Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Feng Wang,^a Yong-Jie Zhang,^a Yao-Jian Huang,^a Wen-Jin Su,^a Yang Lu,^b Yu-Fen Zhao^b and Seik Weng Ng^c*

^aDepartment of Biology, Xiamen University, Xiamen 361005, People's Republic of China, ^bDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.006 Å R factor = 0.051 wR factor = 0.123 Data-to-parameter ratio = 7.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 8-hydroxy-(S)-3-methyl-1-oxoisochromane-5-carboxylate (5-methoxycarbonylmellein)

The title compound, $C_{12}H_{12}O_5$, exists as two independent, relatively planar molecules in the asymmetric unit; these differ in the orientation of the ester group.

Comment

Methyl 8-hydroxy-3-methyl-1-oxo-isochromane-5-carboxylate, (I) (Fig. 1), another dihydroisocoumarin, was isolated from *Tubercularia sp.*, and the formulation differs from that of carboxymellein in having an ester group instead of an acid group (Wang *et al.*, 2003). The compound crystallizes as two independent molecules per asymmetric unit; these differ in the orientation of the $-CO_2CH_3$ group with respect to the relatively planar dihydroisocoumarin system.

Experimental

The title compound was isolated from an endophytic fungus, *Tubercularia sp.*, under conditions somewhat different from those used for isolating carboxymellein. Needle-shaped crystals were grown from an ethyl acetate solution.

Crystal data

$D_x = 1.398 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 2648
reflections
$\theta = 2.5 - 23.7^{\circ}$
$\mu = 0.11 \text{ mm}^{-1}$
T = 298 (2) K
Needle, colorless
$0.53 \times 0.19 \times 0.11 \text{ mm}$
1700 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.039$
$\theta_{\rm max} = 25.0^{\circ}$
$h = -12 \rightarrow 13$
$k = -8 \rightarrow 8$
$l = -16 \rightarrow 17$
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.069P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Received 23 July 2003 Accepted 25 July 2003

Online 31 July 2003

Table 1

Selecte	d geometric	parameters	(A, '	°).
---------	-------------	------------	-------	-----

O1a-C2a	1.319 (5)	O1b-C2b	1.318 (5
O1a-C1a	1.443 (5)	O1b-C1b	1.444 (5
O2a - C2a	1.182 (5)	O2b-C2b	1.191 (5
O3a-C6a	1.332 (5)	O3b - C6b	1.348 (5
O4a - C12a	1.219 (4)	O4b-C12b	1.220 (5
O5a - C12a	1.320 (5)	O5b-C12b	1.319 (5
O5a - C10a	1.458 (5)	O5b-C10b	1.465 (6
C2a-C3a	1.481 (5)	C2b-C3b	1.471 (5
C3a - C4a	1.387 (6)	C3b-C4b	1.388 (5
C3a - C8a	1.396 (5)	C3b-C8b	1.394 (5
C4a - C5a	1.358 (6)	C4b-C5b	1.359 (6
C5a - C6a	1.387 (6)	C5b-C6b	1.377 (6
C6a - C7a	1.401 (5)	C6b - C7b	1.401 (5
C7a - C8a	1.409 (5)	C7b-C8b	1.396 (5
C7a - C12a	1.473 (5)	C7b-C12b	1.467 (6
C8a - C9a	1.501 (5)	C8b - C9b	1.499 (5
C9a - C10a	1,491 (5)	C9b - C10b	1.501 (5
C10a - C11a	1.500 (5)	C10b-C11b	1.498 (6
C2 - 01 - C1 -	110.0(2)	C^{2k} O^{1k} C^{1k}	116.0 (2)
C2a = O1a = C1a	118.0 (3)	C2b = O1b = C1b	110.8 (3
C12a = O5a = C10a	118.0 (3)	C12b = O5b = C10b	118.9 (3
O1a - C2a - O2a	121.9 (4)	01b - C2b - O2b	120.3 (4
O1a - C2a - C3a	115.0 (3)	O1b - C2b - C3b	112.7 (3
02a - C2a - C3a	123.1 (5)	02b - C2b - C3b	126.9 (4
C4a - C3a - C8a	118.7 (4)	C4b - C3b - C8b	118.0 (4
C4a - C3a - C2a	114.8 (4)	C4b = C3b = C2b	120.0 (3
C8a - C3a - C2a	126.5 (4)	C8b - C3b - C2b	122.0 (3
C5a - C4a - C3a	122.8 (4)	C5b-C4b-C3b	123.1 (4
C4a - C5a - C6a	120.0 (4)	C4b-C5b-C6b	119.4 (4
O3a - C6a - C5a	117.1 (4)	O3b - C6b - C5b	117.9 (4
O3a-C6a-C7a	124.2 (4)	O3b - C6b - C7b	122.5 (4)
C5a-C6a-C7a	118.7 (4)	C5b-C6b-C7b	119.5 (4
C6a-C7a-C8a	121.0 (3)	C8b - C7b - C6b	120.4 (3
C6a-C7a-C12a	117.6 (4)	C8b-C7b-C12b	120.8 (4
C8a-C7a-C12a	121.4 (4)	C6b-C7b-C12b	118.8 (4
C3a-C8a-C7a	118.8 (3)	C3b-C8b-C7b	119.6 (3
C3a-C8a-C9a	125.8 (3)	C3b - C8b - C9b	124.5 (4
C7a-C8a-C9a	115.4 (3)	C7b-C8b-C9b	115.9 (3
C10a - C9a - C8a	112.4 (3)	C8b - C9b - C10b	111.6 (3
O5a - C10a - C9a	110.9 (3)	05b - C10b - C11b	106.5 (4
O5a - C10a - C11a	106.2(3)	$\Omega 5b - C10b - C9b$	109 5 (4
C9a - C10a - C11a	1139(4)	$C_{11b} - C_{10b} - C_{9b}$	1135(4
$\Omega_{4a} = C_{12a} = \Omega_{5a}$	117 3 (3)	04b - C12b - 05b	118.2 (4
O4a = C12a = C7a	1232(4)	04b-C12b-C7b	122.2 (4
05a C12a C7a	123.2(+) 1105(A)	0.10 - 0.12b - 0.1b	110.6 (4
0.5u - 0.12u - 0.1u	119.5 (4)	050-0120-070	119.0 (4

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O3a - H3a \cdots O4a \\ O3b - H3b \cdots O4b \end{array}$	0.82	1.86	2.578 (4)	145
	0.82	1.84	2.565 (4)	146

ORTEPII (Johnson, 1976) plot of the asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

The H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, including torsional freedom of OH groups. The C–H distances were set to 0.93–0.98 Å and the O–H distance to 0.82 Å, with $U_{\rm iso}$ values for H atoms of 1.2 or 1.5 (methyl H) times $U_{\rm eq}$ of the parent atom. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the Natural Science Foundation of Fujian Province, China (grant No. C0110002), the Key Foundation of Science & Technology Project of Fujian Province, China (grant No. 2002H011), the National High Technology Research & Development Program of China (863 Program, No. 2001AA620401) and the University of Malaya for supporting this work.

References

- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M.(1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, J. F., Fang, M.-J., Zhao, Y.-F., Huang, Y. J., Su, W.-J. & Ng, S. W. (2003). Acta Cryst. E59, o1233–o1234.