第27卷第8期

2011年8月

无机 化 学 岁 报 CHINESE JOURNAL OF INORGANIC CHEMISTRY Vol.27 No.8 1596-1600

缺位的 Wells-Dawson 型磷钨酸盐和 Eu⁽⁾构筑的 一维链状多金属氧酸盐化合物

孙 岳¹ 张先徽² 那延祥¹ 冯克成^{*,1} (¹长春理工大学理学院,长春 130022)
(²厦门大学物理与机电工程学院,厦门 361005)

摘要:在水溶液条件下以六缺位的 $[H_2P_2W_{12}O_{48}]^{12}$ -和 Eu(III)为反应前躯体得到了 1 个新的多金属氧酸盐化合物 $[Eu_3(H_2O)_{17}(\alpha_2-HP_2W_{17}O_{61})]$ ·5 H_2O (1),对其进行了元素分析、红外光谱、热重、荧光等表征,并用 X-射线单晶衍射测定了它的晶体结构。化合物 1 含有双支撑的多阴离子簇 $[{Eu(H_2O)_7}_2{Eu(H_2O)_3(\alpha_2-P_2W_{17})}_2]^{s-}$,并进一步通过 Eu(III)连接形成了延 c 轴方向的一维链。室温条件下的荧光光谱研究表明:化合物 1 显示了强的红光发射。

关键词:多金属氧酸盐;晶体结构;双支撑多阴离子簇;荧光性质 中图分类号:0614.33*8;0614.61*3 文献标识码:A 文章编号:1001-4861(2011)08-1596-05

A Polyoxometalate Compound with 1D Chain Built up of Lacunary Wells-Dawson Polyoxotungstate and Eu(III)

SUN Yue¹ ZHANG Xian-Hui² NA Yan-Xiang¹ FENG Ke-Cheng^{*,1}

(¹School of Science, Changchun University of Science and Technology, Changchun 130022, China) (²School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005, China)

Abstract: A polyoxometalate compound built on lacunary Wells-Dawson polyoxotungstate and Eu (III) cation, $[Eu_3(H_2O)_{17}(\alpha_2-HP_2W_{17}O_{61})] \cdot 5H_2O$ (1), has been synthesized by conventional solution method and characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. Compound 1 shows a bisupporting polyoxometalate cluster structure where two $\{Eu(H_2O)_7\}_2^{3+}$ fragments are supported on the polyoxometalate $[\{Eu(H_2O)_3(\alpha_2-P_2W_{17})\}_2]^{14-}$. 1 displays a 1D chain structure built up of bisupporting polyoxoanions $[\{Eu(H_2O)_7\}_2\{Eu(H_2O)_3(\alpha_2-P_2W_{17})\}_2]^{8-}$ and Eu(III) ions. Photoluminescence measurement reveals that 1 exhibits red fluorescent emission at room temperature. CSD: 423050.

Key words: polyoxometalates; crystal structure; bisupporting polyanion cluster; fluorescence properties

0 引 言

多金属氧酸盐(POMs)因其巨大的结构可变性 和在催化、磁学、电化学、光化学以及材料科学等领 域的潜在应用而在无机化学中显得尤其独特[1-7],其 中衍生于 Wells-Dawson 型多金属氧酸盐的夹心型 化合物在理论和实际应用中都引起人们极大地关 注^[8-10]。缺位的 Dawson 型磷钨酸盐建筑块能够与不 同的结构单元(如:过渡金属、稀土离子或金属有机 片段)结合形成各种不同的夹心型多钨酸盐化合物。

