Normal Mode Analysis on Three Different Structures of a Duplex DNA d(CGCGAATTCGCG)*

LIN Dong hai ${ }^{* *}$ and LIAO Xin-li
(Dep artment of Chemistry, The Research Laboratory of SEDC of Analytical Science for Material and Life Chemistry, Xiamen University, Xiamen, 36 1005)

(Received May 14, 1997)

Abstract

Normal mode analysis in dihedral angle space was carried out on two Xray crystal st ructures and one model structure responded to the same sequence of duplex DNA: d(CG CGA ATT CGCG). Comparing these results indicates that it is reliable and meaningful to carry out normal mode analysis on model st ructures. The reliability is greater except for the ends of helix.

Keywords Normal mode analysis, Duplex DNA, A tomic fluctuation, Molecular dy namics

Introduction

Computer simulation approaches have been proved to be pow erful tools to determine and characterize dynamics of proteins and nucleic acids. Molecular dy namics calculation, normal mode analysis and Monte Carlo simulation are three main ty pes of computational methods. Molecular dynamics calculation is free from the assumption of the harmonicity of motion made by normal mode analysis, however, its approach is limited to the study of conformatio nal pheno mena occurring in the time range of $10^{-10} \mathrm{~s}$ or faster ${ }^{[1]}$. In a majority of not-verylow frequency modes the assumption of the harmonicity is valid ${ }^{[2]}$, and normal mode analysis is useful for understanding dy namics of molecular conformations in these modes.

Recently, normal mode analysis in DAS(Dihedral Angle Space) has been employed to reveal the conformational dynamics of proteins ${ }^{[3 \sim 5]}$ and nucleic acids ${ }^{[6]}$. In DAS, only rotat able dihedral angles are treated as independent variables and bond lengths and bond angles are fixed. The low frequency modes from both analyses in DAS and CCS (Cartesian Coordinate Space) span the same subspace ${ }^{[7]}$. How ever, the choice of DAS leads to considerable reduction of the number of independent variables compared with that of CCS. Normal mode analysis starts usually from a X \boldsymbol{X} ay crystal structure. However, for many duplex DNA molecules, it is difficult or unavailable to obtain experimental structures from Protein Data Bank (PDB) or other sources. In this work we carried out normal mode analysis in CAS on two X ray structures from PDB and a model structure which res ponded to the same sequence of a duplex DNA, and compared these results to understand the reliability of using a model structure to carry out normal mode analys is.

Normal Mode Analysis

Based on the harmonic assumption, normal mode analysis can be used express the conformational energy around a minimum as a multidimensional parabola ${ }^{[1]}$:

[^0]\[

$$
\begin{equation*}
E=(1 / 2) \sum_{i, j} f_{i j} \Delta \theta_{i} \Delta \theta_{j} \tag{1}
\end{equation*}
$$

\]

where $f_{i j}$ is the second derivative of the conformational energy function at the minimum. $\Delta \theta$ is the infinitesimal change of dihedral angle θ

By separating the external motions of the molecule from internal motions with the method of Eckart ${ }^{[8]}$, the kinetic energy Lagrangian of internal motions in a nucleic acid molecule is given by

$$
\begin{equation*}
T=(1 / 2) \sum_{n} h_{i} \Delta \theta_{i} \Delta \theta \tag{2}
\end{equation*}
$$

Newton equation is given by

$$
\begin{equation*}
\boldsymbol{H} \Delta \theta+\boldsymbol{F} \Delta \theta=0 \tag{3}
\end{equation*}
$$

where $\boldsymbol{F}, \boldsymbol{H}$ are matrices whose elements are $f_{i j}$ and $h_{i j}$ respectively. To solve equation (3), $\Delta \theta$ is expressed as linear combination of the motions of new variables $\Delta \sigma$ (named as normal mode variables) as follows:

$$
\begin{equation*}
\Delta \theta=V \Delta \sigma \tag{4}
\end{equation*}
$$

where matrix \boldsymbol{V} transforms the positive definite symmetric matrices \boldsymbol{F} and \boldsymbol{H} into a positive definite diagonal matrix Ω and an identical matrix \boldsymbol{I}, respectively:

$$
\begin{align*}
& V^{\prime} \boldsymbol{F} V=\Omega \tag{5}\\
& \boldsymbol{V}^{\prime} \boldsymbol{H} \boldsymbol{V}=\boldsymbol{I} \tag{6}
\end{align*}
$$

The main strategy of normal mode analysis is to solve simultaneously the two eigenproblems(i.e., the generalized eigen problem). In the new collective variables, the equation of motion is decomposed into

$$
\begin{equation*}
\Delta \stackrel{\circ}{\sigma}+(2 \pi v)^{2} \Delta \sigma=0 \tag{7}
\end{equation*}
$$

where $(2 \pi x)^{2}$ is an element of the diagonal elements of matrix Ω. Equation (7) describes a har monic oscillator, i.e., a normal mode with frequency v.

