Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Bin Chen, ${ }^{\text {a }}$ Zhao-Hui
 Zhou, ${ }^{\text {a }}$ Hui-Lin Wan ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=223 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.067$
$w R$ factor $=0.159$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[di- μ_{2}-chloro(1,10-phenanthroline)cadmium(II)]

The crystal structure of the $1 / 1$ adduct of cadmium dichloride with 1,10-phenanthroline, $\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, is based on an infinite chain of $\mathrm{Cd}_{2} \mathrm{Cl}_{2}$ parallelograms sharing their Cd corners. The chain propagates in a zigzag manner along the c axis of the monoclinic unit cell. The Cd atom and the phenanthroline molecule both lie on special positions of 2 symmetry.

Comment

The $1 / 1$ adduct of cadium dichloride with 1,10-phenanthroline, (I), features corner-sharing $\mathrm{Cd}_{2} \mathrm{Cl}_{2}$ parallelograms, which are connected through the Cd atoms, leading to a zigzag chain that runs along the c axis of the unit cell $[\mathrm{Cd}-\mathrm{Cl} 2.552$ (2) and 2.753 (2) \AA A . Both the Cd atom and the phenanthroline molecule lie on a twofold axis.

(I)

The title compound was the unexpected product of an attempt to synthesize the 1,10 -phenanthroline adduct of

Figure 1
ORTEP (Johnson, 1976) plot of a fragment of $\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Symmetry code: Symmetry code: (i) $1-y, \frac{1}{2}+z$; (ii) $-x, 1-y,-z$ and (iii) $-x, y, \frac{1}{2}-z$

Received 27 August 2003
Accepted 1 September 2003
Online 5 September 2003
cadmium maleate. The direct synthesis, with cadmium dichloride and 1,10 -phenanthroline in a $1 / 2$ molar stoichiometry, leads to the formation of the monomeric $1 / 2$ adduct (Wang et al., 1996). The connectivity in the $1 / 1$ adduct is similar to that found in the the dipyridine (Paulus, 1969) and tetramethylethylenediamine (Htoon \& Ladd, 1976; Li \& Mak, 1997) adducts. A $1 / 1$ adduct that exists as a co-crystal with cadium terephthalate, $\mathrm{CdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\mathrm{Cd}\left(\mathrm{CO}_{2}-1-\mathrm{C}_{6} \mathrm{H}_{4}-4-\right.$ CO_{2}), has also been synthesized by a hydrothermal route (Sun et al., 2001). The structure is similar to that of the $2,2^{\prime}$ bipyridine analog, which has recently been reported (Zhou et al. 2003).

Experimental

Sodium maleate $(0.14 \mathrm{~g}, 1 \mathrm{mmol})$ and 1,10 phenanthroline $(0.20 \mathrm{~g}$, 1 mmol) were added to a $1 / 1$ ethanol/water (20 ml) solution of cadmium dichloride 2.5 hydrate $(0.23 \mathrm{~g}, 1 \mathrm{mmol})$ to give a white product in 50% yield. The mixture was heated at about 333 K until the solid material dissolved completely. Colorless crystals separated from the solution in a few days.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right) \mathrm{Cl}_{2}\right]$
$M_{r}=363.50$
Monoclinic, $C 2 / c$
$a=16.860$ (1) A 。
$b=10.5210$ (7) \AA
$c=7.2325$ (5) A
$\beta=110.298(1)^{\circ}$
$V=1203.3(1) \AA^{3}$
$Z=4$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan.
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.692, T_{\text {max }}=0.897$
5052 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.159$
$S=1.24$
1403 reflections
78 parameters
H -atom parameters constrained
$D_{x}=2.007 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3213 reflections
$\theta=2.3-28.0^{\circ}$
$\mu=2.23 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
Cylinder, colorless
$0.15 \times 0.14 \times 0.05 \mathrm{~mm}$

1403 independent reflections
1371 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-21 \rightarrow 22$
$k=-13 \rightarrow 13$
$l=-9 \rightarrow 9$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.075 P)^{2}\right.$
$+10.4379 \mathrm{P}]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=2.23$ e \AA^{-3}
$\Delta \rho_{\min }=-2.18$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Cd1-N1	2.353 (6)	$\mathrm{Cd} 1-\mathrm{Cl} 1^{\text {iv }}$	2.753 (2)
Cd1-Cl1	2.552 (2)		
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {iii }}$	70.9 (3)	$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\text {iv }}$	96.7 (1)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1$	161.1 (2)	$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\text {ii }}$	84.9 (1)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl}^{\text {iv }}$	92.1 (2)	$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\text {iii }}$	104.4 (1)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl}^{1 \mathrm{ii}}$	85.8 (2)	$\mathrm{Cl} 1^{\text {ii }}-\mathrm{Cd} 1-\mathrm{Cl} 1^{\text {iii }}$	96.7 (1)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1{ }^{\text {iii }}$	93.0 (2)		

The $\mathrm{C}-\mathrm{C}$ distances were restrained to $1.39(1) \AA$, and the displacement factors of the C atoms were restrained to be approximately isotropic. H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}$ $0.93 \AA$) and they were included in the refinement with $U(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ in the riding-model approximation. The final difference Fourier map had its major features near atom Cd1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (Grant Nos. 29933040 and 20021002) and the University of Malaya for supporting this work.

References

Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Htoon, S. \& Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55-58.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Li, S. L. \& Mak, T. C. W. (1997). Aust. J. Chem. 50, 79-83.
Paulus, H. (1969). Z. Anorg. Allg. Chem. 369, 38-40.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, D.-F., Rong, C., Liang, Y.-C., Shi, Q., Su, W.-P. \& Hong, M.-C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.
Wang, H., Xiong, R.-G., Chen, H.-Y., Huang, X.-Y. \& You, X.-Z. (1996). Acta Cryst. C52, 1658-1661.
Zhou, Y.-F., Xu, Y., Yuan, D.-Q. \& Hong, M.-C. (2003). Acta Cryst. E59, m821m823.

