添加成膜促进剂合成致密 ZSM-5 分子筛膜

程志林^{* a, b} 晁自胜^b 方维平^b 林海强^b 万惠霖^b ("华东师范大学化学系 绿色化学与化工过程绿色化上海市重点实验室 上海 200062) (^b 厦门大学化学系 固体表面物理化学国家重点实验室 厦门 361005)

摘要 报道了一种添加氯化钠低温条件下合成出具有纳米尺寸的 ZSM-5 分子筛,并以其为晶种预吸附在多孔氧化铝载体上,再通过添加成膜促进剂氯化钠二次水热合成制备出高度致密 ZSM-5 分子筛膜的新方法.通过考察添加的钠离子浓度对成膜的影响,认为在一定浓度范围内钠离子能够促进成膜.SEM 结果也验证了这一结论,分子筛膜主要是由孪生聚晶分子筛组成.渗透结果显示,当添加量为 *x* = 100 (Al₂O₃ 84SiO₂ 10Na₂O *x*NaCl 15TPABi 3500H₂O)时,在室温和 0.1 MPa 的条件下,H₂/C₃H₈ 的理想选择性最大值 23.7,温度提高到 200 ℃时的选择性下降为 9.4,但仍然高于努森扩散值(4.69),表明该膜具有高度的完整性.

关键词 分子筛膜,纳米,ZSM-5,气体分离

Synthesis of Compact ZSM-5 Zeolite Membrane by Adding the Promoter NaCl

CHENG, Zh+Lin^{*}, ^a, ^b CHAO, Zi-Sheng^b FANG, Wei Ping^b LIN, Ha+Qiang^b WAN, Hu+Lin^b (^aKey Laboratory of Green Chemistry and Chemical Process Greening, Department of Chemistry, East China Normal University, Shanghai 200062)

(^bState Key Laboratory for Physical Chemistry of Solid Surface, Department of Chemistry, Xiamen University, Xiamen 361005)

Abstract The compact ZSM-5 membranes was synthesized on porous alumina substrates by pre-coating nanosized ZSM-5 seeds and then employing the twice hydrothermal synthesis with adding the promoter NaCl. Effect of Na⁺ concentration on the formation of membrane was investigated in this work, indicating that adding a certain mount of NaCl can boost the growth of zeolite crystals on the substrates, thus forming the compact membrane consisted of highly intergrown crystals. The separating performance of zeolite membranes indicated that using a mixture with a composition of Al₂O₃: 84SiO₂: 10Na₂O: 100NaCl: 15TPABr: 3500H₂O as synthesis gel, the ideal selectivity of H₂/C₃H₈ could reach a maximum value of 23. 7 at room temperature and pressure difference of 0.1 MPa, and the permselectivity decreased to 9. 4 at testing temperature of 200 °C, which is still higher than the corresponding Knudsen diffusion value (4. 69), suggesting that the membrane synthesized by this method was defect-free.

Keywords zeolite membrane, nanometer, ZSM-5, gas separation

生长在多孔载体上的分子筛膜在催化、分离等领域具有 潜在应用价值, 倍受人们的关注^{1~4]}. 沸石分子筛的有效孔 径通常小于1 nm, 从理论上讲, 其高度规整且可调的孔道结 构非常适合作为分子择形分离的膜筛分孔, 是无机膜研究中 最具有潜力的膜类型之一. ZSM-5 型分子筛是最为常用的择 型催化剂的载体之一, 而其形成的分子筛膜在催化-分离一 体化膜反应中具有潜在的应用前景^[5~7]. 合成分子筛膜的方 法多种多样,包括原位水热晶化法、气相法和预吸附纳米晶 种法等^{8~10]},其中以预吸附纳米晶种法得到的分子筛膜质 量为最佳,制备的重现性也最好.合成分子筛的配比中常含 有的阳离子是碱中所含的钠离子,而钠离子在合成中起到的 作用是以钠离子为中心体,其它无机分子与钠离子配位构成 正电四面体,这种正电四面体可以起到模板作用^[11].Persson 等^[12]研究发现,钠离子在合成 ZSM-5 分子筛中起到加速晶

 ^{*} E-mail: zlcheng@ yanan.xmu.edu.cn
 Received March 17, 2003; revised May 12, 2003; accepted August 30, 2003.

