Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Feng Wang, ${ }^{\text {a }}$ Yong-Jie Zhang, ${ }^{\text {a }}$ Yao-Jian Huang, ${ }^{\text {a }}$
Wen-Jin Su, ${ }^{\text {a }}$ Yang Lu, ${ }^{\text {b }}$ Yu-Fen Zhao ${ }^{\text {b }}$ and Seik Weng $\mathrm{Ng}^{\mathrm{c}}{ }^{*}$
${ }^{\text {a }}$ Department of Biology, Xiamen University, Xiamen 361005, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.051$
$w R$ factor $=0.123$
Data-to-parameter ratio $=7.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 8-hydroxy-(S)-3-methyl-1-oxoiso-chromane-5-carboxylate (5-methoxycarbonylmellein)

The title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$, exists as two independent, relatively planar molecules in the asymmetric unit; these differ in the orientation of the ester group.

Comment

Methyl 8-hydroxy-3-methyl-1-oxo-isochromane-5-carboxylate, (I) (Fig. 1), another dihydroisocoumarin, was isolated from Tubercularia sp., and the formulation differs from that of carboxymellein in having an ester group instead of an acid group (Wang et al., 2003). The compound crystallizes as two independent molecules per asymmetric unit; these differ in the orientation of the $-\mathrm{CO}_{2} \mathrm{CH}_{3}$ group with respect to the relatively planar dihydroisocoumarin system.

(I)

Experimental

The title compound was isolated from an endophytic fungus, Tubercularia sp., under conditions somewhat different from those used for isolating carboxymellein. Needle-shaped crystals were grown from an ethyl acetate solution.
Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$
$M_{r}=236.22$
Monoclinic, $P 2_{1}$ 。
$a=10.9633$ (7) \AA
$b=7.1890$ (5) \AA
$c=14.425$ (1) \AA
$\beta=99.088$ (1) ${ }^{\circ}$
$V=1122.7$ (1) \AA^{3}
$Z=4$

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: none
8222 measured reflections
2154 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.123$
$S=1.02$
2154 reflections
309 parameters
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.123$
$S=1.02$

309 parameters

$$
\begin{aligned}
& D_{x}=1.398 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2648 \\
& \text { reflections } \\
& \theta=2.5-23.7^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Needle, colorless } \\
& 0.53 \times 0.19 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

$$
1700 \text { reflections with } I>2 \sigma(I)
$$

$$
R_{\text {int }}=0.039
$$

$$
\theta_{\max }=25.0^{\circ}
$$

$$
h=-12 \rightarrow 13
$$

$$
k=-8 \rightarrow 8
$$

$$
l=-16 \rightarrow 17
$$

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& \left.w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.069)^{2}\right]^{2}\right] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Received 23 July 2003
Accepted 25 July 2003
Online 31 July 2003

