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Abstract: In wireless sensor networks, due to environmental limitations or bad wireless 

channel conditions, not all sensor samples can be successfully gathered at the sink.  In this 

paper, we try to recover these missing samples without retransmission. The missing 

samples estimation problem is mathematically formulated as a 2-D spatial interpolation. 

Assuming the 2-D sensor data can be sparsely represented by a dictionary, a sparsity-based 

recovery approach by solving for l1 norm minimization is proposed. It is shown that these 

missing samples can be reasonably recovered based on the null space property of the 

dictionary. This property also points out the way to choose an appropriate sparsifying 

dictionary to further reduce the recovery errors. The simulation results on synthetic and 

real data demonstrate that the proposed approach can recover the missing data reasonably 

well and that it outperforms the weighted average interpolation methods when the data 

change relatively fast or blocks of samples are lost. Besides, there exists a range of missing 

rates where the proposed approach is robust to missing block sizes. 

Keywords: data interpolation; sparsity; wireless sensor network 

 

1. Introduction 

A wireless sensor network (WSN) typically consists of a potentially large number of wireless 

devices able to take environmental measurements [1]. Typical examples of such environmental 

measurements include temperature, light, sound, and humidity [2,3]. These sensor readings are then 
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directly transmitted over a wireless channel to a central node [4], called the sink, where a running 

application makes decisions based on these sensor readings. 

The fusion of information from multiple sensors with different physical characteristics enhances the 

understanding of our surroundings and provides the basis for planning, decision-making, and control 

of autonomous and intelligent machines [5]. Unfortunately, due to factors such as packet loss and 

collisions, low sensor battery levels, and potential harsh environmental conditions [6], not all sensor 

readings can be successfully gathered at the sink, i.e., some readings could be lost. Often, the sensors 

are simple devices that do not support retransmission and furthermore, the strict energy constraints of 

sensor nodes also result in great limitations for number of transmissions. In other cases, the 

retransmission may not be possible when the sensors are permanently broken. Figure 1 shows a large 

scale WSN with missing samples. Large scale WSNs are known to suffer from coverage holes, i.e., 

regions of the deployment area where no sensing coverage can be provided [7]. Such holes are often 

the result of network congestion, hardware failures, extensive costs for deployment, or the hostility of 

deployment areas. Lee and Jung [8] have proposed an adaptive routing protocol to recover a network 

after failures after large areas, Peng [9] improved the accuracy of node fault detection when number of 

neighbor nodes is small and the node’s failure ratio is high. 

Figure 1. A sensor network with missing samples. ― ‖ represents an unsampled location. 

 

 

In this paper, we aim to reasonably recover the missing data without retransmission. Due to the 

nature of the network topology, readings among sensors may be strongly correlated. This correlation 

provides us a good opportunity to recover these missing samples. For example, Collins et al. [10] and 

Sheikhhasan [11] have discussed temperature interpolation with the help of spatial correlations. 

Roughly speaking, there are two typical ways to investigate the spatial correlation for data 

interpolation or missing data recovery, which are inverse distance weighted averaging (IDWA) [10,11] 

and Kriging [7,10].  

The inverse-distance weighted averaging (IDWA), which is relatively fast and easy to compute, is 

one of the most frequently used methods in the spatial interpolation [12-14]. Assuming the spatial 

correlation in adjacent sensors is uniform, IDWA tries to estimate the values of unsampled sensors in the 

form of some linear combination of values at neighboring known sampled sensors. The weights for the 

linear combination only depend on the distance between the unsampled and the sampled sensors [12-14]. 

The sensors located close to the unsampled sensors are assigned larger weights than the sensors that 

are far away from the unsampled sensors. Thus, IDWA will work well if the values of unsampled 
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sensors are expected to be similar to values of the neighboring sensors. However, this assumption 

affects the estimation accuracy in many practical situations, where physical phenomena evolve in a 

more erratic way than uniformly increasing or decreasing in magnitude [7]. The averaging process in 

IDWA has the tendency to smoothen the data, which is not suitable for the situation when data change 

fast in the area of interest. In addition, for the special case that a block of sensors are missing, IDWA 

may not provide a confident estimation since the measurements beyond the missing-block may be very 

different from the measurements within the missing-block. 