[©] 国家重点研究发展规划基金(No. G1999022401)和国家自然科学基金(No. K16161)资助项目。 ◎ 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

化,减小粒径的作用.本文首先通过在合成配比中添加一定 比例的氯化钠在低温合成出纳米级的 ZSM-5 分子筛,并以其 为晶种预吸附在多孔氧化铝载体上,再通过添加一定比例的 促进剂氯化钠二次水热合成制备出高度致密的 ZSM-5 分子 筛膜新方法.

1 实验部分

1.1 仪器

在 Rigaku Rotaflex D/MAX-C 型粉末衍射仪上进行 XRD 表征,使用 Cu Ka,(λ = 0.15406 nm)为射线源,管电压 40 kV,管电流 30 mA,扫描速度 8(°)/min.粉末态分子筛电镜 表征在 JEM 100CX 透射电子显微镜上完成,分子筛膜的电镜 表征在 LEO-1530型(德国里奥公司)扫描电子显微镜上进 行,观测前对试样先进行喷金处理.

1.2 ZSM-5 分子筛晶种的制备

分别以硫酸铝和硅溶胶(w = 25%)为铝源和硅源,将一 定数量的四丙基溴化铵(TPABr),NaOH,Ab₂(SO4)₃,NaCl和 去离子水混合均匀,在强烈的机械搅拌下用滴管缓慢地将硅 溶胶加入,得到的凝胶具有Ab₂O₃:SiO₂:Na₂O:NaCl TPABr: H₂O=1:849.6:11010:3500的配比,装入不锈钢反应釜,在 室温下陈化12h后转移至100℃的电热烘箱中晶化12h,然 后升高烘箱温度为120℃,继续晶化5d,用去离子水抽滤洗 涤粉末产物至滤液呈中性,经室温干燥后得到白色粉末状 ZSM-5分子筛,取0.5g与100mL无水乙醇在超声波振荡下 混合均匀制成晶种预涂液.

1.3 ZSM-5 分子筛膜的制备

将自制的直径 24 mm,厚度 1.5 mm,空隙率约 60% 和孔 径分布在 200~400 nm 之间的氧化铝载体在 12 mol/L 的 NaOH 溶液浸泡 12 h,以除去表面的油性杂质为目的,用去离 子水多次超声清洗至中性,在 120 ℃下烘干备用.将经预处 理的氧化铝载体片在 ZSM-5 晶种预涂液中单面浸渍数分钟, 室温干燥后再浸渍,如此重复 3~5 次后,在 120 ℃下烘干.

将已预吸附 ZSM-5 晶种的氧化铝载体用支架托起,垂直 放入水热反应釜中,注入配比为 Al₂O₃: SiO₂: Na₂O: NaCI: TPABⁱ: H₂O=1: 84 10 *x*: 15 3500 (*x* = 0~ 120) 的反应凝胶至 完全淹没载体,密封后放入温度为 150 ℃的电热烘箱中晶化 2 d,冷却后取出分子筛膜片用去离子水多次清洗后,在室温 下干燥.在测试前先进行 N₂ 渗透测定评价膜是否存在缺陷, 然后在空气中按照一定的升、降温程序焙烧,以去除膜孔内 的模板剂.

1.4 分子筛膜气体分离评价

单组分膜渗透测试在自制的不锈钢中渗透装置中进行, 将分子筛膜用 O 型硅橡胶圈密封在渗透装置中,用待测气 体对膜前后进行 20 min 的吹扫.测试时膜前后的渗透压差 控制在 0.1 MPa,当膜扩散到达稳态后,用皂膜流量计测量 扩散气体的流速.单组分渗透率通过有效膜面积、渗透压差 和流速计算而得.