The mean-square amplitude of thermal fluctuations of the normal mode variables is given by

$$
\begin{equation*}
\left.\Delta \sigma_{i}^{2}\right\rangle=k T /\left(2 \pi v_{i}\right)^{2} \tag{8}
\end{equation*}
$$

The mean-square fluctuation of atomic coordinates is given by

$$
\begin{gather*}
\left.\Delta \boldsymbol{r}_{a}^{2}\right\rangle=\sum \boldsymbol{D}_{a i}^{2} \tag{9}\\
\boldsymbol{D}_{a i}=(k T)^{1 / 2} /(2 \pi v) \sum k_{a j} V_{j i} \tag{10}
\end{gather*}
$$

where $\boldsymbol{D}_{a i}$ is the displacement vector of the a th atom in the i th normal mode, $k_{a j}$ is an element of matrix \boldsymbol{K}, i.e.,

$$
\begin{equation*}
k_{a j}=\partial_{a /} \not \partial \theta \tag{11}
\end{equation*}
$$

Results and Discussion

1 Minimum Structures

We chose the double-stranded dodecamer d(CGCGAATT CGCG) for our study because of the extensive crystal structural data and analysis on this sequence ${ }^{[9-12]}$. The structural perturbation attributable to crystal packing is a smooth 19° bend in the overall helix axis. The crystal atomic coordinates were taken from $9 b n a^{[12]}$ and $7 b n a{ }^{[11]}$ in PDB with the same resolutions of 0.19 nm respectively. The third structure is a model structure built by a molecule modeling software Insight II. The total number of atoms is 758. Therefore, the number of independent variables in CES is 2929 . In DAS he number of independent vari-
ables is 194 including 24 pseudorotation variables and 6 external variables between two strands.

From the three conformations we minimized the conformational energy. The A MBER potential ${ }^{[13]}$ was employed as an empirical conformational energy function. The program FEDER/ $2 \mathrm{~N}^{[14]}$ was used for the minimization. The distance-dependent dielectric constant w as taken equal to $4 r$, i. e. four times interatomic distance. T he minimizationwas performed in vacuum with Newton's method. During the minimization, the weight parameters of PDB data constraints from the Xrray conformation were decreased gradually as increasing the steps.

Fig. 1 shows that the stereo drawings of the three superim posed structures before minimizing and after minimizing. Table 1 gives the root-mean-square deviations (rms D) of Cartesian coordinates of all the atoms and the backbone atoms between the minimum structures and the original structures(those before minimizing). After minimizing, the model structure changes largely than the $\mathrm{X} r$ ray structures do. Table 2 gives rms D of Cartesian coordinates of the heavy atoms among the three structures, which indicates that the differences among the model structure and the Xray structures become smaller with respect to those among the original structures. Ther efore, it may be expected that the differences between the result of normal mode analysis on the model structure and those on the X -ray struc-
 tures are smaller.

Table $1 \mathrm{rms} D$ of Cart esian coordinates of the atoms bet ween
the minimized st ructures and the original structure(in nm)

Structure	All atom s	Backbone atoms
9bna	0.1742	0.1792
7bna	0.1746	0.1813
Model	0.2260	0.2261

Table 2 rms D of Cartesian coordinat es of the heavy atom s among the three st ructures(in nm)

Structure	Before minimizing		After minimizing	
	7bna	model	7bna	model
9bna	0.0309	0.1539	0.0693	0.0876
7bna		0.1516		0.1208

2 Frequency Histogram

For each structure, 194 normal modes were obtained, which is the number of independent variables in DAS. The distributions of the calculated frequencies are illustrated in Fig. 2. The frequencies are show n by corresponding light wave numbers. The number of normal modes in each interval of 5 cm is shown. Ahe number of normat modes with fre-
quencies $200 \sim 450 \mathrm{~cm}^{-1}$, is 6 for 9 bna structure, 4 for 7 bna structure and the model structure, respectively. Fig. 2 shows that the low frequency modes are very similar to high frequency modes, the significant difference occurs in a few modes with frequencies $200 \sim 450$ cm^{-1}. It has been show $\mathrm{n}^{[7]}$ that the atomic fluctuations of the duplex DNA are mainly determined by a small number of low frequency normal modes, the no rmal modes with frequencies below $30 \mathrm{~cm}^{-1}$ make major contributions to the site-dependence of atomic fluctuations, those with frequencies above $30 \mathrm{~cm}^{-1}$ contribute mainly to site-independent "background" motions. Therefore the differences among the modes with frequencies $200 \sim 450 \mathrm{~cm}^{-1}$ are trivial.

