchH( chA+ ABBshA) + HshA( shH+ HBBchH) ]
kSL ( H2 - A2

) ( shH+ HBBchH) ( chA+ ABsshA)

( 21)

　　( 2) If t he reaction ( 1) is rate-limiting and sm K M so that R= k2e2 , then we

have

i =
nFD Bb∞HchH

kBL ( shH+ HBBchH) +
nFD sK MA2

L
1 -

chH- 1
H( shH+ HBBchH) ( 22)

2　Reagentless Enzyme Electrodes

Reag entless enzyme elect rodes made of conducting polymers have been re-

ported
[ 6, 18—20] . Because of the absence of nat ural or artificial mediat or in solu-

tions, the direct electron transfer betw een enzyme and polymer is sometimes as-

sumed alt hough the mechanism of the process is open. In t his case the enzyme

reaction is s till represented by Eq. ( 1) , however, t he reg enerat ion of E2 is for-

mally represented w it h an electrochemical st ep taking place inside the polymer:

E2

k5
E1 + ne

-
( 23)

T herefore t he current response is

i = nF∫
L

0
k5e2dx ( 24)

Analogous ly one has the dif ferential equation Eq. ( 25) and the same boundary

conditions as Eq. ( 15b) and Eq. ( 16) :

DS
d
2
s

dx
2 - Rø= 0 ( 25)

Rø=
k2e2

1 + K M / s + k2/ k5
( 26)

T he current expressions in tw o limiting conditions are obt ained:

( 1) when ( K M/ s ) m [ 1+ ( k2/ k5) ] , t hen Rø= ( k2e2 s / K M) ,

s =
s∞ch( Ax / L )

k s( chA+ ABsshA) ( 27)

i =
nFD ss∞AthA

L k s( 1 + ABst hA) ( 28)

　　( 2) when ( K M/ s ) n [ 1+ ( k2/ k5) ] , then Rø= k2e2 / [ 1+ ( k2/ k5) ]

i = nF∫
L

0
k5e2dx =

nFe2L

1/ k5 + 1/ k2
( 29)

Discussion

1　Role of Polymer Matrix

As shown in the approx imate analyt ical solut ion for an enzyme entrapped

conduct ing polymer electrode w it h a soluble mediator in a solution, only when

reaction ( 1) is rat e-limit ing and S n K M , can the current response be obtained to

be propo rt ional to t he concentrat ion of the substrate. For a given concent ration
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of S , the current response is st rongly dependent on A, B and H. Among t he di-

mensionless paramet ers, A2
is the ratio of the rat e of enzyme cataly tic reaction to

the rate of diffus ion in the polymer t he film . B2
is t he ratio of t he mass-t ransport

coef ficient in t he polymer film t o that in the solution, it reflects t he relative im-

portance of these tw o mass transport steps in the whole kinetic process. H2 is the

rat io of the reduct ion/ ox idation rate of mediat or t o its mass transport rate in the

film , it s value depends on the elect roactivity , permeality of t he polymer film and

the potential cont rolled on detecting. It is expected that t he bet ter electrochemi-

cal reactivity of t he polymer f ilm w ill result in a larger rat e const ant k4, hence H.
In the extreme condition the polymer film is non-elect roactive, then k4= 0 and H
= 0. By int roducing H= 0 int o Eqs. ( 21) and ( 22) one has

i1ø=
nFD Bb∞

kBL ( 1 + BB)
+

nFDSs∞( 1 - 1/ chA+ ABsthA)
kSL ( 1 + BB) ( 1 + ABsthA) ( 21a)

iø1 =
nFDBb∞

kBL ( 1 + BB)
+

nFD sK MA2
( 1/ 2 + BB)

L ( 1 + BB)
( 22a)

When the mass transport coeff icients in solutions are infinit e ( i. e. , Bs= BB= 0)

and when b∞= 0, Eq. ( 21a) is in ag reement w ith equat ion ( 19) given by Bartlet t

et al. [ 11a] .

　　To f urther estimate the dependence of t he current response on H, b∞= 0 is

assumed and from Eq. ( 21) one has t he dimensionless current N:

N= i/
nFD ss∞
k sL

=
A2H[ 1 - chH( chA+ ABBshA) + HshA( shH+ HBBchH) / A]

( H2 - A2) ( shH+ HBBchH) ( chA+ ABsshA) ( 30)

Fig . 2　Plot of the dimensionless cur rent N
against A and H, according to Eq.