收稿日期:2010-11-16。收修改稿日期:2011-04-18。

^{*}通讯联系人。E-mail:fengkc1943@163.com;会员登记号:S040330639S。

1597

尤其是稀土离子因其具有多样的配位需求和高的 亲氧活性,使得它们适合与多金属氧酸盐建筑单元 相连接形成具有可调节的催化,光化学,磁学及电 子特性的功能化合物。例如,金属离子连接单缺位 的 Wells-Dawson 型多金属氧酸盐形成的 1:1 型的 二聚体[{Eu(H₂O)₃(α_2 -P₂W₁₇O₆])₂]¹⁴⁻和[Ce(α_1 -P₂W₁₇O₆]) (H₂O)₄)₂]¹⁴⁻[11-12];1:2 型二聚体[Lu(α_2 -P₂W₁₇O₆])₂]¹⁷⁻、[M (α_2 -P₂W₁₇O₆])₂]¹⁶⁻(M=Zr and Hf)、[Ln(α_1 -P₂W₁₇O₆])₂]¹⁷⁻(Ln =La³⁺,Nd³⁺,Eu³⁺,Dy³⁺ or Er³⁺)^[13-15],六核的[Yb₆(μ_6 -O) (μ_3 -OH)₆(H₂O)₆]连接 2 个三缺位的 Dawson 型多金属 氧酸盐建筑块形成的六夹心化合物^[16]。

我们研究了在常温水溶液条件下六缺位的多 阴离子 $[H_2P_2W_{12}O_{48}]^{12-}$ (简写成 $\{P_2W_{12}\}$)与稀土 Eu(Ш)阳 离子的反应,成功的得到 1 个一维链状稀土化合 物, $[Eu_3(H_2O)_{17}(\alpha_2-HP_2W_{17}O_{61})]\cdot 5H_2O$ (1)。这里我们报 道了化合物 1 的合成、晶体结构及发光性质。

1 实验部分

1.1 试剂和仪器

K₁₂[H₂P₂W₁₂O₄₈]·24H₂O 前驱体根据文献方法制 备^[17],并通过红外光谱和核磁证明其纯度。其它的试 剂都是商业购买(分析纯),使用时没有进一步纯化。
晶体学数据用德国 Bruker 公司生产的 Bruker Smart
Apex CCD 衍射仪进行收集;红外光谱在 Alpha
Centraurt FT/IR 红外光谱仪上测量,采用 KBr 压片,测量的范围 400~4 000 cm⁻¹;元素分析在 Perkin-Elmer 2400 CHN 元素分析仪 和 PLASMASPEC (I)
ICP 仪器上测量;热重分析采用 Perkin Elmer Pyris 热分析仪,氮气环境中,升温速率为 10 ℃·min⁻¹; 荧光光谱使用 Hitachi F-4500 荧光光谱仪测定。

1.2 化合物的合成

化合物[Eu₃(H₂O)₁₇(α_2 -HP₂W₁₇O₆₁)]・5H₂O (1)的合 成。

将 0.38 g (1.037 mmol) EuCl₃·6H₂O 溶于 40 mL 水溶液中,再加入 1.00 g (0.254 mmol) K₁₂[H₂P₂W₁₂O₄₈] ·24H₂O, 室温下搅拌 15 min 后用 4 mol·L⁻¹ HCl 将 pH 值调到 3.0,再加入 0.20 g(1.880 mmol) LiClO₄, 95 ℃下加热反应 3 h 冷却到室温后过滤。将滤液 在室温条件下缓慢蒸发,1 周后析出无色的块状 晶 体 1, 产率约为 68% (按照 W 计算)。元素分析按 H₄₅O₈₃P₂W₁₇Eu₃ 计算值(%):H,0.90;P,1.23;Eu,9.09; W,62.30; 实验值(%):H,0.95;P,1.15;Eu,8.93;W, 62.37。

1.3 X-射线晶体学测定

将尺寸为 0.203 mm×0.179 mm×0.136 mm 的化 合物 1 的单晶用凡士林封装在内径合适的玻璃管 内。晶体学数据用 Bruker Smart Apex CCD 衍射 仪进行收集。采用 Mo Kα(λ=0.071 073 nm),293 K。 化合物的晶体结构使用 SHELXLTL 程序以直接法 解析,用全矩阵最小二乘法对非氢原子坐标进行精 修,除部分配位水(073、077、078)和多金属氧酸盐 上的部分氧原子(08、037、040、046)使用各相同性 热参数进行精修外,其余的非氢原子用各相异性热 参数进行精修。通过理论加氢法获得所有配位水上 的氢原子在晶胞中的位置。化合物 1 的晶体学数据 见表 1。

 $\mathrm{CSD}_{:}423050_{\circ}$

Table 1 Crystal data	and structural ref	finement for compound 1
$H_{45}O_{83}P_2W_{17}Eu_3\\$	γ / (°)	78.244(1)

