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A semi-empirical valence bond (VB) method, VBDFT(s), is applied to the series of linear polyenes with
heteroatoms CMÿ 1HMO, CMÿ 2HMÿ 2O2 , CMÿ 1HMþ 1N, and CMÿ 2HMN2 (M¼ 4ÿ26). The computational

results show that the VBDFT(s) method, which was first applied to linear polyenes, is also suitable for treatment
of linear polyenes with polar bonds. Properties such as the wavefunction, extent of delocalization, the resonance
energy, and the energy additivity are discussed.

1 Introduction

Valence bond (VB) theory1,2 has remained one of the most
powerful approaches to conceptualize and predict chemical
behavior. However, the use of VB theory has always been
hampered by the lack of computational methods which can
treat reasonably large molecules, and which are at the same
time simple enough to enable one to build up the type
of insight that has been so successful in molecular orbital
theory.3

Recently we introduced such a method called VBDFT(s).4

This is a semi-empirical method which is scaled with a single
parameter to give the energies of density functional theory
(DFT), hence the name VBDFT(s). An important feature of
the method is its reliance on Rumer structures5 which are the
canonical chemical structures. This feature provides a pow-
erful facility to analyze chemical problems in terms of VB
mixing diagrams based on the familiar chemical structures.
The accuracy and lucidity of the method was recently
demonstrated by analyzing the ground and several excited
states6 of linear polyenes. The method was shown to repro-
duce excitation energies close to the values obtained by
sophisticated methods like CASPT2,7,8 and in addition, it
provided the means to understand trends and to project them
to infinitely long systems.
An essential element of the method is the use of a set of only

those structures that are formally covalent. Ionic structures are
not included explicitly, and their effect is incorporated in the
parameter l.9ÿ12 While such an approach proved successful for
polyenes where ionicity is very small, one wonders whether the
method would still be applicable to systems containing
heteroatoms. To this end we present here an extension of
VBDFT(s) to polyene systems containing heteroatoms, O and
N, as shown in Scheme 1. Here we find the appropriate single
parameter that scales the VB energy to that of DFT, and in
particular to the hybrid functional B3LYP. We show that
despite the significant ionicity of the C¼O and C¼N bonds,
the total energy can be scaled nicely to DFT, all the way up to

systems with a significant length of 26 heavy atoms. Some
trends of the ground states are discussed and compared to the
all carbon systems.

2 Methodology

A brief summary of VBDFT(s)

VBDFT(s) was described elsewhere4,6 and will be sketched
only briefly in this paper. It is a Hückel-type semi-empirical VB
method scaled to density functional energies by utilizing the
DFT energy of the spin-alternant determinant and a parameter
l, which is the interaction term that couples one electron pair
into a bond. In this sense the method has great affinity to
similar work of other groups.13ÿ18 The zero differential over-
lap approximation is used in VBDFT(s), and the resulting
Hamiltonian matrix has the appearance of a Hückel matrix.
The Hückel parameter a is given here by the DFT energy of the
spin-alternant determinant, while the parameter l is equivalent
to the Hückel resonance integral b. For ethylene, l is a positive
quantity standing for the energy difference between the
p-bonded molecule and its spin-alternant determinant that
possesses two unpaired pp electrons in an antiferromagnetic
arrangement (see drawing 1). Thus, as already mentioned, the
parameter l incorporates the effect of ionic structures, and the
method does not require explicit consideration of these struc-

Scheme 1 Linear polyenes with heteroatoms.
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tures. Once l is determined, the subsequent calculations rely
on the canonical structures, as explained below.

Spin-free form of VBDFT(s) using canonical structures

In a traditional VB approach, VB functions are expressed in
terms of a linear combination of VB determinants, i.e., a
VB function includes 2m VB determinants, where m is the
number of covalent bonds in the structure. Obviously, the
number of the VB determinants increases rapidly with
the number of covalent bonds. For example, for a system of
20 electrons with 10 covalent bonds, the number of VB
determinants required for a single VB function is 1024, and
the VB representation of the Hamiltonian contains one
million matrix elements of VB determinants. In spin-free
quantum chemistry, the spin-free wavefunction, a purely
spatial function of appropriate permutation symmetry, is
written as

C ¼
X
i

CiFi ð1Þ

where the VB function Fi is easily described through the pro-
jector of the symmetric group SM as follows:19,20