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

O1a-C2a	1.319 (5)	O1b-C2b	1.318 (5)
$\mathrm{O} 1 a-\mathrm{C} 1 a$	1.443 (5)	$\mathrm{O} 1 b-\mathrm{C} 1 b$	1.444 (5)
$\mathrm{O} 2 a-\mathrm{C} 2 a$	1.182 (5)	O2b-C2b	1.191 (5)
O3a-C6a	1.332 (5)	O3b-C6b	1.348 (5)
$\mathrm{O} 4 a-\mathrm{C} 12 a$	1.219 (4)	$\mathrm{O} 4 b-\mathrm{C} 12 b$	1.220 (5)
$\mathrm{O} 5 a-\mathrm{C} 12 a$	1.320 (5)	O5b-C12b	1.319 (5)
O5a-C10a	1.458 (5)	O5b-C10b	1.465 (6)
$\mathrm{C} 2 a-\mathrm{C} 3 a$	1.481 (5)	$\mathrm{C} 2 \mathrm{~b}-\mathrm{C} 3 b$	1.471 (5)
$\mathrm{C} 3 a-\mathrm{C} 4 a$	1.387 (6)	$\mathrm{C} 3 \mathrm{~b}-\mathrm{C} 4 b$	1.388 (5)
$\mathrm{C} 3 a-\mathrm{C} 8 a$	1.396 (5)	$\mathrm{C} 3 b-\mathrm{C} 8 b$	1.394 (5)
$\mathrm{C} 4 a-\mathrm{C} 5 a$	1.358 (6)	C4b-C5b	1.359 (6)
C5a-C6a	1.387 (6)	C5b-C6b	1.377 (6)
C6a-C7a	1.401 (5)	C6b-C7b	1.401 (5)
$\mathrm{C} 7 a-\mathrm{C} 8 a$	1.409 (5)	$\mathrm{C} 7 \mathrm{~b}-\mathrm{C} 8 b$	1.396 (5)
$\mathrm{C} 7 a-\mathrm{C} 12 a$	1.473 (5)	$\mathrm{C} 7 \mathrm{~b}-\mathrm{C} 12 b$	1.467 (6)
$\mathrm{C} 8 a-\mathrm{C} 9 a$	1.501 (5)	$\mathrm{C} 86-\mathrm{C} 9 b$	1.499 (5)
$\mathrm{C} 9 a-\mathrm{C} 10 a$	1.491 (5)	$\mathrm{C} 96-\mathrm{C} 10 b$	1.501 (5)
$\mathrm{C} 10 a-\mathrm{C} 11 a$	1.500 (5)	$\mathrm{C} 10 b-\mathrm{C} 11 b$	1.498 (6)
$\mathrm{C} 2 a-\mathrm{O} 1 a-\mathrm{C} 1 a$	118.0 (3)	$\mathrm{C} 2 b-\mathrm{O} 1 b-\mathrm{C} 1 b$	116.8 (3)
$\mathrm{C} 12 a-\mathrm{O} 5 a-\mathrm{C} 10 a$	118.0 (3)	$\mathrm{C} 12 b-\mathrm{O} 5 b-\mathrm{C} 10 b$	118.9 (3)
$\mathrm{O} 1 a-\mathrm{C} 2 a-\mathrm{O} 2 a$	121.9 (4)	$\mathrm{O} 1 b-\mathrm{C} 2 b-\mathrm{O} 2 b$	120.3 (4)
$\mathrm{O} 1 a-\mathrm{C} 2 a-\mathrm{C} 3 a$	115.0 (3)	$\mathrm{O} 1 b-\mathrm{C} 2 b-\mathrm{C} 3 b$	112.7 (3)
$\mathrm{O} 2 a-\mathrm{C} 2 a-\mathrm{C} 3 a$	123.1 (5)	$\mathrm{O} 2 b-\mathrm{C} 2 b-\mathrm{C} 3 b$	126.9 (4)
$\mathrm{C} 4 a-\mathrm{C} 3 a-\mathrm{C} 8 a$	118.7 (4)	$\mathrm{C} 4 b-\mathrm{C} 3 b-\mathrm{C} 8 b$	118.0 (4)
$\mathrm{C} 4 a-\mathrm{C} 3 a-\mathrm{C} 2 a$	114.8 (4)	$\mathrm{C} 4 b-\mathrm{C} 3 b-\mathrm{C} 2 b$	120.0 (3)
$\mathrm{C} 8 a-\mathrm{C} 3 a-\mathrm{C} 2 a$	126.5 (4)	$\mathrm{C} 8 b-\mathrm{C} 3 b-\mathrm{C} 2 b$	122.0 (3)
$\mathrm{C} 5 a-\mathrm{C} 4 a-\mathrm{C} 3 a$	122.8 (4)	$\mathrm{C} 5 b-\mathrm{C} 4 b-\mathrm{C} 3 b$	123.1 (4)
$\mathrm{C} 4 a-\mathrm{C} 5 a-\mathrm{C} 6 a$	120.0 (4)	$\mathrm{C} 4 b-\mathrm{C} 5 b-\mathrm{C} 6 b$	119.4 (4)
O3a-C6a-C5a	117.1 (4)	$\mathrm{O} 3 b-\mathrm{C} 6 b-\mathrm{C} 5 b$	117.9 (4)
$\mathrm{O} 3 a-\mathrm{C} 6 a-\mathrm{C} 7 a$	124.2 (4)	$\mathrm{O} 3 b-\mathrm{C} 6 b-\mathrm{C} 7 b$	122.5 (4)
