卤素氮氧化物的结构和光谱性质的理论研究

朱 军 曹泽星^{*①} 张乾二 (厦门大学化学系 固体表面物理化学国家重点实验室 厦门 361005)

摘要 通过 DFT/B3LYP 计算,优化了卤素氮氧化物 XNO₂ 及其异构体 XONO (X= F, Cl, Br, I) 的平衡几何构型,预测了异构体的相对稳定性及其相互转化的活化能垒.在 B3LYP 和 QCISD(T) 计算水平上,确定了 X—NO₂ 键的解离 能.应用与时间有关的密度泛函理论(TD B3LYP)计算了 XNO₂ 低激发态的跃迁能,并讨论了这些激发态与卤素氮氧 化物光诱导解离过程的关联.

关键词 卤素氮氧化物, DFT 与 ab initio 计算, 光谱性质

Theoretical Studies on Structures and Spectroscopic Properties of Nitryl Halogenides

ZHU, Jun CAO, Zer Xing^{*} ZHANG, Qian Er

(Department of Chemistry, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005)

Abstract Density functional theory with the B3LYP functional is used to calculate the equilibrium geometries and harmonic vibrational frequencies of nitryl halogenides XNO₂ and XONO (X = F, Cl, Br, I). Stabilities and isomerizations of these isomers are investigated. Dissociation energies of the X — N bond in XNO₂ are predicted at the B3LYP/6311G^{*} and QCISD(T)/cc pvTZ levels. The electronic transition energies of the most stable XNO₂ species have been estimated by time dependent B3LYP calculations. The electron promotion of a nonbonding electron of the halogen atom X in XNO₂ into a π^* orbital on the NO₂ moiety, *i.e.*, the $n \rightarrow \sigma^*$ electron excitation, is responsible for the photodissociation of the X — N bond.

Keywords nitryl halogenides, DFT and *ab initio* calculation, spectroscopic properties

大气平流层中氯化物聚集到一定程度时,会对 臭氧层造成损害,已受到人们关注.通过研究卤素氮 氧化物的光解反应,认识其光诱导裂解过程和卤素 原子产生的机理,对于防止臭氧层的破坏具有一定 的指导作用.

最近的研究表明, 氮氧化物与海盐悬浮微粒间 的异相反应, 可以产生 NOCl 和 CINO^[1]. BrNO² 可 以通过 CINO² 在 Br⁻ 离子存在下的亲核取代反应得 到^[2]. Johnson 及其合作者利用激光诱导荧光方法研 究了 CINO² 的光 解作用, 他们的研究结果表明, 在 350 nm 光的激发下, N—C1 键断裂过程具有 0.93 的 量子产率^[3]. 最近, Huber 及其合作者利用光碎片平 动能谱(photofragment translational energy spectroscopy, PIS)^[4] 和共振加强多光子电离/飞行时间技术 (resonance enhanced multiphoton ionization/time of flight, REMPFTOF)^[5]研究了在 248 和 235 nm 下 CINO₂ 的光解离过程, 他们除观测到了 N—CI 键断 裂过程外, 还观测到了激发态的 NO₂ 衰变过程.本 文将通过对这类卤素氮氧化物的理论计算研究,为 进一步理解、研究它们的光化学性质提供理论信息.

Received December 13, 2001; revised and accepted February 27, 2002.

国家自然科学基金(No. 20173042) 与科技部(No. 001CB1089) 资助项目, ③ 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

① E-mail: zxcao@xmu.edu.on

1 计算方法

采用 DFT 中 B3LYP 方法,在 6 311G^{*} 基组水平 上对 XONO, XNO₂ 及其异构化过渡态进行了几何构 型优化,并通过振动频率计算,确定了异构体与过渡 态的振动性质.对于碘,相对论赝势价基组用于所有 的计算,同时,一个优化的 d (α_{d} = 0.289)函数扩充 到了这一赝势基组中^[6].利用密度泛函响应理论方 法(TD- B3LYP),计算了 XNO₂ 低激发态的跃迁能. 为了检验 B3LYP 计算的可靠性,采用 QCISD(T) 电子 相关方法,在 6 311G^{*} 和 cc pvTZ 基组水平上,计算 了 XNO₂ 中 N - X (X= F, Cl)键解离能.所有的计算 采用 Gaussian 98 程序^[7].

