Enantioselective Transfer Hydrogenation of Aromatic Ketones Catalyzed by New Diaminodiphosphine Ru() Complexes^{*}

XU Pian-pian, GAO Jing-xing^{**}, YI Xiao-dong, HUANG You-qing ZHANG Hui, WAN Hui-lin, TSAI Khi-rui and Ikariya Takao[†]

(Department of Chemistry, State Key Laboratory for Physical Chemistry of Solid

Surface and Institute of Physical Chemistry, Xiamen University, Xiamen, 361005;

Department of Chemical Engineering[†], Faculty of Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Toyoto, Japan)

(Received April 17, 1996)

Keywords Chiral ligand, Ruthenium complex, Asymmetric transfer hydrogenation

Chiral biphosphine ligands provide a useful tool for preparing optically active secondary alcohols and have been the interesting subject of numerous investigations^[1]. However, it is noted that in the field of enantioseletive transfer hydrogenation, the mostly used chiral auxiliary ligands should contain nitrogen as the donor atom^[2]. Recently, the importance of nitrogen donors has been reviewed^[3] and some chiral ruthenium complexes bearing nitrogen donors have been developed^[4]. In the past few years, we have been interested in the synthesis of well-designed polydentate ligands possessing two "soft "phosphorus atoms and two "hard "nitrogen atoms as chelating ligands^[5-8]. These ligands can act as bi-, tri- and tetradentate ligands, depending on the reaction conditions and display some interesting structures, chemical and catalytic properties^[9]. This communication reports the synthesis and characterization of some new chiral Ru() complexes with a similar structure N, N -bis[o-(diphenylphosphino) benzyl] propane–1, 2-diamine(P2N 2H4M e-Ru()Cl2 for abbriviation) and N, N -bis[o-(diphenylphosphino) benzyl] propane–1, 2-diamine(P2N 2H4M e-Ru()Cl2 for abbriviation), their application in the enantioselective transfer hydrogenation of aromatic ketones as well.

When a mixture of o-(diphenylphosphino) benzylaldehyde and (R) -propane-1, 2-diamine in a molar ratio of 2XW was stirring in dichloromethane with an excess of Na₂SO₄ as a dehy-

^{*} Supported by the National Natural Science Foundation of China and Union Laboratory of Asymmetric Synthesis (Chengdu Institute of Organic Chemistry; Hong Kong Polytechnic; Kuo Qing Chemical Co., Ltd.).

drating agent, a tetradentate (R) - N, $\begin{bmatrix} a - (diphenvlphosphino) \end{bmatrix}$ N -bis benzvlidene] propane-1. 2-diamine [(R) - 1] was produced in a 83% ~ 88% vield (Scheme 1). ¹H NMR (CDCl₃): $\delta 8.75$ for Ph—CH = N: ³¹P NMR (CDCl₃), $\delta - 11.81$, - 12.44. Furthermore, the reduction of (R) –1 with an excess of NaBH4 was carried out in refluxing ethanol to afford the corresponding (R) - N, N bis [o -(diphenvlphosphino) benzvl] propane-1, 2-diamine [(R)-2] in a 68% -73% vield(¹H NMR(CDCl₃): δ 4. 14 for Ph

 $_$ CH₂; ³¹P NMR(CDCl₃), δ – 15.41, – 15.51).

The interaction of an equimolar mixture of $trans-\operatorname{RuCl}_2(\operatorname{DMSO})_4$ and (R)-1 in refluxing toluene gave a dark-red solution. This solution was concentrated under reduced pressure and the crude product was chromatographed on a silica gel column $(2 \text{ cm} \times 12 \text{ cm})$ with CH₂Cl₂ as the eluent solvent, giving a red colour ruthenium complex containing (R)-N, N -bis [o-(diphenylphosphino) benzylidene] propane-1, 2-diamine [(R)-3] (yield 78% ~ 82%, ¹H NMR (CDCl₃): δ 8.76 for Ph_ CH = N_ ; ³¹P NMR(CDCl₃), δ 48.12, 48.51).

