一个逆奇异值问题:

卢琳璋 (厦门大学数学系,厦门 361005) 孙伟伟 (香港城市大学数学系,香港)

ON AN INVERSE SINGULAR VALUE PROBLEM

Lu Linzhang
(Xiamen University)
Sun Weiwei
(City University of Hong Kong)

Abstract This paper discusses an inverse singular value problem. It gives a sufficient and necessary condition, an algorithm and an example for the inverse singular value problem.

Key words Inverse singular value problem, inverse eigenvalue problem. AMS(1991) subject classifications 65H20. 中图法分类号 O241.

1 引 言

是 Chu, M. T^[2]. 首先提出逆奇异值问题,他(那时就)认为^[2],尽管还没看到这样的问题在物理等方面的应用,但这个问题本身是有意义的. 在文[6]中,Ram Y. M. 和 Elhay, S. 就提出了一个具有物理背景的逆奇异值问题. 本文考虑的问题如下:

问题 P 找(如果存在的话)一个 n 阶的单位下三角阵,使它有预先给定的正数 σ_1, σ_2 , \cdots, σ_n 作为它的奇异值.

这个问题与 Ram 和 Elhay 提出的问题[6]相近,但显然要简单得多.在下一节我们将讨论问题 P 的可解性和解存在的充分必要条件,第三节给出求解问题 P 的算法和一个例子

此作者得到留学回国基金,国家自然科学基金资助. 收稿日期:1999-06-29.

2 问题 P 的可解性

引理 2.1 设 $m \times n$ 矩阵 A 和 $s \times t$ 矩阵 B 分别有(正)奇异值 $\sigma_1, \sigma_2, \cdots, \sigma_k$ 和 $\delta_1, \delta_2, \cdots, \delta_l$,则对任意实数 $P, (m+s) \times (n+t)$ 矩阵 $C = \begin{bmatrix} A & 0 \\ pp_1v_1^T & B \end{bmatrix}$ 有(正)奇异值: $\theta_1, \theta_2, \sigma_2 \cdots \sigma_k, \delta_2\delta_3 \cdots \delta_k$. 这里 $A^TAv_1 = \sigma_1^2v_1$, $\|v_1\|_2 = 1$, $BB^Tp_1 = \delta_1^2p_1$, $\|p_1\|_2 = 1$. θ_1, θ_2 是 2×2 矩阵 $G = \begin{bmatrix} \sigma_1 & 0 \\ \rho & \delta_1 \end{bmatrix}$ 的奇异值.

证明 设 UDV^T 和 PEQ^T 分别是 A 和 B 的奇异值分解,这里 $U=(u_1,u_2,\cdots,u_m)$, $V=(v_1,v_2,\cdots,v_n)$, $P=(p_1,p_2,\cdots,p_r)$ 和 $Q=(q_1,q_2,\cdots,q_r)$ 都是正交矩阵 $\cdot D$ 和 E 是 $m\times n$ 和 $s\times t$ 矩阵 $\cdot D=\begin{bmatrix}\Sigma&0\\0&0\end{bmatrix}$, $E=\begin{bmatrix}\Delta&0\\0&0\end{bmatrix}$, $\Sigma=\mathrm{diag}(\sigma_1,\sigma_2,\cdots,\sigma_k)$, $\Delta=\mathrm{diag}(\delta_1,\delta_2,\cdots,\delta_l)$. 我们有 $CC^T=\begin{bmatrix}AA^T&\rho Av_1p_1^T\\\rho p_1v_1^TA^T&BB^T+\rho^2b,p_1^T\end{bmatrix}$

容易验证

$$CC^{T}\begin{bmatrix} u_{i} \\ 0 \end{bmatrix} = \begin{bmatrix} AA^{T}u_{i} \\ \rho p_{1}v_{1}^{T}A^{T}u_{i} \end{bmatrix} = \sigma_{i}^{2}\begin{bmatrix} u_{i} \\ 0 \end{bmatrix}, i = 2, 3, \dots, k$$

$$CC^{T}\begin{bmatrix} 0 \\ p_{i} \end{bmatrix} = \begin{bmatrix} \rho Av_{1}p_{1}^{T}p_{i} \\ BB^{T}p_{i} \end{bmatrix} = \delta_{i}^{2}\begin{bmatrix} 0 \\ p_{i} \end{bmatrix}, i = 2, 3, \dots, l$$