Fi ¼ Nie
½m�
r1Oi ð2Þ

where Ni is a normalization factor, e½m�rs is the standard projec-
tor of symmetric group SN , and Oi is an orbital product that
corresponds to a VB structure. The Hamiltonian and overlap
matrix elements are written as

Hij ¼ Fih jHjFji ¼
X
P2SN

D½m�11 ðPÞ Oih jHP Oji
�� ð3Þ

and

Mij ¼ hFi j Fji ¼
X
P2SN

D½m�11 ðPÞhOijPjOji; ð4Þ

respectively, where D
½m�
11 (P) is the irreducible representation

matrix element. In the zero differential overlap approximation
of the Hückel-type VBDFT(s) method, all integrals are
neglected with the exception of one-electron integrals between
two neighboring atoms. Eqns. (3) and (4) are greatly simplified
to the forms

Hij ¼ EsaSij ÿ
XNÿ1
k¼1

D½m�11 ðP
ÿ1
i ðk; kþ 1ÞPjÞlk; kþ1; ð5Þ

Mij ¼ D½m�11 ðP
ÿ1
i ðk; kþ 1ÞPjÞ; ð6Þ

where Esa is the energy of the spin-alternant determinant
obtained by DFT,6 and Pi is the permutation acting on elec-
tronic indexes of the fundamental Rumer structure to yield
those corresponding to Rumer structure i. The value of D

½m�
11 (P)

has been shown20 to have the form (ÿ 1)t(ÿ 1=2)u, where t and
u depend on the permutation and the irreducible representa-
tion [m] and are easily determined.
With eqns. (4) and (5), the coefficients Ci in eqn. (1) are

easily obtained by solving the usual secular equation
HC¼ESC. The weight of a VB structure can be defined as

Wi ¼
X
j

CiSijCj : ð7Þ

From eqn. (5), one can get an energy expression for the
energy of a canonical Rumer structure by simply inspecting the
structure. Thus, relative to the energy of the spin alternant
determinant, the energy reads as follows:

EðRiÞ ¼ Esa ÿ
X
ib

lðribÞ þ
1

2

X
inb

lðrinb Þ: ð8Þ

Here the first summation runs over all short bonds while the
second summation is over the close neighboring nonbonded
interactions.6 In ref. 6 we also give simple rules to deduce the
matrix elements between Rumer structures. It is obvious from
eqn. (8) that the energy of ethylene is lowered relative to the
spin-alternate determinant by l.

Parameterization of k

For polyenes, l was originally determined using ethylene4 and
subsequently extracted from butadiene6 which is a somewhat
more typical ‘‘polyene ’’ (for a similar approach see ref. 18).
The spin-free VB method shows that the ground state energy
of butadiene with uniform CÿC bond lengths is lowered
relative to the spin-alternant determinant by

ffiffiffi
3
p

l. Therefore,
the ground state value of l may be determined as follows:

lCC ¼

ffiffiffi
3
p

3
½Esa ÿ Eð1 1AgÞ�; ð9Þ

where E(1 1Ag) is the energy of the 1
1Ag ground state obtained

from DFT calculations.6 By changing the uniform bond length
r of butadiene, one has lCC as a function of the bond length,

lCC ¼ 0:6850ÿ 0:6722rCC þ 0:1720r2CC ð10Þ

where lCC is in Eh and rCC in
+
A.

From lCC for the CÿC bond, one can determine lCO for the
C¼O bond in 2-propenal. Scheme 2 shows Rumer structures
of 2-propenal. The same method applies to the lCN parameter.
Thus using lCX (X¼O, N), we can rely on eqn. (6) to derive
the energies of the two Rumer structures as follows:

E1 ¼ Esa ÿ lCCð1Þ þ
1

2
lCCð2Þ ÿ lCXð3Þ X ¼ O; N ð11Þ

E2 ¼ Esa þ
1

2
lCCð1Þ ÿ lCCð2Þ þ

1

2
lCXð3Þ X ¼ O; N ð12Þ

Similarly, their interaction matrix element6 and overlap
become:

H12 ¼ ÿ
1

2
Esa þ

1

2
lCCð1Þ ÿ lCCð2Þ þ

1

2
lCNð3Þ ð13Þ

S12 ¼ ÿ
1

2
ð14Þ

By solving the secular equation of the two Rumer functions,
one can express the total energy E in terms of Esa and the
parameters lCC and lCX . Obviously, given E, Esa , and lCC ,
one can determine lCX . In the present paper, both E and Esa

are taken from the DFT calculations, as explained before.6

By changing the bond length rCO in C3H4O and rCN in C3H5N
and optimizing all other geometric parameters of the two
molecules, one finds l as a function of bond length as follows:

lCO ¼ 0:9415ÿ 1:0418rCO þ 0:3031r2CO
ð15Þ

lCN ¼ 0:9038ÿ 0:9920rCN ÿ 0:2869r2CN ð16Þ

Before proceeding, it is important to note that the use of long
bond structures, such as Rumer 2 in Scheme 2, is equivalent to
the inclusion of configuration interaction in a molecular orbital
treatment.1,4,6 In fact, in butadiene and glyoxal, etc., the doubly
excited molecular orbital configuration corresponds to a long
bond structure. As such, the VB wavefunction in VBDFT(s)
accounts for the static Coulomb correlation of the electrons,
whereas the scaling of l ensures the incorporation of some
dynamic correlation effects on the energy.

5460 Phys. Chem. Chem. Phys., 2001, 3, 5459–5465
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The Rumer basis and its truncation

All the Rumer structures of a given chemical structure form an
irreducible representation basis set of symmetric group SM .
Thus, the total number of Rumer structures is the dimension
(d) of the irrep. [m]¼ [2M=2ÿS, 12S].

dfull ¼
M

M=2ÿ S

� �
ÿ

M
M=2ÿ Sÿ 1

� �
ð17Þ

By diagonalizing the basis set, one can obtain a spectrum of
the covalent states. For even-membered systems the structure
with the lowest energy is the fundamental Rumer structure,
which involves M=2 short bonds, while for odd-membered
systems the fundamental Rumer structure is a set of (Mþ 1)=2
Rumer structures which involve (Mÿ 1)=2 short bonds and an
unpaired electron. Scheme 3 shows the spectra of Rumer
structures for C5H6O and C4H5O. It can be seen that the energy
spectrum of C5H6O is grouped into three blocks; the first block
includes the fundamental Rumer structure, the second covers
all Rumer structures with two short bonds, and the last is the
Rumer structure with a single short bond. For C4H5O, the first
block includes three quasi-degenerate Rumer structures with
two short bonds, of which the Rumer structure where the
unpaired electron is at the middle site is the lowest in energy.
The second block involves the Rumer structures with only one
short bond. This is the general hierarchy of the Rumer struc-
tures. Above the first block that includes all the fundamental
structures, with the maximum number of short bonds, there lie
blocks with fewer and fewer short bonds; the highest having
only one short bond. These blocks are then ordered relative to
the fundamental block according to their excitation rank; the
block with one fewer short bond is singly excited, with two
fewer is doubly excited, and so on.6

If one focuses on the ground states of the systems, it is clear
that the higher the energy of a given structure the less
important it is to the ground state. To save computational
time, truncation of Rumer structures is required for the larger
systems. The truncation is classified by hierarchy of excita-
tions. Thus, VB(S), VB(S,D) and VB(S,D,T) correspond,
respectively, to inclusion of only singly, singly plus doubly, and
singly, doubly, and triply excited Rumer structures in addition
to the fundamental one(s). For M¼ 2n (even), the number of
Rumer structures at each excitation block are given as follows:

d1 ¼
n
2

� �
; ð18Þ

d2 ¼ 2
n
4

� �
þ

n
3

� �
; ð19Þ

d3 ¼ 5
n
6

� �
þ 5

n
5

� �
þ

n
4

� �
; ð20Þ

For M¼ 2nÿ 1, one can have

d1 ¼ 2
n
3

� �
; ð21Þ

d2 ¼ 5
n
5

� �
þ 2

n
4

� �
; ð22Þ

d3 ¼ 14
n
7

� �
þ 12

n
6

� �
þ 2

n
5

� �
ð23Þ

It can be seen from the above equations that the number of
structures for odd-membered systems is much greater than that
for even-membered systems at the same level of excitation.
A truncation technique was used in our previous paper,6

which showed that for even-membered systems VB(S,D,T)
gives excellent results for both the ground state and the first
excited state, while VB(S,D) is very good for the calculation of
the ground state alone. In the present paper we also adopt the
truncation technique for larger systems.
All geometries of the systems in the paper are optimized at

the level of B3LYP=D95V using GAUSSIAN 98.21 VBDFT(s)
is applied to the series of linear polyenes with heteroatoms,
shown in Scheme 1, CMÿ 1HMO, CMÿ 2HMÿ 2O2 , CMÿ 1HMN
and CMÿ 2HMÿ 2N2 , (M¼ 4ÿ26). A full Rumer set calculation
is applied for M¼ 4ÿ18, VB(S,D,T ) for M¼ 19, 20, and 22,
and VB(S,D) for M¼ 21, 23ÿ26.