2 结果与讨论

2.1 平衡结构、成键和稳定性

图1和表1分别列出了卤素氮氧化物 XNO₂ 的 B3LYP/6311G^{*} 优化结构和数据. 从表 1 数据可以看 出, X-N 键长随着原子序数的增加(从F到I)依次 增大,显著的键长变化发生在 $F \rightarrow N$ 与 $Cl \rightarrow N$ 之间, O─N─X 键角的变化相对较小. 分子轨道集居分析 表明, 卤素氮氧化物中 N 原子采取 sp^2 杂化, 未耦合 的孤对电子和两个相邻 0 原子上的单电子形成大 π 键式,而卤素原子上对称性匹配的孤对电子,基本 上不参与 NO₂ 子结构 \vec{x} 的成键. 然而, 对于 FNO₂ 分 子,在分子平面内,两个O原子的p轨道与F对应的 p轨道之间却存在显著的成键混合,强化了 F 与 NO2 之间的成键作用,导致了F-N 键比 Cl-N 键明 显的短.图 2 和表 2 分别给出了异构体 XONO 的 $B3LYP/G311G^*$ 的优化结构和数据.和 XNO₂的结构 参数相比, XONO 存在一类似的键长、键角变化特 征.

图 1 XNO_2 的几何构型

表 1 XNO₂的 B3LYP 优化结构数据(键长/nm 和键角/°) **Table 1** Data of B3LYP optimized geometries of XNO₂ (bond distance in nm and bond angle in degree)

Species	R_1	R_2	α
FNO ₂	0. 1477	0.1178	112. 1
CINO ₂	0. 1944	0.1184	113. 2
$BrNO_2$	0.2097	0.1187	113. 7
INO ₂	0. 2293	0. 1195	114. 8

图 2 XONO 的几何构型 Figure 2 Optimized geometrical structures of XONO

表 2 XONO 的 B3LYP 优化结构数据(键长/nm 和键角/°)

 Table 2
 Data of B3LYP optimized geometries of XONO (bond distance in nm and bond angle in degree)

Species	R_1	R_2	R_3	α1	α2
FONO	0.1149	0. 1529	0. 141 1	108. 1	104.9
ClONO	0.1148	0. 1528	0. 1718	107. 8	110.5
BrONO	0. 1152	0. 1504	0.1862	107. 9	111.3
IONO	0.1162	0. 1452	0.2076	108. 5	112.4

异构体 XONO 和 XNO₂ 相互转化的过渡态结构 和数据分别列于图 3 和表 3. 从表 3 中 B3LYP 优化 结构参数可以看出,除氟的氮氧化物外,其它过渡态 构型中,卤素与O 和 N 的距离,即 R_4 和 R_1 (图 3)近 似相等.在过渡态 F ...(ON)O 中, F ..O 间距明显地 小于 F ...N 间距,和其它过渡态构型相比,呈现出一 早过渡态特征.

图 3 过渡态的几何构型

Figure 1Optimized geometrical structures of XNO2Figure 3Optimized geometrical structures of transition states© 1994-2010China Academic Journal Electronic Publishing House. All rights reserved.http://www.cnki.net

 Table 3
 Data of optimized geometries of transition states (bond distance in nm and bond angle in degree)

Species	R_1	R_{2}	R_3	R_4	α_1	α_2
FONO	0.2379	0. 1175	0.1146	0. 200 1	153.6	57. 0
CIONO	0.2301	0. 1176	0.1294	0.2304	170.9	73. 8
BrONO	0.2361	0. 1177	0.1295	0.2362	169.3	74. 1
IONO	0.2478	0. 1180	0.1299	0.2480	167.4	74. 9

图 4 和表 4 中异构体的相对能量数据表明, XNO₂ 是较稳定的一种构型.其中,在 FONO^{\rightarrow} FNO₂ 的转化中,放热 180 kJ/mol,较其它的卤素氮氧化物 的能量变化大了许多,这与前面提到的 FNO₂ 体系 存在一强的分子平面的两个 O 原子与 F 间的成键 效应一致.活化能数据表明,除碘的氮氧化物外,其 它异构化过程都存在一较高的能垒,因此,能量较高 的异构体 FONO 在动力学上是稳定的.IONO 和 INO₂ 不仅能量接近,且异构化能垒较低,因此,异构体 IONO 和 INO₂ 可以共存.