表1

Formula	L	$H_{45}O_{83}P_2W_{17}Eu_3\\$	γ / (°)	78.244(1)
Formula	weight	5 016.43	V / nm^3	4.610 7(5)
T / K		296(2)	Ζ	2
Wavele	ngth / nm	0.071 073	$D_{ m c}$ / (g · cm ⁻³)	3.605
Crystal	system	Triclinic	μ / mm ⁻¹	23.248
Space g	roup	$P\overline{1}$	<i>F</i> (000)	4 350
a / nm		1.429 92(9)	Crystal size / mm	0.203×0.179×0.136
b / nm		1.741 34(11)	Goodness-of-fit on \mathbb{F}^2	1.039
c / nm		1.982 02(12)	Final R indices $(I>2\sigma(I))$	R_1 =0.077 9, wR_2 =0.207 8
α / (°)		83.00	R indices (all data)	$R_1=0.105$ 6, $wR_2=0.233$ 7
β / (°)		73.017(1)		

 $R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, \ wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}.$

2 结果与讨论

2.1 化合物的合成讨论

在1的合成过程中,由于 $\{P_2W_{12}\}$ 在反应的过程 中极容易分解,并且结合金属阳离子的能力很强, 在反应过程中少量由 $\{P_2W_{12}\}$ 分解产生的钨酸盐的 片段与加入的 Eu(III)竞争从而导致 $\{P_2W_{12}\}$ 反应前躯 体转化成了 $[\alpha_2-P_2W_{17}O_{61}]^{10-}(简写成\{P_2W_{12}\})_{\circ}$ 一些已经 报道的实验结果也证明 $\{P_2W_{12}\}$ 在酸性的条件下能 够转化成 $[P_2W_{14}O_{54}]^{14-}$ 、 $[P_2W_{12}]$ 在酸性的条件下能 够转化成 $[P_2W_{14}O_{54}]^{14-}$ 、 $[P_2W_{13}O_{51}]^{14-}$ 、 $[P_2W_{17}O_{61}]^{10-}$ 或 $[P_2W_{18}O_{62}]^{6-}$ 多阴离子簇 $^{[18-21]}_{\circ}$ 。值得注意的是 pH 值在 反应过程中起着至关重要的作用,当 pH 值低于 3 时能够得到饱和的 $[P_2W_{18}O_{62}]^{6-}$,当 pH 值高于 3.5 时 会有大量的白色沉淀析出。

2.2 化合物的晶体结构

化合物 1 结晶在三斜的 $P\overline{1}$ 空间群,单晶数据 分析表明化合物 1 的非对称单元中包含是 17 个 W 中心、2 个 P 中心、3 个 Eu 中心,见图 1。在化合物 1 中 2 个等价的 Eu (1)中心将 2 个对称相关的{P_2W_{17}} 单元连接起来形成了 1 个大的多 阴离子簇 [{Eu(H_2O)₃(α_2 -P_2W_{17})}]¹⁴⁻,其中每 1 个 Eu(1)原子,填 充了多阴离子[α_2 -P_2W_{17}O_{61}]¹⁰⁻的缺位位置,与来自缺 位位置上的 4 个氧原子,3 个配位水分子,以及另外 1 个[α_2 -P_2W_{17}O_{61}]¹⁰⁻多阴离子的端氧原子配位,形成 了 变形的四方反棱柱配位构型。[{Eu(H_2O)₃(α_2 -P_2W_{17})}]¹⁴⁻作为双齿配体与 2 个{Eu(2)(H_2O)_7}2³⁺配位 形成了双支撑的[{Eu(H_2O)_7}2{Eu(H_2O)_3(α_2 -P_2W_{17})}]⁸⁻多 阴离子簇(图 2)。每个 Eu(2)阳离子同样具有八配位

All of lattice water molecules and H atoms have been omitted for clarity

图1 化合物1的热椭球图

Fig.1 ORTEP drawing of the compound **1** with thermal ellipsoids at 50% probability