3 Results and discussion

Fig. 1 shows the correlation of the VBDFT(s) energies plotted
against the B3LYP energies for CMÿ 1HMO. The correlation
shows that the VBDFT(s) and B3LYP total energies are vir-
tually identical. Similar correlations were found for all other
systems, but their plots are not shown for the sake of brevity.
The energy differences between VBDFT(s) and B3LYP are
shown in Tables 1 and 2. It can be seen from Table 1 that for
the even-numbered systems, the VBDFT(s) energies are in
good agreement with B3LYP energies. The small systems
(M¼ 4,6) with two terminal oxygens have the largest devia-
tion, while for M> 6 the deviation is rather small. Thus, it
appears that for these small systems the lCO parameter
underestimates the role of bond polarity, but as the polyene
grows this becomes less important.
Table 2 shows the energy differences for M odd. It is seen

that the VBDFT(s) energy for the odd-membered systems are
lower than those of B3LYP by approximately a constant
amount. This shift is due to the fact that l is determined from
even-numbered systems, C3H4O and C3H5N. Nevertheless, the

Scheme 2 Rumer structures of C3H5O.

Scheme 3 (a) Energy spectrum of the Rumer structures for C5H6O.
(b) Energy spectrum of the Rumer structures for C4H5O.

Phys. Chem. Chem. Phys., 2001, 3, 5459–5465 5461
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quality of the fit is good. We may therefore conclude that
despite the C¼X bond polarity in these systems, the set of
formally covalent Rumer structures gives a reasonably good
representation for heteroatom-substituted polyenes, pre-
sumably because ionicity effects are embedded in l.4,6

Table 3 shows the energies of the spin-alternant determi-
nants, which define the energy of the s-frames with nonbonded
pp electrons (see drawing 1). Also shown are the p bond
energies and their increments for the even-numbered series of
CMÿ 1HMO, where the p bond energy is defined as the energy

difference between the VBDFT(s) energy and that of the spin-
alternant determinant. It can be seen that both the VBDFT(s)
energies and Esa vary linearly with M. This means that both
the s frame and p bonding share energy additivity with
increments of 77.332þ 0.001 Eh for the s frame, and of 77.396
Eh for the total energies. The difference between these incre-
ments is the p increment for a CÿC unit of ca. 40 kcal molÿ1.22

All other series possess these properties too, but for the sake of
brevity we do not present here the details. This additivity of p
and s energies in linear polyenes is well known.23,24 The fact
that VBDFT(s) reproduces this additivity is a good indication
both for the validity of the method, as well as for the cor-
rectness of the additivity that emerges from a variety of
methods.14,23,24

Insight into the nature of the ground state can be obtained by
looking at a VB mixing diagram of the Rumer structures. Two
simple examples are shown for even- and odd-membered sys-
tems in Schemes 4 and 5, respectively. Scheme 4 shows the
mixing diagram for the smallest even-membered polyene that
possesses two Rumer structures.6 Irrespective of the nature of
the group X, the fundamental Rumer structure (R1) is lower
than the singly excited one (R2). Consequently, the ground state
(C0) will be primarily R1, with a smaller contribution of R2 .
The energy gap between the Rumer structures is larger for
heteroatoms, but so is the matrix element that varies in pro-
portion to l.6 Consequently, the substituted even-membered
polyenes are rather similar to their all-carbon parents. Scheme 5
shows the situation for the smallest odd member.25,26 Here the
all-carbon system has two degenerate Rumer structures and the
ground state will have equal contributions from both. In con-
trast, in the heteroatom-substituted system, the Rumer with the
double bond across C¼X is lower in energy since l for this bond
is larger than for the C¼C. Consequently, the ground state will
now resemble the more stable Rumer structure and the spin
distribution will reside mainly on the terminal carbon and to a
smaller extent on the heteroatom X. As the polyene grows,
there will be more Rumer structures. In the even-membered
family the ground state will contain more and more contribu-
tions from excited Rumer structures that will mix to an extent
inversely proportional to the rank of excitation. In the odd-
membered system, the number of the Rumer structures that are
quasi-degenerate with the fundamental structure will grow too,
and this in addition to the mixing of the more highly excited
Rumer structures will create a highly mixed ground state.
These mixing patterns can be traced systematically with the