Fig. 2 Histograms of calculated vibration frequencies of normal modes in this dodecamer for 9bna structure (A), 7bna structure (B) and the model structure (C).

Table 3 gives the frequencies of four very to w frequency modes LFM 1, LFM 2, LF M 3, LFM 4 and the highest frequencies HFM for the three structures. Table 3 together with Fig. 2 indicates that the frequency distributions of the three structures are very similar.

Table 3 The four very low frequency modes and the highest frequencies for the three structures ($\tilde{v} \mathrm{~cm}^{-1}$)

Structure	LFM 1	LFM 2	LFM 3	LFM 4	HFM
9bna	2.13	2.36	3.58	4.35	485.93
7 bna	2.10	2.29	3.74	5.05	496.84
model	2.19	2.41	3.81	4.96	486.14

3 Fluctuations of Positions of Atoms

Fig. 3 shows the site-dependencies of rms fluctuations of positions of all the atoms for

Fig. 3 Site-dependencies of rms fluctuations of posit ions of all atoms for 9 bna structures(Solid line), 7bna structure(broken line) and

Fig. 4 Stereo drawings of at omic displacement vectors in the second lowest frequency mode LFM 2 of 9 bna structure (A), 7bna struc-
the three structures. Solid line is for 9 bna structure, broken line for 7 bna structure, dotted line for the model structure. Except for the terminal nucleotide G12, the differences among rms atomic fluctuations of the three structures are much small. By examining the three structures, we observed a larger base pair bucking between G12-C13 in these minimum structure. Fig. 3 illustrates the similarity between the atomic fluctuations of strand A and those of strand B, which suggests the presence of a twofold pseudo-symmetry ax is with its orig in located at the center of the molecule. The ideal twofold symmetry is destroy ed by the 19° bend in the helix axis. Fig. 3 also exhibits that the atoms at the ends of helix move more than in the center, possibly due to the incompleteness of basertacking at the ends of helix. Fig. 4 shows the stereo drawings of atomic displacement vectors in the second lowest frequency mode LFM 2 of the three structures. These plots are similar to each other on the whole.

4 Conclusions

The similarities among the results of normal mode analysis on two X rray crystal structures (9 bna and 7bna) and a model structure suggest that we can carry out normal mode analysis on a model structure of duplex DNA if the experimentally obtained structure is unavailable. The reliability is greater except for the ends of helix. This is ex cepted to be meaning ful for some bigger DNA molecules, in which the influences of terminal nucleotides are trivial.

Acknowl edgement

This work was carried out in the Laboratory of Quantum Chemistry, Department of Chemistry, Kyoto University. The authors want to thank Professor N. Go for his valuable guiding. A lso, we would like to thank Mr. A. Matsumoto, Dr. A. Kidera and Dr. A. Kitao f or helpf ul discussions.

References

[^1]
[^0]: * Supported by the Natural Science Foundation of Fujian and the Grants from JSPS Fellowship.

[^1]: [1] Nishikawa, T. and Go, N., Proteins, 2, 308(1987)
 [2] Noguti, T. and Go, N., Nature, 296, 776(1982)
 [3] Yamato, T., Higo, J., Seno, Y. and Go, N., Proteins, 16, 327(1993)
 [4] Levitt, A., Sander, C. and Stern, P.S., J. Mol. Biol., 181, 423(1985)
 [5] Brooks, B. and Karplus, M., Proc. Natl. Sci. USA., 80, 6 571(1983)
 [6] Lin, D. H., Matsumoto, A. and Go, N., J. Chem. Phys., 107, 3 684-3 690(1997)
 [7] Tomimoto, M., Kitao, A. and Go, N., Elect ronic. J. Theo. Chem., 1, 122-134(1996)
 [8] Eckart, C., Phys. Rev., 47, 552(1935)
 [9] Dickerson, R. E. and Drew, H. R., J. Mol. Bio., 151, 535(1981)
 [10] Stephen, R. H. and Kim, S. H., J. Mol. Biol., 173, 361(1984)
 [11] Holbrook, S. R., Dickerson, R. E., Kim, S. H., Acta Crystalogr., Sect. B., 41, 255(1985)
 [12] Westhof, E., J. Biomol. Struct. Dyn., 5, 581(1987)
 [13] Weiner, S. J., Kollman, P. A., Case, D. A. et al., J. Am. Chem. Soc., 106, 765(1984)
 [14] Tomimoto, M., Wako, H. and Go, N., J. Comput. Chem., 17, 910(1996)