A yellow Ru() complex (R) -4 was prepared by the similar procedure and CH₂Cl₂/acetone (1^M) was used as eluent solvent when a silica gel column was used. The ³¹P NMR spectrum of (R) -4 exhibits two singlets of equal intensity at δ 45. 18 and 43. 88, which suggest that the two phosphine groups are non-equivalent and coordinated to ruthenium atom. ¹H NMR(500 MHz CDCl₃) for (R) -4: δ 0.91(d, J = 5.8 Hz, 3H, _ CH₃), 3. 28(t, 1H, _ CH₂), 3.01(d, 1H, _ CH₂), 4.62(s, 1H, _ NH_), 3.95(t, J = 12 Hz, 1H, _ NH_). 3.54(m, 1H, -HC \geq), 3.70(d, J = 12 Hz, 1H, PhCH₂), 4.06(d, J = 12 Hz, 1H, PhCH₂), 4.75(d, J = 11 Hz, 1H, PhCH₂), 4.80(t, J = 11 Hz, 1H, PhCH₂), 6.82 ~ 7.34(m, 28 Hz, C₆H₅). ³¹P NMR(CDCl₃) for (R) -4: δ 45. 18, 43.88. m.p. 226~228 . Anal. Calcd. (%) for (R) -4 0.5 C₆H₁₄(837.79): C 63.11; H 5.61; N 3.36; Found: C 63.04; H 5.46; N 3.35. IR(KBr), $\tilde{\gamma}$ cm⁻¹: 3 450m, 3 057m, 2 867m, 1 474s, 1 431vs, 1 089s, 1 027w, 950s, 744s, 692vs, 516vs. Ligands (S) -1, (S) -2 and Ru() complexes (S) -3, (S) -4 were easily prepared by means of the above similar procedures.

A suitable crystal of complex (R) –3 for X-ray diffraction was grown from a CH₂Cl₂/hexane mixture. The structure analysis of (R) –3 revealed a distorted octahedral *trans*-configuration for the complex (Fig. 1). The crystal data for (R) –3 C₄₁H₃₆N ₂P₂Cl₂Ru are as follows: M = 790.67, monoclinic, space group P₂₁, a = 1.156 9(1) nm, b = 1.507 9(1) nm, c =1.197 2(1) nm, $\beta = 97.42(1)$ °, V = 2.071 13 nm³, Z = 2, $D_c = 1.540$ g/ cm³, $\mu = 78.1$ cm⁻¹, F(000) = 976. The two chloro-ligands in the axial position are mutually *trans* to each other. and the (R) -1 ligand acts as a tetradentate ligand around the Ru center with the two phosphino-groups *cis* to each other. The attempt to get a suitable crystal of complex (R) -4 for structure analysis is still unsuccessful. However, based on the spectroscopic data and the molecular structures of *trans*-RuCl₂ (P_2N_2) and *trans*-RuCl₂ $(P_2N_2H_4)^{[9,10]}$, the structure of ruthenium complex (R) -4 is assignable to an analogy of complex (R) -3.

Complexes (R) -3, (S) -3, and (R) -4, (S) -4 have been tested as catalysts for the enantioseletive transfer hydrogenation of aromatic ketones in an *iso*-PrOH solution(Scheme

Fig. 1 Molecular structure of $\operatorname{complex}(R)$ -3.

2). The catalytic hydrogenation of acetophenone(1a) was conducted using some potassium2-propoxide(1_ 3 equiv. with respect to Ru) as a promoter(Table 1).

a. $R^1 = H$, $R^2 = Me$; b. $R^1 = H$, $R^2 = Et$; c. $R^1 = Cl$, $R^2 = Me$; d. $R^1 = OCH_3$, $R^2 = Me$.