Kriging [7,10] is another way to estimate the missing samples using the combination of available 

measurements. By calculating the spatial correlation between two points, a semivariogram is defined 

to obtain the weights for linear combination. As a result, these weights vary spatially and depend on 

the correlation. Assuming the historical variogram is known and can approximately represent the 

current variogram, missing samples are estimated based on the historical variogram function. 

However, the spatial interpolation may not be right if the semivariogram varies a lot in the temporal 

dimension. 

In this paper, we propose a sparsity-based recovering method that can capture the spatial variation 

and does not require knowledge of the historical spatial correlation. Suppose a wireless sensor network 

is deployed to monitor a certain spatially varying phenomenon such as temperature, light, or moisture, 

a snapshot of the physical field being measured can be viewed as a signal or image with some degree 

of spatial correlation [7]. If the sensors are geographically placed in a uniform fashion, then 2-D 

Discrete Cosine Transform (DCT) or 2-D Discrete Wavelet Transform (DWT) can be used to sparsify 

the network data. The fast changes in a local region often can be sparsely represented as some high 

frequency components and the smooth region can be represented by some low frequency components. 

As an exciting research topic in signal processing, compressed sensing (CS) was introduced by  

Bajwa et al. into wireless networks [15]. Haupt et al. gave a comprehensive review and looked 

forward to the prospect of CS in sensor networks [16]. Lu et al. [17] proposed a distributed sparse 

sampling algorithm to efficiently estimate the unknown sparse sources in a diffusion field. 

The main difference between the missing data recovery problem and the conventional compressive 

sensing (CS) is that in the conventional CS, the sampling scheme can be designed by the users, and 

usually random linear projections are preferred, while in the missing data recovery problem the 

sampling matrix cannot be controlled by the user since it is determined by the missing events, e.g., 

locations of missing nodes in the network.  

In this paper, assuming the sensor data is sparse in the DCT or DWT domain, we propose a  

sparsity-based spatial interpolation method for recovering missing samples in wireless sensor networks 

without retransmission. The main contributions of the paper are summarized as follows: 

(1) A sparsity-based recovery algorithm via solving the l1 norm minimization to recover the missing 

samples in the spatial domain is proposed. 

(2) Based on the theoretical analysis of the proposed method, we discuss how to choose an 

appropriate dictionary to reduce estimation errors. From a practical point of view, if 2-D sensor data 

are both sparse in both the DCT and wavelets domains, then DCT is a better choice because a localized 

basis cannot carry enough information or even no information if the a relative large missing block 

overlaps with the compact support of basis, e.g., wavelets basis. This is verified by simulations on  

real data. 
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(3) Extensive comparisons of the proposed method and a weighted average interpolation method 

called K-Nearest Neighbors (KNN) are conducted. The advantage of the proposed method is 

demonstrated in terms of criteria root mean square error (RMSE) and visual data fidelity, both on 

synthetic and real data. Simulations show that using the proposed method one can provide more 

reasonable recovered data when the data changes fast or missing blocks are large. 

Currently, we focus on the regular grid sensor networks. For irregular grid networks, traditional 

sparsifying transforms, e.g., DCT, may not be applied directly. However, one can also extend the 

sparsity-based interpolation method to irregular grid sensor network by partitioning the sensors into 

cells with some tree-structure, e.g., k-d trees [18].  

The remainder of this paper is organized as follows. In Section 2, the theoretical framework is 

developed to define the 2-D missing data recovery problem based on the data sparsity, the recovery 

error is computed, and how to choose appropriate dictionary to reduce recovery error is also discussed. 

In Section 3, the advantage of the proposed approach over traditional interpolation methods are 

illustrated in two examples. In Sections 4, the iterative thresholding algorithm is explored for 

recovering the missing samples. In Section 5, simulations of missing data recovery are presented for 

both on synthetic and real data sets. Also, the relationship among the recovery error and the missing 

pattern is discussed. Advantage of DCT over wavelets for sparsity-based interpolation is demonstrated 

in Subsection 5.3. Finally, the conclusions are given in Section 6. 

2. Problem Formulation 

Consider that the values      1 2, , nZ x Z x Z x  represent readings of a spatial process Z  at 

locations 1 2, , nx x x  at a given time instant, and they can be collected and arranged in a vector 

     1 2, , ,
T

nZ x Z x Z x   f  to form the network data. The network data  is assumed to be 

composed as a linear combination of few atoms from a dictionary , i.e.,: 

f Φx  (1)  

where  is expected to be sparse, . The dictionary Φ  is the n d  matrix with 

 rank n d Φ . The dictionary is said to be redundant or overcomplete whenever n d . 