图 4 反应进程- 势能图

Figure 4 Potential energy profiles along the reaction coordinate

表4 异构化反应 XONO[→] XNO₂ 的活化能与能量变化(k)/ mol)

Table 4Calculated energy differences and activation energies ofthe isomerization from XONO to XNO_2 (kJ/mol)

	2 (), /	
Isomerization	E _a	ΔE
$FONO \rightarrow FNO_2$	103	180
$\text{CIONO}^{\rightarrow} \text{CINO}_2$	201	84
$\text{BrONO} \rightarrow \text{BrNO}_2$	170	68
$IONO \rightarrow INO_2$	34	8

2.2 X-N 键解离能

从表 5 数据可以看出, X —N 键的解离能随着 卤素原子序数的增加, 不断减少, 这与 X —N 键的键 长变化一致. 表明随着卤素原子序数的增加, 相应的 X →N 键的强度逐渐减小, 因而断裂就变得较容易. QCISD(T) 计算与 B3LYP 计算相比, QCISD(T) 方法对 基组选择敏感, 只有当采用较大的基组时, QCISD (T) 计算才给出准确的预测. 如 CINO₂ 的反应热的实 验值为 138 kJ/mol^[4], 采用 QCISD(T) 方法, 即使在 6 311G^{*} 这样中等大小的基组水平上, 结果为 106 kJ/ mol, 存在较大误差. 在 cc pvTZ 基组水平上, 计算结 果为 135 kJ/mol, 与实验数 据一致. 而 B3LYP/6 311G^{*} 计算结果为 134 kJ/mol, 合理地与实验值和大 基组的 QCISD(T)/cc pvTZ 计算一致.

表 5 B3LYP 和 QCISD 计算的 X−N 键解离能(kJ mol) **Table 5** Dissociation energies (kJ/mol) of the X−N bond

		0 ()	·	
Species	B 3 LYP ^a	QCISD(T)/	QCISD(T)/	Funt
		6 311G(d)	cc pvTZ	Expt.
FNO ₂	230 (216)	184	224	
ClNO_2	134 (124)	106	135	138
$BrNO_2$	113 (104)	84		
INO ₂	82 (74)	58		

"括号中数据包含了零点能校正,其中 CNO₂ 的实验值来自文献 [4].

2.3 振动频率与电子跃迁能

2.3.1 XNO₂ 的振动频率

对于 XNO₂ (X= F, Cl, Br, I), B3LYP 计算得到 的振动频率均未出现虚频,这说明获得的优化构型 位于势能面的极小点,因此这些分子是稳定的. 随着 卤素原子序数的增加 N —X 键之间的伸缩振动的频 率逐渐减小,即从 N —F 到 N —I 振动频率分别为 585, 350, 281 和 242 cm⁻¹,这与这一正则振动模式 原子折合质量变大、且对应的键变弱一致. 对于 NO₂ 结构单元,两个 N —O 键耦合的对称伸缩与反对称 伸缩振动频率,以及 NO₂ 弯曲振动频率却差别不 大. 如表 6 中, B3LYP 计算预测的 FNO₂, CINO₂, BrNO₂ 和 INO₂ 的对称伸缩频率,分别为 1381, 1360, 1361 和 1358 cm⁻¹. 这表明,在卤素的氮氧化物中,卤 素对 NO₂ 的 r_{0}^{4} 成键作用几乎没有影响,与前面提到 的 π成键性质一致.表 6 中 B3LYP 计算频率与实验 值的比较,呈现出合理的一致.

1043

表 6 B3LYP/ 6 311G^{*} 计算的 XNO₂ 分子振动频率(cm⁻¹)

Table 6 Selected vibrational frequencies (cm⁻¹) of XNO₂ by the B3LYP calculation

	N $-X$ stretch ^a	NO s stretch	NO a stretch
FNO ₂	$585 (a_l, w)$	1381 (a ₁ , s)	1883 (b ₂ , vs)
$\mathbb{C}\mathbb{N}O_2$	$350\;(\;a_l,\;w)\;\;(\;365)$	1360 (a_1 , vs) (1264)	1814 (b_2 , vs) (1675)
BrNO ₂	$280\;(\;a_l,\;w)\;\;(\;282)$	1361 (a_1 , vs) (1291)	1786 (b_2 , vs) (1660)
\mathbb{INO}_2	$242\ (\ a_{l}\ ,\ w)\ \ (\ 468)$	1358 (a_1 , vs) (1279)	1745 (b_2 , vs) (1700)

^a 括号里的实验值来自文献[8~12]. w= weak, s= strong, vs= very strong.