 $Scheme \ 2$

Table 1 A symmetric transfer hydrogenation of ketones catalyzed by chiral

Ketone	C at al y st	$n(S) \mathbb{W}(C) \mathbb{W}(i \operatorname{so-PrOK})^{a}$	Condition		Alcohol product		
su bst rate			t^{\prime}	t∕ h	$\operatorname{Yield}(\%)^b$	$e.e.(\%)^{c}$	Config. ^d
1 _a	(R)-3	1 OO XW XB	40	22	63	26	S
1 _a	(<i>S</i>) –3	1 OO XIV XIS	40	22	65	14	R
1 a	(S)-3	1 OO XIV XIB	30	46	90	91	S
1 b	(S) - 4	1 OO XIV XIZ	45	48	55	88	S
1 b	(R) - 4	1 OO XIV XIB	30	46	73	91	R
<i>m–</i> 1 c	(S) - 4	1 OO XIV XIZ	30	24	99	87	S
<i>р –</i> 1с	(S) - 4	1 OO XIV XIZ	30	24	82	89	S
<i>m–</i> 1 d	(S) - 4	1 OO XIV XIZ	30	24	72	85^{e}	S
<i>p</i> - 1 d	(S) - 4	1 OO XIV XIZ	30	24	49	87^e	S

 $P_2N_2Me_2$ -Ru()Cl₂ and $P_2N_2H_4Me$ -Ru()Cl₂ complexes^{*}

* Conditions: catalysts 0.01 mmol; solvent *iso*-PrOH 20 mL; *a*. S/C/*iso*-PrOK= ketone/Ru/*iso*-PrOK; *b*. GLC analysis; *c*. capillary GLC analysis using a chiral Chrompack CD-cyclodextrin $-\beta$ -236 M-19 column unless otherwise specified; *d*. determined by comparison of the retention time of each of the enantiomers on the GLC traces with literature values; *e*. determined by HPLC analysis using a Daicel Chiralcel OB column(10,000 2-propanol-hexane).

"CL994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http:// The concentration of iso-PrOK is an important factor for the catalytic activity and the catalytic system is inactive without a basic co-catalyst. The increase of reaction temperature accelerates the reaction rate with a slight loss of enantiomeric purity of the product. The ketones possessing an eletron-donating substituent such as methoxyl to the para position tend to lower the rate, but still show high stereoselectivity. It is noteworthy that the diimino complexes (R) -3 or (S) -3 and the diamino complexes (R) -4 or (S) -4 display the differences in reactivities and enantioseletivities. Complex (R) -4 or (S) -4 with sp^3 hybridized nitrogens containing N_ H bonds showed the higher reaction rate and enantioselectivity. The detailed reaction mechanism is now under investigating.

Acknowledgement

We would like to thank professor Ryoji Noyori for his very valuable discussion.

References

- Noyori R., Asymmetric Catalysis in Organic Synthesis, New York: John Wiley & Sons, Inc., 1994:
 16
- [2] Zassinvich G., Mestroni G., Chem. Rev., 92, 1051(1992)
- [3] Togni A., Venanzi L., Angew. Chem. Int. Ed. Engl., 33, 497(1994)
- [4] Hashiguchi S., Fujii A., Takehara J. et al., J. Am. Chem. Soc., 117, 7562(1995)
- [5] Wong W. K., Gao J. X., Zhou Z. Y. et al., Polyhedron 11, 2965(1992)
- [6] Wong W. K., Gao J. X., Wong W. T., Polyhedron, 12, 1 047(1993)
- [7] Wong W. K., Gao J. X., Wong W. T. et al., Polyhedron, 12, 2 063(1993)
- [8] Wong W. K., Gao J. X., Wong W. T. et al., J. Organoment. Chem., 471, 277(1994)
- [9] Gao J. X., Wan H. L., Wong W. K. et al., Polyhedron, 15, 1 241(1996)
- [10] Wong W. K., Gao J. X., Polyhedron, 12, 1 415(1993)