文章编号: 0253-9837(2003)10-0755-05

研究论文: 755~ 759

表面氧浓度对负载型金属催化剂活化甲烷反应性能的影响

吴廷华¹, 严前古², 卢 伟¹, 牛振江¹, 茆福林¹, 张奇能¹, 朱明乔^{1,3}, 钟依均¹, 李则林¹, 万惠霖^{1,2}

(1 浙江师范大学物理化学研究所和化学系,浙江金华 321004; 2 厦门大学化学系固体表面物理化学 国家重点实验室和物理化学研究所,福建厦门 361005; 3 浙江大学化工系,浙江杭州 310027)

摘要:利用脉冲,质谱在线分析技术考察了无气相氧条件下负载型金属催化剂上脉冲 CH4 的反应结果表明,对于 Rh/ SiO2 催化剂,不管是氧化态还是还原态,除第 1 次脉冲生成较多的 CO2 外,从第 2 次脉冲开始,只有 CO 生成;对于 Ru/ SiO2 催化剂, 无论是氧化态还是还原态,每次脉冲均有一定量的 CO2 生成.这可能是由于 Rh 和 Ru 两种金属对氧的亲合力不同所致.甲烷 在负载型催化剂表面的活化以及产物的选择性主要受催化剂表面活性氧物种覆盖度的影响. 关键词:甲烷,活化,表面氧,铑,钌,氧化硅,负载型催化剂,脉冲反应

中图分类号: 0643 文献标识码: A

Effect of Surface Oxygen Concentration on Activation of Methane over Supported Metal Catalysts

WU Tinghua^{1*}, YAN Qiangu², LU Wei¹, NIU Zhenjiang¹, MAO Fulin¹, ZHANG Qineng¹, ZHU Mingqiao^{1, 3}, ZHONG Yijun¹, LI Zelin¹, WAN Huilin^{1, 2}

(1 Institute of Physical Chemistry and Department of Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; 2 State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry and Institute of Physical Chemistry, Xiamen University, Xiamen 361005, Fujian, China; 3 Department of Chemical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China)

Abstract: Activation of methane over supported metal catalysts was investigated using MS-pulse technique online. Oxygen-free CH4 pulsing reactions were carried out over both Rh/SiO2 and Ru/SiO2 at 700 °C. Large amounts of CO and CO₂ were observed at the first pulse of CH₄ over oxidized Rh(O) / SiO₂ catalyst. How ever, no CO₂ formation was observed at the second pulse and thereafter. Similar to the response of Rh(O) / SiO₂ catalyst, the intensity of CO and CO₂ was strong at the first pulse over reduced Rh/SiO₂ catalyst, and CO₂ appeared also only at the first pulse over Rh/SiO₂ catalyst. No CO₂ was detected at the second pulse and thereafter. CH₄ pulsing over Ru(O)/SiO₂ catalyst also produced CO and CO₂ produced over Rh/SiO₂ catalyst. How ever, unlike Rh/SiO₂ catalyst, CO₂ was formed at every pulse over Ru(O) / SiO₂ catalyst. Pulsing CH₄ over Ru/SiO₂ catalyst also produced both CO and CO₂ at every pulse. This difference between Rh and Ru catalysts may be due to the difference in the bond strength of Ru-O (528.4 kJ/mol) and Rh-O (405.1 kJ/mol) and in their relative oxygen affinities, Ru⁰ can be more easily oxidized by O₂ than Rh⁰ owing to the greater oxygen affinity of Ru. Surface oxygen should play an important role in the activation of methane and the product distribution. **Key words:** methane, activation, surface oxygen, rhodium, ruthenium, silica, supported catalyst, pulsing reae-

tion

联系人:吴廷华. Tel: (0579) 2282234; Fax: (0579) 2282595; E-mail: jhwth@mail. jhptt. zj. cn.

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2003-02-10. 第一作者: 吴廷华, 男, 1958年生, 博士, 副教授.

基金项目:国家重点基础研究发展规划(G1999022408)和国家自然科学基金(20073012)资助项目.