2.3.2 XNO₂ 的电子跃迁能

从表 7 列出的 TD B3LYP 电子激发能可以看出, 除 FNO₂ 外, CINO₂, BiNO₂ 和 INO₂ 的最低激发态均 来自卤素原子的非键孤对电子(n) 到 X →N σ 反键的 激发, 即 n[→] σ^{*} 激发, 而 n[→] π^{*} 激发产生的激发态具 有更高的能量. TD-B3LYP 计算预测 CINO₂ 的 n[→] σ^{*} 激发发生在 310 nm (f = 0.0005) 和 285 nm (f = 0.0002), 这些跃迁将减弱 Cl →N 间的成键作用, 对 于处于振动激发态的激发态分子, Cl →N 键的裂解极 易发生. 这与实验观测的 CINO₂ 在 350 nm 光诱导解 离主要生成 Cl+ NO₂ 一致^[3]. 来自 Cl 的非键电子到 NO₂ 的 π^{*} 轨道的电子跃迁, 即偶极禁阻的 n[→] π^{*} 跃 迁发生在 275 nm,这一跃迁与 NO₂ 低激发态A²B₂ 和 B²B₁ 的生成有关,这些低激发态将进一步解离成 NO+ O等碎片.详细的二级光反应机制,还有待进一 步的精确理论计算研究.

BrNO₂, INO₂ 和 CINO₂ 相比, 存在类似的电子跃 迁光谱特征, 可以预测在较低能量的光激发下便可 发生 Br—N 和 I—N 键的光解离, 以及 NO₂ 的二级光 解离. 由于 FNO₂ 分子平面内 F 的 p 电子与 O 的 p 轨 道混合, 使得 F 的非键孤对(n₁) 能量降低, 以致 $n_1 \rightarrow \sigma^*$ 电子激发出现在能量较高的区域(约 7.94 eV), 而 其最低的激发态由 $\sigma_{F(0)} \rightarrow \sigma^*$ 电子激发产生.

表 7 TD B3LYP 计算的 XNO₂ 的电子跃迁能与谐振子强度"

Species	T ransition	Assignment	$\Delta E_{e}/ \text{ eV}$	𝒴 nm	f	
FNO ₂	$^{1}A_{2} \leftarrow ^{1}A_{1}$	$\sigma_{F(0)} \rightarrow \sigma^*$	5.07	243	0	
	${}^{1}B_{1} \leftarrow {}^{1}A_{1}$	$n_2 \xrightarrow{\rightarrow} \sigma^*$	6.27	198	0.0002	
	${}^{1}B_{2} \leftarrow {}^{1}A_{1}$	$n_1 \xrightarrow{\rightarrow} \pi^*$	6.65	186	0.0027	
CINO ₂	${}^{1}B_{2} \leftarrow {}^{1}A_{1}$	$n_1 \xrightarrow{\rightarrow} \sigma^*$	3.99	311	0.0005	
	${}^{1}B_{1} \leftarrow {}^{1}A_{1}$	$n_2 \xrightarrow{\rightarrow} \sigma^*$	4.35	285	0.0002	
	$^{1}A_{2} \leftarrow ^{1}A_{1}$	$n_1 \xrightarrow{\rightarrow} \pi^*$	4.51	275	0	
BrNO_2	${}^{1}B_{2} \leftarrow {}^{1}A_{1}$	$n_1 \xrightarrow{\rightarrow} \sigma^*$	3.25	382	0.0002	
	${}^{1}B_{1} \leftarrow {}^{1}A_{1}$	$n_2 \xrightarrow{\rightarrow} \sigma^*$	3.50	354	0.0002	
	$^{1}A_{2} \leftarrow ^{1}A_{1}$	$n_1 \xrightarrow{\rightarrow} \pi^*$	4.22	294	0	
$I\!NO_2$	${}^{1}B_{2} \leftarrow {}^{1}A_{1}$	$n_1 \xrightarrow{\rightarrow} \sigma^*$	2.60	476	0.0001	
	${}^{1}B_{1} \leftarrow {}^{1}A_{1}$	$n_2 \xrightarrow{\rightarrow} \sigma^*$	2.82	440	0.0012	
	$^{1}A_{2} \leftarrow ^{1}A_{1}$	$n_1 \xrightarrow{\rightarrow} \pi^*$	3.86	321	0	