C5a-C6a-C7a	118.7 (4)	$\mathrm{C} 5 b-\mathrm{C} 6 b-\mathrm{C} 7 \mathrm{~b}$	119.5 (4)
$\mathrm{C} 6 a-\mathrm{C} 7 a-\mathrm{C} 8 a$	121.0 (3)	$\mathrm{C} 8 b-\mathrm{C} 7 b-\mathrm{C} 6 b$	120.4 (3)
$\mathrm{C} 6 a-\mathrm{C} 7 a-\mathrm{C} 12 a$	117.6 (4)	$\mathrm{C} 8 b-\mathrm{C} 7 b-\mathrm{C} 12 b$	120.8 (4)
$\mathrm{C} 8 a-\mathrm{C} 7 a-\mathrm{C} 12 a$	121.4 (4)	$\mathrm{C} 6 b-\mathrm{C} 7 b-\mathrm{C} 12 b$	118.8 (4)
$\mathrm{C} 3 a-\mathrm{C} 8 a-\mathrm{C} 7 a$	118.8 (3)	$\mathrm{C} 3 b-\mathrm{C} 8 b-\mathrm{C} 7 b$	119.6 (3)
$\mathrm{C} 3 a-\mathrm{C} 8 a-\mathrm{C} 9 a$	125.8 (3)	$\mathrm{C} 3 b-\mathrm{C} 8 b-\mathrm{C} 9 b$	124.5 (4)
$\mathrm{C} 7 a-\mathrm{C} 8 a-\mathrm{C} 9 a$	115.4 (3)	$\mathrm{C} 7 b-\mathrm{C} 8 b-\mathrm{C} 9 b$	115.9 (3)
$\mathrm{C} 10 a-\mathrm{C} 9 a-\mathrm{C} 8 a$	112.4 (3)	$\mathrm{C} 8 b-\mathrm{C} 96-\mathrm{C} 10 b$	111.6 (3)
$\mathrm{O} 5 a-\mathrm{C} 10 a-\mathrm{C} 9 a$	110.9 (3)	$\mathrm{O} 5 b-\mathrm{C} 10 b-\mathrm{C} 11 b$	106.5 (4)
$\mathrm{O} 5 a-\mathrm{C} 10 a-\mathrm{C} 11 a$	106.2 (3)	$\mathrm{O} 56-\mathrm{C} 10 b-\mathrm{C} 9 b$	109.5 (4)
$\mathrm{C} 9 a-\mathrm{C} 10 a-\mathrm{C} 11 a$	113.9 (4)	$\mathrm{C} 11 \mathrm{~b}-\mathrm{C} 10 b-\mathrm{C} 9 b$	113.5 (4)
$\mathrm{O} 4 a-\mathrm{C} 12 a-\mathrm{O} 5 a$	117.3 (3)	$\mathrm{O} 4 b-\mathrm{C} 12 b-\mathrm{O} 5 b$	118.2 (4)
$\mathrm{O} 4 a-\mathrm{C} 12 a-\mathrm{C} 7 a$	123.2 (4)	$\mathrm{O} 4 b-\mathrm{C} 12 b-\mathrm{C} 7 b$	122.2 (4)
$\mathrm{O} 5 a-\mathrm{C} 12 a-\mathrm{C} 7 a$	119.5 (4)	$\mathrm{O} 5 b-\mathrm{C} 12 b-\mathrm{C} 7 b$	119.6 (4)

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3a-H3a \cdots O4a	0.82	1.86	$2.578(4)$	145
O3 $b-\mathrm{H} 3 b \cdots \mathrm{O} 4 b$	0.82	1.84	$2.565(4)$	146

Figure 1
ORTEPII (Johnson, 1976) plot of the asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

The H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, including torsional freedom of OH groups. The $\mathrm{C}-\mathrm{H}$ distances were set to $0.93-0.98 \AA$ and the $\mathrm{O}-\mathrm{H}$ distance to $0.82 \AA$, with $U_{\text {iso }}$ values for H atoms of 1.2 or 1.5 (methyl H) times $U_{\text {eq }}$ of the parent atom. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Fujian Province, China (grant No. C0110002), the Key Foundation of Science \& Technology Project of Fujian Province, China (grant No. 2002H011), the National High Technology Research \& Development Program of China (863 Program, No. 2001AA620401) and the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M.(1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, J. F., Fang, M.-J., Zhao, Y.-F., Huang, Y. J., Su, W.-J. \& Ng, S. W. (2003). Acta Cryst. E59, o1233-o1234.

