Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tao Xu, ${ }^{\text {a }}$ Shi-Yao Yang, ${ }^{\text {a }}$ Zhao-Xiong Xie ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{*}$

${ }^{\text {a }}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.080$
$w R$ factor $=0.166$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(diisopropylammonium) diphenyldioxalatostannate(IV)

The six-coordinate Sn atom in bis(diisopropylammonium) diphenyldioxalatostannate(IV), $\left[\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{NH}_{2}\right]_{2}^{+} \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Sn}-\right.$ $\left.\left(\mathrm{O}_{2} \mathrm{CCO}_{2}\right)\right]^{2-}$, exists in a cis- $\mathrm{C}_{2} \mathrm{SnO}_{4}$ octahedral coordination sphere $[\mathrm{Sn}-\mathrm{C} \quad 2.139$ (7) and 2.144 (7) \AA; $\quad \mathrm{C}-\mathrm{Sn}-\mathrm{C}$ $\left.103.8(3)^{\circ}\right]$. The ammonium cations and the stannate anions are linked by hydrogen bonds into a zigzag chain, running along the c axis of the monoclinic cell.

Comment

A previous report describes the structure of bis(diisopropylammonium) dimethyldioxalatostannate(IV), a six-coordinate cis- $\mathrm{C}_{2} \mathrm{SnO}_{4}$ octahedral ammonium stannate (Xu et al., 2003). For six-coordinate diorganotin systems, the dialkyltin derivatives generally adopt a trans configuration and the diaryltin derivatives a cis configuration (Davies, 1997; Omae, 1989). Bis(diisopropylammonium) diphenyldioxalatostannate(IV), (I), also adopts a cis configuration (Fig. 1), and the chelation by the oxalate is symmetrical $[\mathrm{Sn} 1-\mathrm{O} 12.162$ (5) and $\mathrm{Sn} 1-\mathrm{O} 3$ 2.128 (5) $\AA ; \mathrm{Sn} 1-\mathrm{O} 52.191$ (5) and $\mathrm{Sn} 1-\mathrm{O} 72.124$ (4) \AA]. The counter-ion interacts with the uncoordinated O atoms (Table 2), the hydrogen-bonding scheme giving rise to the formation of a linear chain which propagates by glide planes along the c direction (Fig. 2).

(I)

Experimental

Diisopropylamine ($1.01 \mathrm{~g}, 10 \mathrm{mmol}$) and oxalic acid dihydrate (1.26 g , 10 mmol) were placed in a small volume of ethanol and the mixture heated to dissolve the resulting diisopropylammonium hydrogen oxalate. Diphenyltin oxide ($1.40 \mathrm{~g}, 5 \mathrm{mmol}$) was added and the mixture heated for several minutes until the oxide dissolved completely. The solution was filtered. Colorless crystals separated from the cool solution when the solvent was allowed to evaporate slowly.

Received 29 August 2003
Accepted 3 September 2003
Online 11 September 2003

Crystal data

$2 \mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}^{+} \cdot\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2-}$
$M_{r}=653.33$
Monoclinic, $P 2_{1} / n$
$a=9.4647(5) \AA$
$b=20.901(1) \AA$
$c=15.9940(8) \AA$
$\beta=93.364(1)^{\circ} \AA^{\circ}$
$V=3158.6(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX area-

detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.705, T_{\text {max }}=0.905$
23125 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.080$
$w R\left(F^{2}\right)=0.166$
$S=1.30$
5563 reflections
352 parameters
H -atom parameters constrained
$D_{x}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5007
reflections
$\theta=2.5-27.6^{\circ}$
$\mu=0.86 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Parallelepiped, colorless
$0.29 \times 0.18 \times 0.12 \mathrm{~mm}$

5563 independent reflections 5505 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-24 \rightarrow 24$
$l=-19 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0485 P)^{2}\right. \\
& +12.4071 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=1.14 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\min }=-1.40 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Sn1-C1	$2.139(7)$	Sn1-O3	$2.128(5)$
Sn1-C7	$2.144(7)$	$\mathrm{Sn} 1-\mathrm{O} 5$	$2.191(5)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.162(5)$	$\mathrm{Sn} 1-\mathrm{O} 7$	$2.124(4)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 7$	$103.8(3)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{O} 7$	$93.8(2)$
C1-Sn1-O1	$164.4(2)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 3$	$76.0(2)$
C1-Sn1-O3	$95.5(2)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 5$	$78.8(2)$
C1-Sn1-O5	$87.6(2)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 7$	$82.3(2)$
C1-Sn1-O7	$101.8(2)$	$\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{O} 7$	$153.6(2)$
C7-Sn1-O1	$90.9(2)$	$\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{O} 5$	$85.2(2)$
C7-Sn1-O3	$101.3(3)$	$\mathrm{O} 7-\mathrm{Sn} 1-\mathrm{O} 5$	$76.0(2)$
C7-Sn1-O5	$166.2(2)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 n 2 \cdots \mathrm{O} 2$	0.90	2.03	$2.878(8)$	157
$\mathrm{~N} 1-\mathrm{H} 1 n 2 \cdots \mathrm{O} 4$	0.90	2.39	$3.026(8)$	128
$\mathrm{~N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.90	1.96	$2.856(8)$	178
$\mathrm{~N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{O} 6$	0.90	2.34	$2.938(7)$	124
$\mathrm{~N} 2-\mathrm{H} 2 n 1 \cdots \mathrm{O} 6^{\mathrm{ii}}$	0.90	1.91	$2.812(7)$	178
$\mathrm{~N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{O} 8$	0.90	2.07	$2.931(7)$	160

Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $1-x, 1-y, 1-z$.

H atoms were placed in calculated positions and were allowed to ride on their parent atoms; $U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for the ammonium N , methine and aromatic C atoms, and $1.5 U_{\text {eq }}$ for the methyl C atoms. The largest peak and hole in the final difference Fourier map are about $1 \AA$ from Sn 1 .

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figure 1
ORTEP (Johnson, 1976) view of bis(diisopropylammonium) diphenyldioxalatostannate(IV); displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Figure 2
ORTEP (Johnson, 1976) plot of the hydrogen-bonded chain.

The authors thank the National Natural Science Foundation of China (No. 20173046), Xiamen University and the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Davies, A. G. (1997). Organotin Chemistry. New York: John Wiley and Sons. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Omae, I. (1989). Organotin Chemistry. J. Organomet. Chem. Library, Vol. 21. New York: Elsevier.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Xu, T., Yang, S.-Y., Xie, Z.-X. \& Ng, S. W. (2003). Acta Cryst. E59, m870-m872.