Table 7 Electronic transition energies and oscillator strengths of XNO₂ by TD B3LYP calculations

" n_1 是卤素原子在 x 轴上的孤对电子, n_2 是卤素 X 原子在 y 轴上的孤对电子, σ^* 是卤素原子与 N 原子之间形成的 σ 反键, π^* 是 N 原子与两 个 O 原子形成的 π 反键. $\sigma_{F(0)}$ 为 FNO₂ 中 F 原子和氧原子所成的微弱的 σ 成键. XNO₂ 分子置于 yz 平面, 且 z 轴与 X — N 键一致.

3 主要结论

B3LYP/6311G^{*} 计算表明, 卤素的氮氧化物 XNO₂ 及其异构体 XONO (X= F, Cl, Br, I)都是位能 面上的稳定结构, 且 XNO₂($C_{2\nu}$) 具有更高的稳定性. 由于异构体间的相互转化 XONO[¬] XNO₂(X= F, Cl, Br)存在相当高的活化能, 因此, FONO, CIONO 和 BrONO 具有一定的动力学稳定性. IONO[¬] INO₂ 异构 化的能垒为34 kJ/mol, 且异构体间的能量差很小, 因 此, 异构体 IONO 和 INO₂ 即使在常温下也存在一动 态平衡过程.

TD B3LYP 计算预测的 XNO₂ 的低激发态, 均来 自卤素的非键电子到 X —N 的反键轨道的跃迁, 这些 偶极允许的 n^{→ σ^{*}} 电子激发, 将导致 X —N 键的断 裂. 卤素的非键电子到 NO₂ 的 π^* 反键轨道的跃迁, 将导致激发态的 NO₂ 碎片产生, 并与 NO₂ 的二级光 解离有关. 有关二级光解离的详细机理有待进一步 的理论和实验研究.

DFT/B3LYP 计算与较大基组的 QCISD(T) 计算 相比,预测了可靠的 X—N 键解离能数据,且 B3LYP 的计算振动频率合理地与实验观测值一致.因此, B3LYP 方法可以作为一种经济、可靠的计算方法,用 于这类卤素的氮氧化物体系的理论研究.

References

- Behnke, W.; George, C.; Scheer, V.; Zetzsch, C. J. Geophys. Res. 1997, 102, 3795.
- Fickert, S.; Helleis, F.; Adams, J. W.; Moortgat, G. K.; Crowley, J. N. J. Phys. Chan. A 1998, 102, 10689.
- 3 Nelson, H. H.; Johnston, H. S. J. Phys. Chem. 1981, 85, 3891.
- 4 Furlan, A.; Haeberli, M. A.; Huber, J. R. J. Phys. Chem. A 2000, 104, 10392.
- 5 Carter, R. T.; Hallou, A.; Huber, J. R. Chem. Phys. Lett. 1999, 310, 166.
- Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 237.
- 7 Gaussian 98, Gaussian Inc., Pittsburgh, PA, 1998.
- 8 Tevault, D. E.; Smardzewski, R. R. J. Chon. Phys. 1977, 67, 3777.
- 9 Scheffler, D.; Grothe, H.; Willner, H.; Frenzel, A.; Zetzsch, C. Inorg. Chem. 1997, 36, 335.
- 10 Scheffler, D.; Willner, H. Inorg. Chem. 1998, 37, 4500.
- Frenzel, A.; Scheer, V.; Behnke, W.; Zetsch, C. J. Phys. Chem. 1996, 100, 16447.
- 12 Feuerhahn, M.; Minkwitz, R.; Engelhardt, U. J. Mol. Spectrosc. 1979, 77, 429.

(A0112132 LI, L. T.; DONG, H. Z.)