VBDFT(s) method should one wish. For brevity, Fig. 2 shows
the weights of the fundamental structures against the number
of p bonds. For the even-numbered systems (Fig. 2a), the
fundamental Rumer structure possesses the highest weight in
the wavefunction, which decreases with the chain lengths
(e.g. in C3H5O w0¼ 0.88, while in C26H25O w0¼ 0.08). For the

Fig. 1 A plot of the VBDFT(s) energy vs. the B3LYP energy for
CMÿ 1HMO species. (a) M even; (b) M odd.

Table 1 Energy differences (kcal molÿ1) between VBDFT(s) and B3LYP for the even-membered systems

M DE(CMÿ 1HMO)a DE(CMÿ 2HMÿ 2O2) DE(CMÿ 1HMþ 1N) DE(CMÿ 2HMN2)

4 0.01 11.92 0.58 4.29
6 0.09 5.78 1.01 2.45
8 ÿ 0.21 2.70 1.10 2.09
10 0.35 1.80 2.21 2.97
12 0.12 0.67 1.93 2.65
14 0.72 0.59 2.68 2.77
16 0.53 0.01 2.60 2.55
18 1.04 0.11 3.27 3.04
20 0.93 ÿ 0.24 3.19 2.95
22 1.53 ÿ 0.04 3.77 3.42
24 0.23 ÿ 1.95 1.83 1.49
26 ÿ 0.82 ÿ 2.59 1.49 1.06
Mean error 0.38� 0.48 1.56� 2.53 2.14� 0.73 2.64� 0.61

a DE¼EVBDFT(s)ÿEB3LYP .

5462 Phys. Chem. Chem. Phys., 2001, 3, 5459–5465
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odd-numbered systems (Fig. 2b), the fundamental weight
comes from n quasi-degenerate Rumers with nÿ 1 short bonds.
Here too, this weight decreases with chain length. It is also seen
that the weights for the fundamental Rumer structures for
various series are almost identical.
A projection to M¼1 shows that for infinitely long

polyenes the weight of the fundamental Rumer will be

Table 2 Energy differences (kcal molÿ1) between VBDFT(s) and B3LYP for the odd-membered systems

M DE(CMÿ 1HMO)a DE(CMÿ 2HMÿ 2O2) DE(CMÿ 1HMþ 1N) DE(CMÿ 2HMN2)

5 ÿ 4.56 3.78 ÿ 3.21 ÿ 2.01
7 ÿ 5.47 ÿ 1.81 ÿ 0.49 ÿ 2.91
9 ÿ 4.69 ÿ 2.94 ÿ 3.32 ÿ 2.77
11 ÿ 5.50 ÿ 4.87 ÿ 3.93 ÿ 3.71
13 ÿ 5.88 ÿ 4.93 ÿ 3.15 ÿ 3.11
15 ÿ 5.47 ÿ 6.22 ÿ 3.76 ÿ 3.96
17 ÿ 4.97 ÿ 5.97 ÿ 2.91 ÿ 3.33
19 ÿ 5.72 ÿ 7.00 ÿ 3.81 ÿ 4.03
21 ÿ 5.27 ÿ 6.81 ÿ 3.26 ÿ 3.70
23 ÿ 6.11 ÿ 7.91 ÿ 4.11 ÿ 3.63
25 ÿ 5.90 ÿ 7.84 ÿ 3.80 ÿ 4.27
Mean error ÿ 5.41� 0.43 ÿ 4.77� 2.41 ÿ 3.25� 0.66 ÿ 3.22� 0.50

a DE¼EVBDFT(s)ÿEB3LYP .