的四方反棱柱配位环境、分别与来自多阴离子簇 [{Eu(H₂O)₃(α₂-P₂W₁₇)}₂]¹⁴⁻的1个端氧原子和7个水分 子配位。每1个双支撑的[{Eu(H₂O)₇]₂{Eu(H₂O)₃(α_2 -P₂W₁₇)}₂]⁸⁻作为1个四齿配体通过W原子上的端氧 原子与4个Eu(3)原子相配位,通过Eu(3)原子连接, 使其沿 c 轴形成一维链状结构(图 3)。每 1 个 Eu(3) 原子都是九配位的变形的三扣帽三棱镜几何构型, 与 Eu(3)配位的氧原子 2 个来自钨的端氧原子 .7 个 来自水分子。在化合物1中,Eu-O的键长范围为 0.211~0.252 nm, O-Eu-O 键角的范围是 64°~146.4°。 所有的 W-O (0.168~0.241 nm)和 P-O (0.152~0.155 nm)的键长都在正常的范围内与文献报道的一 致[22-23]。由于1是在酸性条件下合成的,所以1个质 子被用来平衡电荷,这个现象在多金属氧酸盐化学 中经常遭遇到[2425]。价键计算表明在化合物1中所 有的 W 中心都是+6 价氧化态, Eu 中心是+3 价氧化 态, P中心是+5 价氧化态^[26-27]。

- 图 2 化合物 1 中双支撑多阴离子[{Eu(H₂O)₇]₂{Eu(H₂O)₃ (α₂-P₂W₁₇)]₂]⁸结构示的意图
 - Fig.2 Polyhedral representation of the bisupporting $[\{Eu(H_2O)_7\}_2[Eu(H_2O)_3(\alpha_2-P_2W_{17})\}_2]^{8-} \text{ annion in } \mathbf{1}$

The color code is the same as in Fig.2 图 3 化合物 1 的一维链状结构示意图 Fig.3 Polyhedral view of the 1D chain in 1

2.3 化合物的红外光谱和热重分析

如图 4 所示,化合物 1 的红外光谱在 1 078 cm⁻¹ 处的非对称伸缩振动归属为 P-O 的振动。而在 955,896,720,528 cm⁻¹ 左右的振动则归属于 Dawson 多酸阴离子中的 ν_{as} (W=O), ν_{as} (W-O-W)的特征 峰。化合物在 3443 cm⁻¹ 左右的峰则归属为水分子的 特征振动锋。化合物 1 的热重分析表明在 27~317 ℃ 范围内失重约为 8.18%,与计算值 7.90%相接近,对 应于 5 个结晶水分子,17 个配位水分子和 1 个质子 的失去。温度继续升高则多阴离子簇分解(图 5)。

2.4 荧光性质及分析

化合物 1 的荧光光谱在室温条件下被测定。如 图 6 所示,当激发波长为 395 nm 时,化合物 1 的发 射光谱在 581,594,618,653,702 nm 处展现出 Eu³⁺ 离子的 5 个特征跃迁,分别归属为 ${}^{5}D_{0} \rightarrow {}^{7}F_{0}, {}^{5}D_{0} \rightarrow$ ${}^{7}F_{1}, {}^{5}D_{0} \rightarrow {}^{7}F_{2}, {}^{5}D_{0} \rightarrow {}^{7}F_{3}$ 和 ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ 的 5 个能级跃迁。 在 581 nm 处出现 ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ 的对称禁阻跃迁,表明在 化合物 1 中 Eu³⁺所处的位置是低对称性的并且不 存在反转中心。出现在 594 和 618 nm 处的是 ${}^{5}D_{0} \rightarrow$ ${}^{7}F_{1}$ 和 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ 跃迁分别为磁偶极子跃迁和电偶极 子跃迁。众所周知, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ 跃迁的强度取决于作用 在 Eu³⁺上的晶体场强度。而 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ 跃迁的强度对 于 Eu³⁺离子周围的配位环境是非常敏感的,随着 Eu³⁺离子中心的位置对称性的升高而降低。因此,*I* $({}^{5}D_{0} \rightarrow {}^{7}F_{2})/I({}^{5}D_{0} \rightarrow {}^{7}F_{1})$ 比被广泛的用来衡量稀土离子 的位置对称性^[28]。对于化合物 1,*I*({}^{5}D_{0} \rightarrow {}^{7}F_{2})/*I*({}^{5}D_{0} \rightarrow {}^{7}F_{1})比为 2,表明 Eu³⁺离子具有低的位置对称性。这 个结果与化合物中 Eu³⁺离子的配位环境相一致。较 强的 {}^{5}D_{0} \rightarrow {}^{7}F_{2}跃迁表明 Eu³⁺离子周围的化学环境具 有很高的极化性使其产生红色光发射。