甲烷部分氧化制合成气的反应机理比较复杂, 至今尚无定论. 有关该反应中活性氧物种的研究较 少,且观点不一. Buyevskaya 等^[1,2] 认为, Rh/ \vdash Al₂O₃中的 Rh-O 表面晶格氧是甲烷深度氧化的活 性氧物种. Au 等^[3,4]认为,化学吸附氧是甲烷部分 氧化反应的选择性氧物种,而晶格氧会导致甲烷深 度氧化为 CO₂和H₂O. 文献[5~7]指出,涂 Pt 催化 剂中存在 PtO_x,溶解氧和化学吸附氧三种氧物种, 并认为溶解氧可导致甲烷深度氧化生成 CO₂和 H₂O; PtO_x 是表面 C 选择氧化生成 CO 的活性氧物 种; PtO_x 和化学吸附氧可进一步使 CO 和 H₂氧化 生成 CO₂和H₂O. 本文利用脉冲 质谱在线分析技 术,考察了无气相氧条件下脉冲 CH₄ 时催化剂表面 氧浓度对负载型金属催化剂催化性能的影响.

1 实验部分

1.1 催化剂制备

催化剂采用浸渍法制备.把 SiO₂(60~80目) 载体和 TiO₂(40~60目,光谱纯,英国 John Matthey Chem Ltd)载体分别浸渍在计量的 Ru和 Rh 的甲醇 溶液中,在110 ℃烘干 12 h,在500 ℃(Rh/SiO₂和 Ru/SiO₂)或700 ℃(Rh/TiO₂)焙烧6 h,降至室温备 用.

1.2 脉冲反应

脉冲反应在固定床流动反应装置上进行,催化 剂用量 50 mg. 脉冲实验前,催化剂用纯 O₂ 在 700 ℃预处理 10 min,以除去各种杂质,特别是沾污在 催化剂上的杂质碳. 然后,切换成 He 气,在反应温 度进行脉冲实验. 反应尾气组分由瑞士产 Balzers Omnistar QMS200 型四极质谱仪在线分析.

1.3 程序升温还原

催化剂用量 50 mg. 催化剂预先在纯 O₂ 气氛 下 700 ℃处理 10 min,降至室温,然后切换成3% H₂-97% N₂ 混合气,吹扫至基线平稳后,以 25 ℃/min的 升温速率进行 TPR 实验,尾气由四极质谱仪在线分 析.

2 结果与讨论

2.1 CH₄与 Rh/ TiO₂ 的相互作用

对氧化态 $Rh(O) / TiO_2$ 催化剂, 根据通入 H_2 -N₂ 混合气的时间控制催化剂的还原程度, 然后脉冲 CH₄ 进行反应. 图 1 是催化剂经还原处理后脉冲甲 烷的结果. 可以看出, 第 1 次脉冲时, CH₄ 转化率最 高, CO₂ 和 CO 的生成量也最大. 第 2 次脉冲后, 随

图 1 700 ℃下还原不同时间的 Rh/ TiO₂ 上脉冲 CH₄ 反应的质谱

Fig 1 Mass spectra of pulse CH₄ (700 °C) over Rh/TiO₂ catalyst pre-reduced at 700 °C for different time

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

⁽a) 15 min, (b) 90 m in

着脉冲次数的增加, CH4 转化率显著降低, CO 强度 有所减弱但趋于稳定,而 CO2 迅速减弱且越来越 弱. 这是由于尽管催化剂经过还原处理, 催化剂表 面总是存在一定量的活性氧物种(如 OH⁻ 以及低配 位氧甚至晶格氧).当 CH4 在活性中心 Rh 等表面发 生解离吸附后生成 CH_x , 随后 CH_x 与活性氧物种发 生反应生成 CO 和 CO₂ 等. 在多次脉冲 CH₄ 后, 由 于催化剂表面的活性氧物种被消耗而得不到及时补 充,使得催化剂表面活性氧物种的覆盖度越来越低, CH4 的解离吸附产物 CHx 不能被及时氧化生成 CO 和CO₂,使活性中心逐渐被CH_x覆盖,从而抑制了 CH4 和 CHx 的进一步裂解. 由图 1 还可以看出, 还 原时间越长的催化剂,产物中CO/CO2的比值越大. 这可能是由于随着还原时间的延长,催化剂表面活 性氧物种的覆盖度逐渐降低所致。当 CH4 在 Rh 表 面解离吸附生成 CH_x 时, 催化剂表面活性氧物种的 覆盖度越低,就越有利于 CO 的生成,而不利于 CO₂ 的生成.