Table 3 Energy analysis for the even-membered CMÿ 1HMO species

M Ea
sa=Eh Eb

p=Eh DEc
p=kcal molÿ1 DEd

VBDFTðsÞ=Eh DEe
sa=Eh

4 ÿ 191.70496 ÿ 0.17992
6 ÿ 269.03680 ÿ 0.24397 ÿ 40.19202 ÿ 77.39589 ÿ 77.33184
8 ÿ 346.36816 ÿ 0.30804 ÿ 40.20457 ÿ 77.39543 ÿ 77.33136
10 ÿ 423.70070 ÿ 0.37230 ÿ 40.32379 ÿ 77.39680 ÿ 77.33254
12 ÿ 501.03231 ÿ 0.43629 ÿ 40.15436 ÿ 77.39560 ÿ 77.33161
14 ÿ 578.36532 ÿ 0.50017 ÿ 40.08534 ÿ 77.39689 ÿ 77.33301
16 ÿ 655.69715 ÿ 0.56400 ÿ 40.05396 ÿ 77.39566 ÿ 77.33183
18 ÿ 733.03050 ÿ 0.62738 ÿ 39.77158 ÿ 77.39673 ÿ 77.33335
20 ÿ 810.36205 ÿ 0.69059 ÿ 39.66491 ÿ 77.39746 ÿ 77.33155
22 ÿ 887.69495 ÿ 0.75556 ÿ 40.76932 ÿ 77.39787 ÿ 77.33290
24 ÿ 965.02702 ÿ 0.81660 ÿ 38.30321 ÿ 77.39311 ÿ 77.33207
26 ÿ 1042.3600 ÿ 0.87860 ÿ 38.90562 ÿ 77.39489 ÿ 77.33298

a Energies of the spin-alternant determinants (see drawing 1). b p energies, defined as Ep¼EVBDFT(s)ÿEsa .
c p bond energy increments, defined as

DEp¼Ep(M)ÿEp(Mÿ 1). d VBDFT(s) energy increments, defined as DEVBDFT(s)¼EVBDFT(s)(M)ÿEVBDFT(s)(Mÿ 1). e Esa increments, defined as
DEsa¼Esa(M)ÿEsa(Mÿ 1).

Scheme 4 VB mixing diagram for C4H4X (X¼CH2 , NH, O).

Scheme 5 VBmixing diagram forC3H5 andC2H3X (X¼CH2 ,NH,O).
Fig. 2 A plot of the weights of the fundamental structures vs. the
numbers of heavy atoms. (a) M even; (b) M odd.

Phys. Chem. Chem. Phys., 2001, 3, 5459–5465 5463
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smaller than 0.01. The same observation was made for the
CMHMþ2 series.6 This means that long polyenes are a far cry
from the usual localized structure used in textbooks to
describe them. They are in fact highly delocalized species that
contain an extensive mixture from all the excited Rumer
structures. Considering the fact that the Rumer structures
involve spin-pairing of the pp electrons across long bonds,
these electrons are in fact diradical pairs or solitons. One
might therefore say that long polyenes with or without het-
eroatoms are best represented by a collection of delocalized
solitons. Why is the p-energy additive while the electronic
structure is so delocalized? An answer is provided by the p-
resonance energies, which are defined as the difference
between the total p-energy and the p-energy of the funda-
mental Rumer structure.
Tables 4 and 5 show the p-resonance energies for all the

series. It can be seen that the resonance energies per bond are
almost constant for the two series. Clearly, the resonance
energy is also additive. Therefore, despite the extensively
delocalized nature of the polyenes their total energy exhibits
additivity. Inspection of the values shows that for the systems
with one heteroatom the resonance energies are a little higher
than those of the systems with two heteroatoms. This makes
physical sense. Furthermore, the values for the odd-membered
systems are higher than those for even-membered systems,
which again makes sense, since the odd-membered systems
have a set of quasi-degenerate Rumer structures.

4 Conclusion

The results show that the VBDFT(s) can be adapted to systems
containing heteroatoms (X), and that bond polarity effects are

largely contained in the effective parameter used to model the
C¼Xbond. Themethod provides clear insight into the nature of
small and large polyenes in terms of VB mixing of Rumer
structures that are the familiar chemical structures. The
resulting insight resembles in its lucidity the corresponding
insight that emerges from orbital interaction used in molecular
orbital theory.3 The next major goal is to apply the method to
cyclic systems, and to systems which exhibit state degeneracies
(e.g. trimethylene methane, etc.). Achievement of this goal will
provide tools to obtain insight into electronic structure of spe-
cies related to nanotubes in terms of their chemical structure.
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