( 30) w hen the mass t ranspo rt in

solut ion is neglected( Bi= 0) .

If Bi= 0, then Eq. ( 30) can be reduced

to form equivalent to IT = I P+ I S in the

literature
[ 4b] . T he relations of Nto Hand

Ain Eq. ( 30) are shown in Fig. 2, indi-

cat ing that Nincreases w it h Hand A. It is

not iceable that t he significant effect of H
on Nmanifests itself only when A has

larger values . F ig. 3 is t he plot of N
ag ainst Hat various values of A, it can be

seen t hat when Ais small ( for ex ample ,

A< 0. 5) , Nw ill be almost independent

of H. If Nact is the dimensionless current

of an elect roactive polymer, Nnon is the

dimensionless current of a non-elec-

troactive polymer and H0 is defined as the value of Hwhen ( Nact- Nnon ) / Nnon= 10% ,

then the relat ion of H0 t o Acan be represent ed in Fig . 4 . Apparent ly , in the case

64



Fig . 3　Effects of Hon current responses of

the enzyme-entrapped conduct ing

polymer modif ied elect rode.
The figures at the curv es are the values

of A.

　Fig. 4　Relat ion o f H0( the crit ical value o f

H) to A.

of A< 1 the polymer does not ex hibit the ability of facilitating electron t rans fer

unless H> 2 . Marchesiello et al.
[ 4b]

concluded that for their glucose ox idase/

polypyrrole electrode w ith quinone as the mediat or t he oxidat ion of reduced me-

diator hydroquinone occurs inside the conduct ing polymer, in fact , in t heir w ork

A= 1—4 and H> 10 could be fo und. On t he ot her hand, Bart lett et al .
[ 11b]

sug-

gest ed t hat the oxidat ion of reduced mediator H2O2 on poly-N -methylpyrrole w as

inefficient, where Awas only about 0. 1.

2　Effect of Mass Transport in Solutions

As seen in Eqs . ( 21) and ( 28) , the current responses of t he enzyme elec-

trode are s trongly dependent on the dimensio nless mass-t ransport coefficient Bi .
Very small B implies the negligible ef fect of mass transport in solutions, on the

contrary, very large B indicates the controlling s tep associat ed w ith the mass-

transport in solutions. According t o Eq. ( 21) and assumed BS= BB= B, the rela-

tionship betw een t he dimensionless current Nand B as well as A is shown in Fig.

5 for a set values of H. I t is clear t hat the ef fect o f mass transport is part icularly

significant f or the polymer films w it h larger H. In general, at given Hand A, Nin-

creases as B decreases and reaches it s limit value when B approaches zero . T he N
- Acurves at B change dramatically w ith the increase of H, but the curves at B≥
10 for dif ferent Hare almost identical [ see Fig. 5( A)、( B) and ( C) ] . Therefore,

the int ens ive mass t ransport in solut ions is necessary to obt ain a higher response

current and to examine t he role of polymer in elect ron transfer, unless t he mass

transport in the polymer film is slow ( i. e. , in the case of low er D s and larger L ) .

For this purpose, the RDE t echnique is usually applied. Fig . 6 show s t he rela-

tionship of dimens ionless current of a reagentless enzyme elect rode, for the com-

parison, the analogous plo t is g iven in Fig . 7 for the insulat ing polymer elect rode

w ith a soluble mediat or. T he effect of mass transport can be analy zed in the
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same way as the mentioned above.

Fig . 6　Effects of Aand B on the current re-

sponses of reagentless conduct ing

polymer elect rode.

Fig . 7　Effects of A and B on current r e-

sponses of insulat ing polymer en-

zyme elect rode.

3　Optimum of Parameters Aand L
T he enzyme membrane is the key component of t he enzyme elect rode. For

its opt imal des ign the effect of the parameter Aon the propert ies of t he enzyme

electrode mus t be further cons idered. The dimensionless number Ais related not

only to the enzyme concentrat ion e2 and the membrane thickness L but also to

the kinetic parameters k2, kM and D s, w hich are det ermined by t he nature of en-

zyme and the conditions of immobilizat ion. Since A2 reflects the rat io of the en-

zyme reaction rate to the dif fusion rat e of the substrate in the membrane, the

large Asuggests that the mass transpo rt in the membrane is rat e-cont rolling. At

the same time, t he t erm ( D sK M / k2e2 )
1/ 2

has t he dimension of leng th and can be

defined as the effective t hickness of a react ion layer , x R, hence A= L / x R. U nder

the g iven condit ion of enzyme immobilization, ( D sK M / k2e2 )
1/ 2

is ex pected t o be

constant , and the polymer membrane t hickness L w ill be an independent variable

determining A. From Fig. 2 and Fig . 5 it can be found that for the second genera-
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tion enzyme electrode w ith infinit e mass transport in solut ions , the larger Agen-

erally leads t o the hig her current . If the polymer is non-electroactive, Nalmost

remains unchanged when A≥5.