The network data f  contains the available data  and the missing data . After 

reordering: 

 
(2)  

According to the indices of the available data af  and the missing data pf , the rows of Φ  are 

partitioned into two parts as: 

 (3)  

With this partition, the Equation (2) can be regrouped as: 

a

p


  



Ax f
Φx f

Bx f
 (4)  
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To recover f , we can find the solution 
*

x  first by solving: 

aAx f  (5)  

and then plug it into: 

pBx f  
(6)  

to get pf . However, Equation (5) is under-determined since m d , thus more than one solutions are 

possible to satisfy it. Since x  is sparse, we can employ sparsity to regularize the solution by solving 

the 1 -minimization problem: 

1
arg min s.t. a

x
x Ax f  (7)  

Now suppose f  is k -sparse, i.e., it can be represented as a weighted combination of k  columns of 

dictionary Φ . Given the support of coefficient vector x is  : 0iS i x 
x , the cardinality of 

x : S k
x , and S

x
 is the set of index of nonzero entry in x , accordingly, the available data is: 

a j j

j S

x A


 
x

f  
(8)  

where jA  stands for the thj  column of A . For simplicity, we assume all columns of Φ  are 

orthogonal to each other. Due to some entries of  f  are missing, the columns in A is shorter than the 

columns in Φ . and some columns of  A are correlated. 

Suppose there is another nonzero vector  satisfying aAx f the support of x  is S
x

 with 

S kx
. If the thi  ( i S

x
) column in A is correlated with other columns, 

a
f  can also represented by 

weighted combinations of k  column of A : 

a j j

j S

x A


 
x

f  
(9)  

if 
j i

j S i S

x x
 

 
x x

, the 
1
-minimization algorithm will choose solution x , and thus leading to a wrong 

estimation.  

Let  h x x , then 0Ah  meaning that h  is a nonzero vector in the nullspace of A , and h  has at 

most k k  nonzero entries. Because the sparsity-based interpolation method seeks the 1  

minimization solution under the constraint of available data consistency Ax Ax , the error of 

interpolated signal solution f Φx  is: 

2 2 22
   f f Φx -Φx Bx - Bx Bh  (10)  

When Φ  is a basis, its rows are all orthogonal to each other, and the nullspace of A  are spanned by 

the rows of B . So h  is a linear combinations of rows of B , i.e., Th B α , where  . Then, 

Equation (9) can also be written as: 

222

T  f f BB α α  (11)  

Generally speaking, there may be multiple possible candidate solutions like x  when the available 

samples are not enough. The best case is x x , and 0h  thus 0α . The worst case is S S 
x x

, 
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and h contains k k d   nonzero entries, and α  has many nonzeros. When 
2

α  is smaller than 

expected error level, then we can say that we get a reasonable interpolation result. 

Zhang et al [19] gave deterministic conditions that guarantee a successful exact recovery. It states 

the condition as strict k -balancedness of null space of A , where 
*

x  is the sparsest solution to f Φx  

with k  nonzeros. Thus the following factors play important roles in recovery performance:  

(1) The sparser a vector x  is, the more likely a null space  will be strict  

k-balanced.  

(2) Let
  

, then the smaller m  is, the less likely a null space will be strict k -balanced since 

the null space becomes larger. 

(3) The available data correspond to A, and the missing data correspond to B. In other words, the 

missing node locations decide the rows of B. 

(4) If Φ  is a basis, the row vectors of B  spans the null space. 

However, the conditions for exact recovery are not verifiable in polynomial time. In this paper, we 

aim to reasonably interpolate the missing data, not necessarily to achieve exact recovery, so an 

important question is how to choose a good basis for data of sensor networks to get a more reasonable 

interpolation result?  

From an application point of view, a WSN consists of spatially distributed autonomous sensors to 

cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, or 

pressure. Generally speaking, these physical phenomena are more often fields [13], so the network 

data are usually smooth. Due to the limited number of sensors, the data often have low resolution. 

Since the discrete cosine transform (DCT) can expresses a sequence of finitely many data points in 

terms of a sum of cosine functions oscillating at different frequencies, the DCT is an appropriate basis 

to sparsify WSN data which are smooth and in low-resolution. On contrary, natural images usually 

contain crisp boundaries or strong edges at localized regions. These image features can be sparsely 

represented by the localized basis such as wavelets. 