设

$$GG^{T}\begin{bmatrix} r_{i} \\ s_{i} \end{bmatrix} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{1}\rho \\ \sigma_{1}\rho & \rho^{2} + \sigma^{2} \end{bmatrix} \begin{bmatrix} r_{i} \\ s_{i} \end{bmatrix} = \theta_{i}^{2} \begin{bmatrix} r_{i} \\ s_{i} \end{bmatrix}, \quad \begin{pmatrix} r_{i}^{2} + s_{i}^{2} = 1 \end{pmatrix}$$

则我们又有:i=1,2 时

$$CC^{T}\begin{bmatrix} r_{i}u_{1} \\ s_{i}p_{1} \end{bmatrix} = \begin{bmatrix} r_{i}AA^{T}u_{1} + s_{i}\rho Av_{1} \\ r_{i}\rho p_{1}v_{1}^{T}A^{T}u_{1} + s_{i}((BB^{T}p_{1} + \rho^{2}p_{1})) \end{bmatrix}$$
$$= \begin{bmatrix} r_{i}\sigma_{1}^{2}u_{1} + s_{i}\rho\sigma_{1}u_{1} \\ r_{i}\rho\sigma_{1}p_{1} + s_{i}\delta_{1}^{2}p_{1} + s_{i}\rho^{2}p_{1} \end{bmatrix} = \theta_{i}^{2} \begin{bmatrix} r_{i}u_{1} \\ s_{i}p_{1} \end{bmatrix}$$

这个引理得证.

定义 2.1 我们称一个 n 阶单位下三角阵 L 实现了 n 个正数 $\sigma_1, \sigma_2, \cdots, \sigma_n$ (没有排序),如果 $\sigma_1, \sigma_2, \cdots, \sigma_n$ 是 L 的奇异值.后面我们将用 S_n 表示所有能被某个 n 阶单位下三角阵实现的 n 个正数组成的集合.

定理 2. 2 若 $(\alpha_1, \alpha_2, \dots, \alpha_m) \in S_m$, $(\beta_1, \beta_2, \dots, \beta_n) \in S_n$, 且对某个 r > 0, 存在 $1 \le i \le m$, $1 \le j \le n$, 使得

$$\alpha_i^2(r^2-1)+\beta_i^2(\frac{1}{r^2}-1)\geqslant 0,$$
 (1)

那么, $d \equiv (\alpha_i r, \beta_i / r, \alpha_1 \cdots \alpha_{i-1}, \alpha_{i+1} \cdots \alpha_m, \beta_1 \cdots \beta_{j-1}, \beta_{j+1} \cdots \beta_n) \in S_{m+n}$.

证明 设 A 和 B 分别是实现 $(\alpha_1, \alpha_2, \cdots, \alpha_m)$ 和 $(\beta_1, \beta_2, \cdots, \beta_n)$ 的单位下三角阵. 再设 $A^TAu_i = \alpha_i^2u_i, BB^Tv_j = \beta_j^2v_j$. 应用引理 $2\cdot 1$,我们容易验证单位下三角阵: $\begin{bmatrix} A & 0 \\ \rho v_j u_i^T & B \end{bmatrix}$ 实现了 d,这里 $\rho = \left[\alpha_i^2(r^2-1) + \beta_j^2(\frac{1}{L^2}-1)\right]^{\frac{1}{2}}$.

注 条件(1)是容易满足的,当 r < 1 时,只要 $\alpha_i \le \beta_j$, $r \ge 1$ 时,只要 $\alpha_i \ge \beta_j$,(1)都成立.下一个定理给出了问题 P 的可解性.

定理 2.3 $(\sigma_1,\sigma_2,\cdots,\sigma_n) \in S_n$ 当且仅当 $\sigma_1,\sigma_2,\cdots,\sigma_n$ 满足

$$\prod_{i=1}^{n} \sigma_i = 1 \tag{2}$$

证明 必要性.设L实现了 $(\sigma_1,\sigma_2,\cdots,\sigma_n)$,则由于

$$\det(L^T L) = (\det L)^2 = 1 = \prod_{i=1}^n \sigma_i^2$$

即(2)成立.下面我们用归纳法证明充分性.