Fig. 8　Plots of ( N/ A) as funct ion of Afor an

enzyme elect rode w ith a soluble medi-

ator in solution(——) and reagent less

enzyme electr ode ( ○) . T he figures at

the curves indicat ing the value of H.

Fig. 8 show s t he plots of ( N/ A) to

A, in which a max imum exis ts on the

curves near A≈1. 5 ( i. e. , L≈1. 5x R)

for the second generation enzyme

electrodes . The physical meaning of

( N/ A) is the dimensionless current

when L = x R , therefore it excludes the

thickness of t he enzyme membrane

from the dimensionless term. Fig. 8

also gives the plot of ( N/ A) to A for

the reag entless enzyme elect rode, the

value of ( N/ A) reaches it s limit when A
> 3 ( i. e. , L > 3x R ) . It follow s t hat

the opt imum membrane thickness

should be diff erent for t w o kinds of enzyme electrodes.

Conclusion

　　T he current responses st rongly rely on the kinet ics at t he enzyme elect rode,

including the rates of the enzymat ic react ions and of the electrochemical steps,

and t he mass transport in the immobilized enzyme membrane and in the solution.

　　A thorough theoret ical t reatment is needed t o be done, however, t he results

described above give an insight into the role of conducting polymers in bioelec-

trocatalyt ic processes . It is believed that t he apparent kinet ic parameters and the

factors influencing t he performances of enzyme electrodes such as sensitivity and

the linear concentrat ion range for detection can be predict ed from the equations

in t his w ork. For demonstration, w e w ill present experiment al observations of

some ty pical sy stems in the further w ork.

Appendix

　　In this appendix the expressions are derived f or the concentrations of S and

B in the f ilm and t he current responses of t he enzyme elect rode.

　　1) If react ion ( 1) is rate-limit ing and s n K M so t hat ( K M / s ) m [ 1+ ( k2/

k3a) ] , then R= ( k2e2 s/ K M ) and Eqs. ( 11) t o ( 13) are s implif ied as:

DS
d2s

dx
2 -

k2e2 s

K M
= 0 ( A 1)

DB
d2b

dx 2 - k4b +
k2e2 s

K M
= 0 ( A 2)

67



　　T he general solution of Eq. ( A1) is s= c
s
1e

ax / L
+ c

s
2e

- ax / L
where dimensionless

paramet er A= ( k2e2L
2
/ kMD s)

1/ 2
, w it h boundary conditions ( 15b) and ( 16) then

s =
s∞ch( Ax / L )

k s( chA+ ABsshA) ( A 3)

w ith ( A 1) and ( A3) and boundary condit ion ( 15a) and ( 18) , when A≠H

b = cb1e
Hx / L + cb2e

- Hx / L +
DS s∞A2

ch( Ax / L )
DBk s( H2 - A2) ( chA+ ABsshA) ( A 4)

c
b
1 =

b∞
2kB( shH+ HBBchH) -

DSs∞A2[ ( chA+ ABsshA) - ( 1 - HBB) e
- H]

DBk s( H2 - A2) ( shH+ HBBchH) ( chA+ ABschA)

cb2 =
b∞

2kB( shH+ HBBchH) +
D Ss∞A2[ ( chA+ ABsshA) - ( 1 + HBB) e

H
]

DBk s( H2 - A2) ( shH+ HBBchH) ( chA+ ABschA)

i1 = nFDB
5b
5x x= 0

=
nFH

L ( shH+ HBBchH)
DBb∞

kB
+

DSs∞A2

k s( H2 - A2
)
×

( chH+ HBBshH) - ( chA+ ABBshA)
( chA+ ABsshA)

( A 5)

i2 = nF∫
L

0
k4bdx =

nFDBb∞H( chH- 1)
kBL ( shH+ HBBchH) +

nFDSs∞A2H(M 0 + M 1 + M 2)
k sL ( H2 - A2) ( A 6)

