Received 27 August 2003 Accepted 1 September 2003

Online 5 September 2003

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Bin Chen,^a Zhao-Hui Zhou,^a Hui-Lin Wan^a and Seik Weng Ng^b*

^aDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 223 KMean $\sigma(C-C) = 0.012 \text{ Å}$ R factor = 0.067 wR factor = 0.159 Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[di-µ₂-chloro(1,10-phenanthroline)cadmium(II)]

The crystal structure of the 1/1 adduct of cadmium dichloride with 1,10-phenanthroline, $[CdCl_2(C_{12}H_8N_2)]_n$, is based on an infinite chain of Cd_2Cl_2 parallelograms sharing their Cd corners. The chain propagates in a zigzag manner along the *c* axis of the monoclinic unit cell. The Cd atom and the phenanthroline molecule both lie on special positions of 2 symmetry.

Comment

The 1/1 adduct of cadium dichloride with 1,10-phenanthroline, (I), features corner-sharing Cd_2Cl_2 parallelograms, which are connected through the Cd atoms, leading to a zigzag chain that runs along the *c* axis of the unit cell [Cd-Cl 2.552 (2) and 2.753 (2) Å]. Both the Cd atom and the phenanthroline molecule lie on a twofold axis.

The title compound was the unexpected product of an attempt to synthesize the 1,10-phenanthroline adduct of

Figure 1

ORTEP (Johnson, 1976) plot of a fragment of $[CdCl_2(C_{12}H_8N_2)]_n$, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Symmetry code: Symmetry code: (i) $1 - y, \frac{1}{2} + z$; (ii) -x, 1 - y, -z and (iii) $-x, y, \frac{1}{2} - z$

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

cadmium maleate. The direct synthesis, with cadmium dichloride and 1,10-phenanthroline in a 1/2 molar stoichiometry, leads to the formation of the monomeric 1/2 adduct (Wang et al., 1996). The connectivity in the 1/1 adduct is similar to that found in the the dipyridine (Paulus, 1969) and tetramethylethylenediamine (Htoon & Ladd, 1976; Li & Mak, 1997) adducts. A 1/1 adduct that exists as a co-crystal with cadium terephthalate, CdCl₂(C₁₂H₈N₂)-Cd(CO₂-1-C₆H₄-4- CO_2), has also been synthesized by a hydrothermal route (Sun et al., 2001). The structure is similar to that of the 2,2'bipyridine analog, which has recently been reported (Zhou et al. 2003).

Experimental

Sodium maleate (0.14 g, 1 mmol) and 1,10 phenanthroline (0.20 g, 1 mmol) were added to a 1/1 ethanol/water (20 ml) solution of cadmium dichloride 2.5 hydrate (0.23 g, 1 mmol) to give a white product in 50% yield. The mixture was heated at about 333 K until the solid material dissolved completely. Colorless crystals separated from the solution in a few days.

Crystal data

$\left[\mathrm{Cd}(\mathrm{C}_{12}\mathrm{H}_{8}\mathrm{N}_{2})\mathrm{Cl}_{2}\right]$	$D_x = 2.007 \text{ Mg m}^{-3}$
$M_r = 363.50$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 3213
a = 16.860 (1) Å	reflections
b = 10.5210(7) Å	$\theta = 2.3 - 28.0^{\circ}$
c = 7.2325 (5) Å	$\mu = 2.23 \text{ mm}^{-1}$
$\beta = 110.298 (1)^{\circ}$	T = 223 K
V = 1203.3 (1) Å ³	Cylinder, colorless
Z = 4	$0.15 \times 0.14 \times 0.05 \text{ mm}$
Data collection	
Bruker APEX area-detector	1403 independent reflections
diffractometer	1371 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.031$
Absorption correction: multi-scan.	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -21 \rightarrow 22$
$T_{\rm min} = 0.692, T_{\rm max} = 0.897$	$k = -13 \rightarrow 13$
5052 measured reflections	$l = -9 \rightarrow 9$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F^2) + (0.075P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.067$	+ 104379P]

 $wR(F^2) = 0.159$ S = 1.241403 reflections 78 parameters H-atom parameters constrained

+ 10.4379P]
where $P = (\bar{F_o}^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 2.23 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -2.18 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (A	A, °)).
----------------------------------	-------	----

Cd1-N1 Cd1-Cl1	2.353 (6) 2.552 (2)	Cd1-Cl1 ^{iv}	2.753 (2)
$\begin{array}{c} N1 - Cd1 - N1^{iii} \\ N1 - Cd1 - Cl1 \\ N1 - Cd1 - Cl1^{iv} \\ N1 - Cd1 - Cl1^{ii} \\ N1 - Cd1 - Cl1^{iii} \\ \end{array}$	70.9 (3) 161.1 (2) 92.1 (2) 85.8 (2) 93.0 (2)	$\begin{array}{c} Cl1-Cd1-Cl1^{iv}\\ Cl1-Cd1-Cl1^{ii}\\ Cl1-Cd1-Cl1^{iii}\\ Cl1^{-Cd1}-Cl1^{iii}\\ Cl1^{ii}-Cd1-Cl1^{iii}\\ \end{array}$	96.7 (1) 84.9 (1) 104.4 (1) 96.7 (1)

Symmetry codes: (ii) -x, 1-y, -z; (iii) $-x, y, \frac{1}{2} - z$; (iv) $x, 1-y, \frac{1}{2} + z$.

The C-C distances were restrained to 1.39(1) Å, and the displacement factors of the C atoms were restrained to be approximately isotropic. H atoms were positioned geometrically (C-H 0.93 Å) and they were included in the refinement with U(H) = $1.2U_{eq}(C)$ in the riding-model approximation. The final difference Fourier map had its major features near atom Cd1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (Grant Nos. 29933040 and 20021002) and the University of Malaya for supporting this work.

References

- Htoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55-58.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- Li, S. L. & Mak, T. C. W. (1997). Aust. J. Chem. 50, 79-83.
- Paulus, H. (1969). Z. Anorg. Allg. Chem. 369, 38-40.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sun, D.-F., Rong, C., Liang, Y.-C., Shi, Q., Su, W.-P. & Hong, M.-C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.
- Wang, H., Xiong, R.-G., Chen, H.-Y., Huang, X.-Y. & You, X.-Z. (1996). Acta Cryst. C52, 1658-1661.
- Zhou, Y.-F., Xu, Y., Yuan, D.-Q. & Hong, M.-C. (2003). Acta Cryst. E59, m821m823.

Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.