当
$$n=2$$
 时,不妨设 $\sigma_1 \geqslant \sigma_2$,那么容易验证矩阵
$$\begin{bmatrix} 1 & 0 \\ \sqrt{(\sigma_1^2-1)(1-\sigma_2^2)} & 1 \end{bmatrix}$$
实现了 (σ_1,σ_2) .

对 n>2,不失一般性,设 σ_1 , σ_2 使得不等式 $\sigma_1^2(\frac{1}{\sigma_2^2}-1)+(\sigma_2^2-1)\geqslant 0$. 令 $\tilde{\sigma}=\sigma_1\sigma_2$, $\tilde{\sigma}_2=\sigma_3$,

$$\cdots, \tilde{\sigma}_{n-1} = \sigma_n, 那么 \prod_{i=1}^{n-1} \tilde{\sigma}_i = \prod_{i=1}^n \sigma_i = 1, 由归纳假设, (\tilde{\sigma}_1, \tilde{\sigma}_2, \cdots, \tilde{\sigma}_{n-1}) \in S_{n-1}$$
 应用定理 2. 2 到 $r = \frac{1}{\sigma_2}$ 以及(1) $\in S_1$,那么我们得到: $(\tilde{\sigma}_1 r, \frac{1}{r}, \tilde{\sigma}_2, \cdots, \tilde{\sigma}_{n-1}) \in S_{n-1+1}$, 即 $(\sigma_1, \sigma_2, \cdots, \sigma_n) \in S_n$.

3 算法及例子

定理 2.3 的构造性证明基本上给出求解问题 P 的方法.

算法 3.1 给定满足(2)的正数 $\sigma_1, \sigma_2, \dots, \sigma_n$,本算法计算一个具有奇异值 $\sigma_1, \sigma_2, \dots, \sigma_n$ 的 n 阶单位下三角阵 L.

1. 计算 $A_1 = \begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix}$,使之实现 (r_1, σ_1) ,这里 $r_1 = \frac{1}{\sigma_1}$,当 $\sigma_1 \ge 1$ 时, $\alpha = [(\sigma_1^2 - 1)(1 - r_1^2)]^{\frac{1}{2}}$,当 $\sigma < 1$ 时, $\alpha = [(r_1^2 - 1)(1 - \sigma_2^2)]^{\frac{1}{2}}$.

2. $\forall i=1,2,\cdots,n-2$

计算 $A_{i+1} = \begin{pmatrix} A_i & 0 \\ \rho_i C_i^T & 1 \end{pmatrix}$, 使之实现 $(r_{i+1}, \sigma_1, \sigma_2, \cdots, \sigma_{i+1})$, 这里 $r_i = 1 / \prod_{j=1}^i \sigma_j$, ρ_i 是一个实数,由方程

$$\rho_i^2 = r_i^2 \left(\frac{1}{\sigma_{i+1}^2} - 1 \right) + (\sigma_{i+1}^2 - 1) \tag{3}$$

决定,Ci由方程

$$A_i^T A_i C_i = r_i^2 C_i \qquad ||C_i||_2 = 1$$
 (4)

解出.

3. $L=A_{n-1}$ 实现了 $(\sigma_1,\sigma_2,\cdots,\sigma_n)$.

注1 注意到 r_i 是 A_i 的奇异值,因此(4)是有解的.

注 2 (3)式可整理成

$$\rho_i^2 = (1 - \sigma_{i+1}^2)(1 - \prod_{i=1}^{i+1} \sigma_i^2) / \prod_{i=1}^{i+1} \sigma_i^2 \qquad i = 1, 2, \cdots, n-2$$
 (5)

因此要保证上述算法能够完成,应首先对给定的奇异值进行适当的重排(给出时,并不假定 $\sigma_1,\sigma_2,\cdots,\sigma_n$ 按其下标具有某种大、小顺序),使 $\sigma_1,\sigma_2,\cdots,\sigma_n$ 这样的下标排序满足

当 $\sigma_{i+1} \leq 1$ 时, $\prod_{j=1}^{i+1} \sigma_j^2 \leq 1$;当 $\sigma_{i+1} > 1$ 时, $\prod_{j=1}^{i+1} \sigma_j^2 \geqslant 1$ $i = 1, 2, \cdots, n-2$ (6) 然后才能开始我们的算法.