2 结果与讨论

2.1 NaCl 添加量对 ZSM-5 分子筛膜生长的影响

大量的研究表明,预涂布晶种与二次水热合成相结合是 获得高质量分子筛膜的有效方法, 晶种的颗粒尺寸、载体表 面吸附晶种的数量和覆盖度对分子筛膜的致密度有很大的 影响,一般认为,纳米尺寸的分子筛特别适合作为晶种,纳米 尺寸的颗粒较容易吸附在载体表面和孔道中,颗粒分布均 匀,能在一定程度上确保载体表面的膜分子筛的生长处于同 步状态,从而获得致密均匀的分子筛膜,图1是使用配比为 Al₂O₃: SiO₂: Na₂O: NaCl: TPABr: H₂O= 1: 84: 9. 6 110: 10 3500 的反应凝胶,在120 ℃下晶化得到的ZSM-5 晶种的TEM 电镜 照片,可以观察到,晶化产物由大量的纳米颗粒团聚构成,颗 粒尺寸一般在 40~ 60 nm 之间. 分子筛的 XRD 衍射谱图显 示,上述所合成的分子筛基本是纯的 ZSM-5 分子筛晶体,与 微米尺寸的分子筛峰宽相比,纳米尺寸的分子筛峰宽有所宽 化(见图2所示).图3所示为预涂纳米晶种载体的SEM图. 由图可见,载体表面完全覆盖了一层纳米尺寸的分子筛晶 体, 晶体排列紧密, 完整性较好, 晶粒尺寸在 60 nm 左右, 与 TEM 得到的结果基本一致.

图 1 纳米 ZSM-5 分子筛的 TEM 图 Figure 1 TEM image of nanosized ZSM-5 zeolites

图 2 纳米 ZSM-5分子筛的 XRD 谱图

以上述晶化产物为晶种, 预吸附在多孔氧化铝载体上,

© 1994-2012 China Academic Journal Electronic Publishin 在不同配出的反应胶虫 1501 C晶化得到的分示筛膜的 XRD

谱图见图 4. 实验结果发现,预吸附晶种与未吸附晶种的结 果存在很大区别,经预吸附处理后得到的 ZSM-5 分子筛膜具 有较强的 ZSM-5 分子筛的特征 X 射线衍射峰,载体的 XRD 信号明显减弱,说明在氧化铝载体表面已较完全覆盖一层致 密的分子筛膜,而未预涂晶种处理的载体合成后仅具有微弱 的分子筛 X 射线衍射信号,主要表现为载体的 XRD 衍射峰. 以上实验结果表明,预涂纳米晶种能够显著促进分子筛膜的 生长,主要表现在预涂晶种增加了载体表面吸附凝胶层的晶 核数量,从而加快了凝胶层转化成为连续分子筛膜.

图 3 纳米 ZSM-5 分子筛的 SEM 谱图

Figure 3 SEM image of nanosized ZSM-5 zeolite coated on substrate

图 4 添加不同含量 NaCl 制备的 ZSM-5 分子筛膜的 XRD 谱图 Figure 4 XRD patterns of ZSM-5 composite membranes with a mixture composition of Al₂O₃ 84SiO₂ 10Na₂O x NaCl 15TPAB: 3500H₂O a,b, c, d, e⁻x = 0, 60, 80, 100, 120, f⁻ZSM-5 zeolite powder, g⁻e-Al₂O₃ substrate. ● -Peaks of α-Al₂O₃ substrate; ◆ -peaks of α-SiO₂ αrystal

二次晶化时采用的反应凝胶配比,其中氯化钠的含量对 分子筛膜产品的生长形式和致密度具有很大影响. 从图 4 中 可以看出,在反应凝胶中添加一定比例的 NaCl 对 ZSM-5 分 子筛膜的生长有一定的益处,随着 NaCl 添加量的逐渐提高, 氧化铝载体的 XRD 衍射峰强逐渐减弱,而 ZSM-5 的特征衍 射峰强度略有增加,在 NaCl 添加量 *x* = 100 时,得到的分子 筛膜最为致密,表现为载体 XRD 衍射峰消失;继续增加添加 量至 *x* = 120 时, ZSM-5 分子筛特征衍射峰强度稍有下降,同 时出现较弱的载体 XRD 衍射峰,表明过高的 NaCl 添加量可 能不利于 ZSM-5 分子筛膜的合成.