2.2 Rh/SiO₂和 Ru/SiO₂的比较

翁维正等^[8]研究甲烷部分氧化制合成气反应 时发现,对于 Rh/ SiO₂ 催化剂,当未经还原处理时, 甲烷氧化的初级产物为 CO₂,经还原处理后,甲烷氧

化的初级产物为 CO; 对于 Ru/SiO_2 催化剂, 不论是 否经还原处理, 甲烷氧化的初级产物均为 CO₂. 我 们比较了 Rh/ SiO₂ 和 Ru/SiO₂ 还原前后脉冲 CH₄ 的反应,结果示干图 2~ 图 5. 由图 2 和 3 可以看 出,对于 Rh/ SiO₂ 催化剂,不管是还原态或是氧化 态催化剂, 第1次脉冲 CH4 时均生成较多的 CO 和 CO₂,从第2次脉冲开始,只有CO生成,几乎没有检 测到 CO₂. 这可能是由于催化剂表面活性氧物种浓 度很低的缘故. 由图 4 和 5 可以看出, 对于 Ru/SiO_2 催化剂, 第1次脉冲时与 Rh/SiO2 相似, 不管是氧化 态还是还原态,都生成较多的 CO 和 CO_2 ,从第 2 次 脉冲开始, CO和 CO_2 均减少, 但每次脉冲均有一定 量的 CO₂ 生成. 这可能是由于 Rh 和 Ru 对氧的亲 合力不同, Ru 对氧的亲合力(亲合热 528.4 kJ/mol) 要强于 Rh 对氧的亲合力(亲合热 405.1 kJ/mol). 因此, 对于 Rh/SiO2 催化剂, 经脉冲 CH4 或用 H2 预 还原会使催化剂表面活性氧物种的浓度很低,导致 CH4 氧化产物为 CO, 而几乎不生成 CO2. 对于 Ru/ SiO2 催化剂, 由于 Ru 对氧的亲合力强, 即使经过 H_2 预还原或多次脉冲 CH₄, 其表面活性氧物种的浓 度仍可保持一定水平,从而导致深度氧化产物 CO2 的生成. 这与翁维正等^[9]的结果相一致.

Fig 2 Mass spectra of pulse CH₄ (700 °C) over pre-reduced Rh/SiO₂ catalyst © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Fig 4 Mass spectra of pulse CH_4 (700 °C) over pre-reduced Ru/SiO₂ catalyst

图 5 氧化态 Ru(O)/SiO₂上脉冲 CH₄反应的质谱 Fig 5 Mass spectra of pulse CH₄ (700 °C) over oxidized Ru(O)/SiO₂ catalyst

需要指出的是,本文在 Rh/SiO₂ 催化剂上第 1 次脉冲 CH₄ 的产物中, CO 和 CO₂ 同时存在,与文献 [8] 的结果不太相符.这可能是由于本文所用载气 He 中存在微量的 O₂ 或H₂O(g),当载气通过催化剂 床层时, Rh 仍可能从载气中捕获 O₂ 或H₂O(g)生成 表面 Rh-O 或 Rh-OH.这种推测可从如下的实验事 实得到证明:当前后两次脉冲时间相差较长时,则 后一次脉冲生成 CO_x 的量明显增加.Rh/SiO₂ 和 Ru/SiO₂ 催化剂的催化性能表明,甲烷在负载型金 属催化剂表面的活化以及产物的选择性主要受催化 剂表面活性氧物种浓度的影响.甲烷先在金属表面 解离吸附转化为 CO_x,随后 CH_x 与活性氧物种发生 反应生成 CO 和 CO₂.

- 参考文献
- 1 Buyevskaya O V, Wolf D, Baerns M. Catal Lett, 1994,

29(1/2): 249

- 2 Walter K, Buyevskaya O V, Wolf D, Baerns M. Catal Lett, 1994, 29(1/2): 261
- 3 Au C T, Wang H Y, Wan H L. *J Catal*, 1996, **158**(1): 343
- 4 AuCT, Wang HY. J Catal, 1997, 167(2): 337
- 5 Mallens E P J, Hoebink J H B J, Martin G B. Catal Lett, 1995, 33(3/4): 291
- 6 Peuckert M, Bonzel H P. Surf Sci, 1984, 145(1): 239
- 7 Niehus H, Comsa G. Surf Sci, 1980, 93(2/3): L147
- 8 翁维正,陈明树,严前古,吴廷华,晁自胜,廖远琰,万 惠霖.科学通报(Weng W Zh, Chen M Sh, Yan Q G, Wu T H, Chao Z Sh, Liao Y Y, Wan H L. *Chin Sci Bull*), 2000, **45**(16): 1732
- 9 Weng W Zh, Chen M Sh, Yan Q G, Wu T H, Chao Z Sh, Liao Y Y, Wan H L. Catal Today, 2000, 63(2-4): 317

(Ed WGZh)

• 759 •