According to Equation (8), let ijA  denote the thi entry of jA  ( j S
x

). Then, ijA  is the weight of 

jx  for the linear combination 
1

d

ij j

j

x


A , where i  corresponds to the thi  available sample in af . jx  has 

no way to be estimated if all its weights are zero. Let jΦ  be the thj  column of dictionary Φ . If jΦ  

has compact support and the missing block overlap with the compact support, then most of the entries 

in the jA  will be zeros.  

In this case, jA  cannot provide enough constraints that ix  must satisfy. In another word, more 

nonzeros in i
A  can provide more information for ix  because of more constraint equations. So, a 

dictionary with non compact support is preferred. If both DCT and wavelet transform can sparsify the 

data, DCT is a better choice since the wavelet basis functions are localized as Figure 2 shows, while 

DCT basis functions always have non-zero in a large range. If some parts of a DCT basis function are 

missing due to missing samples, the rest part of the function can still provide us information to recover 

the coefficients. Simulations in Figure 19 will demonstrate this issue. 
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Figure 2. Basis functions of 2-D DCT and Wavelet, with size 64 × 64. (a), (b) and (c) are 

DCT basis waveform according to its low, middle and high frequency component, 

respectively; (d), (e) and (f) are Wavelet basis waveform according to its low, middle and 

high frequency component, respectively. 
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3. Advantage 

The IDWA interpolation assumes uniform correlation in the neighboring data. In many situations, 

this may not be true due to the fast and anisotropy changes in the neighborhood. A sparsity-based 

interpolation method does not require high correlation of the neighboring data. As long as the data are 

sparse in a chosen dictionary, it will work. 

We created a toy example image like this: the left half of the image is a smooth image, while the 

right half is also smooth, but there is a sharp boundary. As shown in Figure 3, we can choose an 

artificial image for the left so that it is very sparse under DCT or wavelet domain. We could even 

simply linearly combine a few bases to form the left image. We construct a right half image similarly. 

Now suppose we only sample some pixels on the left half, and right half, we should be able to 

reconstruct the entire image nicely (e.g., the sparsity constraints select the basis functions that we used 

to generate the left image), but IDWA will blur the boundary. The sharp edge information is very hard 

for IDWA to capture because the weights of neighbor values depend on the distances between an 

interpolated node and its neighbors. 

In the following, the K-nearest neighbor algorithm (KNN) [20,21] is chosen as an IDWA method 

for the 2-D case. The weight for each neighbor is computed by the inverse distance from the neighbor 

to the target missing samples. We use normalized root mean squared error (RMSE) to assess the 

accuracy of estimation which is defined as: 

 

max min

2

1

ˆ

ˆRMSE( , )

N

i ii

i i

f f

N

f f









f f  
(12)  
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where if  and ˆ
if  stand for thi ( 1,2, ,i N ) entry of  the original data vector f  and the recovered data 

vector f̂ , respectively. This normalization in RMSE allows for the comparison of estimation accuracy 

between different data sets. 

Figure 3. A toy example on boundary recovery. (a) Complete data, (b) Available data,  

(c) KNN interpolation, RMSE_KNN = 8.71 × 10
−2

, (d) Sparsity-based interpolation, 

RMSE_DCT = 4.31 × 10
−5

. 

  

(a)                                   (b) 

   

(c)                                   (d) 

4. A Fast Iterative Thresholding Algorithm to Solve the Sensor Data Recovery 

Consider an optimization task that mixes 2  and 1  expressions in the form: 

 
2

2 1

1

2
aF   x f Ax x  (13)  

where  is a function of the vector x . This is a relaxed variant of the problem posed in 

Equation (6), and the parameter   governs the tradeoff between the data consistency and the sparsity 

of x .  

In recent years, a family of iterative thresholding algorithms has gradually been built to address the 

above optimization task in a computationally effective way [22-24]. Bredies and Lorenz [25] proves 

the convergence of iterative thresholding and they guarantees that the solution is the global minimizer 

for convex  F x . The core idea is to minimize the function  F x  iteratively [19], and Equation (7) 

can be simply solved by iterative thresholding: 

 1 /

1 T

i c i iS
c



 
   

 
x A x Ax x  (14)  

where the parameter c will be chosen such that 0Tc  I A A  and  /cS τ  is a soft thresholding 

operator to shrinkage each entry  j of  vector τ  according to: 

 /

0 , /

,otherwise

j

c j j

j

j

if c

S

c



 

  




 


 
 



 (15)  
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However, the algorithm computes these solutions by updating the active set considering one 

coordinate at a time as a candidate to enter or leave the active set. Fadili et al. [26] demonstrated that 

using Equation (14) to solve Equation (7) can still be computationally demanding for large-scale 

problems, therefore we adapt here the same ideas and utilize a fast iterative-thresholding algorithms 

where the sequence 
i  ( 1,2,i  ) is allowed to be strictly decreasing. Figure 4 presents the flowchart 

of the soft iterative thresholding algorithm for sparsity-based interpolation. 