SEM 电镜照片,可以看出,未添加 NaCl 和添加 NaCl 得到的 ZSM-5 分子筛膜具有不同的膜生长形式, 前者主要由较大尺 寸(~ μ m)单一个体的 ZSM-5 分子筛晶粒散乱堆积而成, 明 显存在大量的晶粒间隙,实验中还发现,当载体未预涂晶种 时,一次合成形成的分子筛膜气体选择性低于努森扩散值, 表明未预涂晶种一次合成较难形成致密的分子筛膜,而预涂 纳米晶种和添加一定比例的氯化钠合成的分子筛膜多以孪 晶的形式存在,分子筛晶粒紧密共边相联,看不到较大缺陷 存在,这种孪晶的生长形式确保了分子筛膜具有很高的致密 性,并能够形成较大面积的片状分子筛膜附着在多孔氧化铝 载体表面,提高膜与载体之间的结合力,当NaCl添加量在x= 40~120之间变化时,分子筛膜均呈孪生聚晶形式,表面 形貌无太大的差别,以上结果充分表明,反应凝胶体系中的 一定比例的氯化钠对 ZSM-5 分子筛膜的 起到促进分子筛聚 晶生长的作用. 当添加量 x = 100 时. 膜的厚度在 20 μ m 左 右.

2.2 气体渗透分离性能

在焙烧去除模板剂之前先经 N_2 测试是否存在缺陷.为 了防止干燥过程中引起裂缝,将上面制备的分子筛膜膜片放 入渗透池中于 120 °C下通 N_2 气原位干燥 12 h,升温速率 0.5 °C/min.进行 N_2 测试的结果发现,只要 N_a Cl 的添加量适当, 一次合成基本不透过 N_2 .

表1给出了不同添加量合成分子筛膜的 H_2 和 N_2 渗透 性能和分离性能.随着氯化钠添加量的增加,渗透率有所减 小, 而选择性则明显提高. H₂/N₂ 的理想选择性随着添加量 的增加有增加的趋势、当添加量为40时,H2/N2的理想选择 性为 3.10, 低于相应的努森扩散选择性(3.74), 而当添加量 增加到 100 时, H₂/N₂ 的理想选择性达到最大值 3.74. 接近 相应的努森扩散值.N2和 CO 气体分子的动力学直径分别为 0.36 和 0.37 nm, 二者的努森扩散选择性为 1.00, 若是扩散 是努森扩散控制,则二者应该没有选择性,从表1给出的 N_2/CO 选择性来看, N_2/CO 最大值为 1.15, 高于努森扩散 值,也表明分子筛膜存在分子筛筛分作用,从H₂/C₃H₈的理 想选择性来看,随着添加量从40增加至100,选择性从6.39 增加到 23.70. 随后略微减小. Hy/GH8 的努森扩散值为 4.69, 而我们合成的膜最高达到 23.70, 远远高于努森扩散 值,表明气体扩散受分子筛孔道的影响,气体至少部分通过 孔道内扩散,沸石膜存在分子筛筛分作用.从表1给出了添 加量为 100 所合成的膜在温度为 200 ℃时的气体渗透分离 结果. 可以看出, 温度提高, 气体的渗透率显著提高, 表明存 在活化扩散. 然而气体的选择性则明显降低. Hy/C₃H₈的选 择性则由室温下的 23.70 减小为温度 200 ℃时的 9.40,但这 一结果仍然高干努森扩散值 4.69. 分子筛膜的 EDX 能谱分 析结果可知所合成的 ZSM-5 分子筛膜的 Si/Al 在 40 左右.

一般认为预涂晶种合成分子筛膜,由于晶种的存在增加 了载体表面晶核的数量,加速了载体表面吸附凝胶层的晶 化,有利于促进分子筛成膜^[13].