M 0 = -
( chH- 1) ( chA+ ABBshA)

( shH+ HBBchH) ( chA+ ABsshA)

M 1 =
( 1 - chH- HBBshH)

( shH+ HBBchH) ( chA+ ABsshA)

M 2 =
HshA

A( chA+ ABsshA)
T otal current i= i1+ i2

i =
nFDBb∞HchH

kBL ( shH+ HBBchH)

+
nFDS s∞AH[ A- AchH( chA+ ABBshA) + HshA( shH+ HBBchH) ]

kSL ( H2
- A2) ( shH+ HBBchH) ( chA+ ABsshA)

( 2) If the reaction Eq. ( 1) is rate-limiting and sm K M so that R= k2e2 , t hen we

have

i1 =
nFH

L ( shH+ HBBchH)
D Bb∞

kB
+ D SK MA2 chH- 1

H2 +
BBshH
H ( A 8)

i2 = nF∫
L

0
k4bdx =

nFH
L ( shH+ HBBchH) õ

D Bb∞
kB

( chH- 1) - DSK MA2 2
chH- 1

H2 +
BBshH
H +

nFDSK MA2

L
( A 9)

i =
nFDBb∞HchH

kBL ( shH+ HBBchH) +
nFDSK MA2

L
1 -

chH- 1
H( shH+ HBBchH) ( A 10)

68



References
[ 1]　Bar tlett, P. N . and Cooper, J. M . , J. Elect ro anal. Chem . , 362, 1( 1993)

[ 2]　Deshpande, M . V . and Amalnerkkar , D . P . , P ro g . Po lym. Sci. , 18, 623( 1993)

[ 3]　Bar tlett, P. N . , T ebbutt , P. and Whitaker , R . G. , P ro gr . React . K inet. , 16, 55( 1991)

[ 4]　Marchesiello, M . and Genies, E. , ( a ) lectr ochim. Acta, 37, 1987 ( 1992) ; ( b ) J. Electr oanal.

Chem . , 358, 35( 1993)

[ 5]　Koopal, C. G. J. and Nolte, R. J. M . , Bioelect ro chem . Bioenerg . , 33, 45( 1994)

[ 6]　Lu S -Y , L i C-F , Zhang D-D, Zhang Y , Mo Z-H, Cai Q and Zhu A-R, J. Electr oanal. Chem. , 364,

31( 1994)

[ 7]　Ka jiy a, Y . , Sugai, H. , Iw akura, C. and Yoneyama, H. , Anal. Chem . , 63, 49( 1991)

[ 8]　ZHENG Z-M , WU H-H and ZHOU S-M , Physica Chimica Sinica, 7, 163( 1991)

[ 9]　Bar tlett, P. N . , A ll, Z. and Eastw ick-Field, V . , J. Chem. Soc. Faraday T rans. , 88, 2677( 1992)

[ 10]　Foulds, N . C. and Low e, C. R. , Ana l. Chem . , 60, 2473( 1988)

[ 11]　Bar tlett, P . N . and Whitaker , R . G . , J. Electro anal. Chem . , ( a ) 224, 27 ( 1987) ; ( b) 224, 37

( 1987)

[ 12]　Gros, P. and Bergel, A . , J. Electr oanal. Chem. , 386, 65( 1995)

[ 13]　Mell, L . D. and Malo y, J. T . , Ana l. Chem . , 47, 299( 1995)

[ 14]　Shu, F . R. and W ilson, G . S. , Anal. Chem. , 48, 1679( 1976)

[ 15]　Iw akura, C. , Kajiya , Y . , Yoneyama, H. , J. Chem. Soc. Commun. , 1019( 1988)

[ 16]　Yabukim , S. , Shinohar a, H. , A izawa , M . , J. Chem. Soc. , Chem . Commun. 945( 1989)

[ 17]　B�langer , D . , Nadreau, J. and For tier , G . , J. Elect ro anal. Chem. , 274, 143( 1989)

[ 18]　Tax is, P. De. , Poet , Du. , M iyamoto , S. , Murakam i, T . , K imura, J. , et al. , Ana l. Chim . Act a,

235, 225( 1990)

[ 19]　Deng, Q . , Dong , S. J. , J. Elect ro anal. Chem . , 377, 191( 1994)

[ 20]　WEI , D. , WU , H-H, Electr ochemistr y , 1, 186( 1995)

69