Fig.6 Fluorescent emission spectrum of compound 1 in the solid state at room temperature

3 结 论

利用水溶液合成方法以{P₂W₁₂}为反应初始原料 与 Eu(III)离子反应得到了双支撑的[{Eu(H₂O)₇]₂{Eu (H₂O)₃(α_2 -P₂W₁₇)}₂]⁸⁻多阴离子簇,并通过 Eu(III)离子连 接形成了一维链状的多金属氧酸盐化合物。由于多 金属氧酸盐的自组装机制,在这个反应过程中 {P₂W₁₂}转化成了{P₂W₁₇}。化合物 1 的荧光光谱显示 了较强的 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ 跃迁表明 Eu³⁺离子周围的化学环 境具有很高的极化性进而导致了红色光发射。

参考文献:

- [1] Pope M T, Müller A. Angew. Chem. Int. Ed., 1991,30:34-48
- [2] Hill C L, Prosser-McCartha C M. Coord. Chem. Rev., 1995, 143:407-455
- [3] Müller A, Peters F, Pope M T, et al. Chem. Rev., 1998,98: 239-271
- [4] Rhule J T, Hill C L, Judd D A, et al. Chem. Rev., 1998,98: 327-357
- [5] Clemente-Juan J M, Coronado R. Coord. Chem. Rev., 1999, 193-195:361-394
- [6] Kozhevnikov I V. Catalsis by Polyoxometalates. Chichester, UK: Wiley, 2002.
- [7] Contant R, Hervé G. Rev. Inorg. Chem., 2002,22:63-111

- [8] Mbomekalle I M, Keita B, Nadjo L, et al. Inorg. Chem., 2003, 42:1163-1169
- [9] Finke R G, Droege M W, Domaille P J. Inorg. Chem., 1987, 26:3886-3896
- [10]Anderson T M, Hardcastle K I, Okun N, et al. *Inorg. Chem.*, 2001,40:6418-6425
- [11]Sadakane M, Dickman M H, Pope M T. Inorg. Chem., 2001, 40:2715-2719
- [12]Luo Q H, Howell R C, Bartis J M, et al. Inorg. Chem., 2002, 41:6112-6117
- [13]Kato C N, Shinohara A, Hayashi K, et al. Inorg. Chem., 2006, 45:8108-8119
- [14]Luo Q H, Howell R C, Dankova M, et al. Inorg. Chem., 2001, 40:1894-1901
- [15]Zhang C, Howell R C, Luo Q H, et al. Inorg. Chem., 2005, 44:3569-3578
- [16]Fang X K, Anderson T M, Benelli C, et al. Chem.-Eur. J., 2005,11:712-718
- [17]Contant R. Inorg. Synth., 1990,27:104-111

- [18]Godin B, Vaissermann J, Herson P, et al. Chem. Commun., 2005:5624-5626
- [19]Zhang C D, Liu S X, Ma F J, et al. Dalton Trans., 2010,39: 8033-8037
- [20]Zhao J W, Zheng S T, Liu W, et al. J. Solid State Chem., 2008.181:637-645
- [21]Zhang Z M, Li Y G, Wang Y H, et al. Inorg. Chem., 2008, 47:7615-7622
- [22]Niu J Y, Guo D J, Zhao J W, et al. New J. Chem., 2004,28: 980-987
- [23]Lu Y, Xu Y, Li Y G, et al. Inorg. Chem., 2006,45:2055-2060
- [24]Wassermann K, Lunk H J, Palm R, et al. Inorg. Chem., 1996.35:3273-3279
- [25]Belai N, Dickman M H, Pope M T, et al. Inorg. Chem., 2005,44:169-171
- [26]Brown I D, Altermatt D. Acta Cryst., 1985, B41:244-246
- [27]Brese N E, O'Keeffe M. Acta Cryst., 1991, B47:192-197
- [28]Massayuki N, Yoshihiro A. J. Non-Cryst. Solids, 1996,197: 73-78