但是,如果给 σ_i 排序,使(6)成立,仍然是一个问题.下面对此问题作一个简要的说明.假定 Σ 是给定的 n 个正数的集合,且 Σ 中小于 1 的数比大于 1 的数多(相反的情况类似讨论).

若 Σ 中只有一个数大于 1,那我们只要把这个数排到最后(即作为 σ_n ,也看后面的例 3.1),(6)即成立.

若 Σ 中有二个数大于 1,设为 α . β ,且 α > β ,记集合 Ω = Σ \{ α , β }. 若有 γ ∈ Ω ,使 γ , β <1,则排序 σ_1 = β , σ_2 =r,····, σ_n = α 满足(6). 否则,对任意的 r∈ Ω ,都有 r · β >1,我们必能选到 · r_1 , r_2 ,····, r_r ∈ Ω (t<r=n),使 $\prod_{i=1}^{t-1} r_i \beta_i$ > 1,而 $\prod_{i=1}^{t} r_i \beta$ < 1. 这时,可选择的一种排序为: $\sigma_i = r_i$, $i = 1, 2, \cdots$, t - 1, $\sigma_r = \beta$, $\sigma_{r+1} = r_r$, ····, $\sigma_n = \alpha$. 这种排序满足(6). 对于 Σ 中多于 2 个大于 1 的数的情况,可以类推 ·

例 3.1 求 4×4 的单位下三角阵 L, 使它的奇异值是
$$\frac{1}{\sqrt{2}}$$
, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{5}}$, $\sqrt{30}$.

解 显然,令 $\sigma_4 = \sqrt{30}$ 的任一种排法都能使(6)成立.我们取其中一种; $\sigma_1 = \frac{1}{\sqrt{5}}$, $\sigma_2 = \frac{1}{\sqrt{3}}$, $\sigma_3 = \frac{1}{\sqrt{2}}$, $\sigma_4 = \sqrt{30}$. 按算法 3.1 进行计算得到 $A_1 = \begin{bmatrix} 1 & 0 \\ \frac{4}{\sqrt{5}} & 1 \end{bmatrix}$ 实现了($\sqrt{5}$, $\frac{1}{\sqrt{5}}$); $A_2 = \begin{pmatrix} A_1 \\ \rho_1 C_1^T & 1 \end{pmatrix}$ 实现了($\sqrt{15}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{5}}$),其中 $C_1^T = \frac{1}{\sqrt{6}}$ ($\sqrt{5}$, 1), $\rho_1^2 = 5(3-1)$ + ($\frac{1}{3}$ -1)=9 $\frac{1}{3}$; $A_3 = \begin{pmatrix} A_2 \\ \rho_2 C_2^T & 1 \end{pmatrix} = L$ 实现了($\sqrt{30}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{5}}$),其中 $C_2^T = \frac{1}{2\sqrt{11}}$ ($\sqrt{35}$, $\sqrt{7}$, $\sqrt{2}$), $\rho_2^2 = 15(2-1) + (\frac{1}{2}-1) = 14\frac{1}{2}$.

参考文献

- 1 Chu, M. T., Inverse eigenvalue problem, SIAM Review, 40(1981), 1-39.
- 2 Chu, M. T., Numerical methods for inverse singular value problem, SIAM J. Numer. Anal., 29 (1992), 885-903.
- 3 Gantmacher, F. R., The Theory of Matrices, Chelsea, New York, 1959.
- 4 Golub, G. H. and Van Loan, C. Matrix Computations, North Oxford Academic, Oxford, 1983.
- 5 Lu L. Z. and Sun W. W., On necessary conditions for reconstruction of a specially structured Jacobi matrix from eigenvalues, to appear in Inverse Problem.
- 6 Ram, Y. M. and Elhay, S., Constructing the shape of a rod from eigenvalues, Commun, Numer. Meth. Engng, 14(1998), 597-608.
- 7 周树荃、戴华,代数逆特征值问题,河南科学技术出版社,1991.