不利于 ZSM-5 分子筛膜的合成. 尽管所合成的分子筛膜具有气体分离的能力, 但气体的 图 5 给出不同, NaCl,添加量得到的, ZSM 5 分子筛膜的。 渗透率还未能满足实际应用的要求, 因此如何提高分子筛膜

的渗透通量还需进一步研究.

图 5 添加不同含量 NaCl 制备的 ZSM-5 分子筛膜的 SEM 谱图

```
Figure 5 SEM images of ZSM-5 zeolite membrane with a mixture composition of Al_2O_3^- 84SiO<sub>2</sub> 10Na<sub>2</sub>O x NaCl 15TPABE 3500H<sub>2</sub>O x = 0 (a); 40 (b); 80 (c); 100 (d); 120 (e); cross section (x = 100) (f)
```

表 1 添加不同含量 NaCl 制备的 ZSM-5 分子筛膜的气体渗透和渗透选择性

 Table 1
 Permeance and permselectivities of ZSM-5 zeolite membranes synthesized from a mixture composition of Al₂O₃: 84SiO₂: 10Na₂O: xNaCl: 15TPAB: 3500H₂O

x	Testing temperature/ $^{\circ}\mathrm{C}$	Permeance ($\times 10^{-8}$ mol• Pa ⁻¹ • m ⁻² • s ⁻¹)	Permselectivity after calcination		
	_	J_{H_2}	$\alpha_{H_2^{\prime}/N_2^{}}$	$\alpha_{H_2^{\prime}/CO}$	$\alpha_{H_2^{\prime}/C_3^{}H_8^{}}$
40	30	76. 4	3.10	3.36	6. 39
80	30	53. 3	3.64	3.79	17.10
100	30	46. 7	3.74	4.31	23.70
100	200	60. 9	3.08	3.12	9.40
120	30	48. 2	3.66	3.94	15.45

References

- 1 Xu, X.-C.; Yang, W.-S.; Liu, J.; Lin, L.-W. Chem. Commun. 2000, 603.
- 2 Chen, X.-B.; Yang, W.-S.; Liu, J.; Xu, X.-C.; Huang, A.-S.; Lin, L.-W. J. Mater. Sci. Lett. 2002, 21, 1023.
- 3 Aoki, K.; Kusakabe, K. S.; Morooka, S. J. Membr. Sci. 1998, 141, 197.
- 4 Xu, X.-C.; Yang, W.-S.; Liu, J.; Lin, L.-W. Sep. Purf. Technol. 2001, 25, 475.
- 5 Liu, B.-S.; Au, T.-C. Catal. Lett. 2001, 77, 67.
- 6 Zhang, X.-F.; Li, Y.-S.; Wang, J.-Q.; Tong, H.-R.; Lin, C.-H. Sep. Purf. Technol. 2001, 25, 269.
- 7 Ciavarella, P.; Casanave, D.; Moueddeb, H.; Miachaon, S.; Fiaty, K.; Dalmon, J. A. Catal. Today 2001, 67, 177.

- 8 Matsujkata, M.; Nishiyama, N.; Uayama, K. J. Chem. Soc., Chem. Commun. 1990, 339.
- 9 Zhang, C.-S.; Yin, J.-L.; Xiang, S.-H.; Li, H.-X. Chem. Commun. 1996, 1285.
- 10 Lassinantti, M.; Jareman, F.; Hedlund, J.; Creaser, D.; Stetre, J. Catal. Today 2001, 67, 109.
- 11 Xu, R.-R.; Pang, W.-Q.; Tu, K.-G. Synthesis and Structure f Molecule Sieve, Jilin University Press, Changchun, 1987, p. 249 (in Chinese).
 (徐如人, 庞文琴, 屠昆岗, 沸石分子筛的结构与合成, 吉 林大学出版社, 长春, 1987, p. 249)
- 12 Persson, E.; Schoeman, B. J.; Sterte, J.; Otterstedt, J. E. Zeolites 1995, 15, 611.
- 13 Boudreau, L. C.; Kuck, J. A.; Tsapatisis, M. J. Membr. Sci. 1992, 152, 41.

(A0303171 SHEN, H.; FAN, Y. Y.)