Figure 4. The flowchart for the sparsity-based interpolation algorithm with fast iterative thresholding. 

 

 

The stop criterion   depends on the fidelity of the received samples. The parameter   is adopted 

to decrease the threshold /i c  in each iteration. The smaller   is, the faster x  converges. The two 

parameters   and   in the algorithm are constants, and we set them to be the same in all the 

experiments. From empirical analysis, 910   and 0.95   give good results for our experiments. 
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5. Simulation and Analysis 

In this section, we provide some numerical simulations for 1-D and 2-D missing data recovery. In 

order to validate the proposed approach, we generate 1-D and 2-D synthetic data which can be sparsely 

represented as DCT coefficients, and compare the estimation accuracy of the proposed approach with 

IDWA interpolation on these synthetic data sets. We also use real sensor data sets [2] to validate our 

method. All the simulation results with the sparsity-based data interpolation are accomplished only 

with DCT as the sparsifying transform, except the simulation in Figure 19 where the failure of 

wavelets is shown for real data. We do not compare our method with the Kriging method since no 

historical variogram is available in our experimental data.  

All the simulations are repeated 100 times, and the locations of missing samples are changed for 

each repeated simulation. The average and standard deviation of RMSE are computed. The main 

parameters in the simulations are N, the number of samples in the original data; M, the number of 

missing samples; and S , the number of nonzero sparse coefficients. We also define the missing rate as 

M
m

N
  and sparsity 

S
s

N
 . The relationships among estimation accuracy different missing rates and 

missing square block sizes are discussed in the next sections.  

5.1. Experiment with Synthetic 2-D Data 

In this subsection, the KNN and the sparsity-based interpolation methods are compared on the 

synthetic data. Sensor data are smooth if they have a strong spatial correlation. By applying the 2-D 

DCT transform on the spatially deployed sensor data, the major energy of these data will concentrate 

on low frequency domain. When the data change rapidly in local regions, it has strong high frequency 

components in the DCT domain. So, it is meaningful to discuss the performance of missing data 

recovery when the sparsity of sensor data is represented in the high frequency, low frequency, and 

mixed high and low frequency DCT coefficients, respectively. In addition, what the recovered data 

look like for different missing patterns and missing rates is also very useful. The effect of the missing-

block-size on the RMSE is also discussed. 

Figure 5. 2-D synthetic low frequency data with size 64 × 64 is generated from 64 nonzero 

coefficients in low frequency domain of DCT. (a) 2-D synthetic data. The color bar 

denotes the sample value of each spatial node. (b) 64 nonzero coefficients in DCT 

dictionary. The size of the DCT dictionary is 64 × 64. The color bar denotes the coefficient 

value of each atom in DCT dictionary. 
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A set of 64 × 64 2-D synthetic data, shown in Figure 5(a), is generated from 64 nonzeros in low 

frequency DCT domain as shown in Figure 5(b). It is clear that the low frequency DCT coefficients 

can provide a smooth representation of spatially 2-D sensor data. Figure 6 shows the recovery 

performance of KNN and the proposed approach for spatially smooth data. KNN results in a large 

RMSE which means KNN fails to recover the missing samples. When a block of samples are missing, 

KNN has to choose the nodes beyond the block as its neighbors whose values may differ significantly 

from the interpolated node, indicating that KNN is sensitive to the size of missing patterns. 

Our method produces very low RMSE if the missing-block-size is smaller than 8 × 8 and the 

missing rate is smaller than 0.5. This missing rate is promising since we can recover the missing 

samples when half of sensor data are missing. As the missing rate increases, the RMSE of the 

proposed method remains nearly the same within certain intervals until the missing rate reaches a 

turning point. 

As shown in Figure 6(b), for example, if the acceptable value of RMSE is at 410 , the turning point 

of missing rates are 0.3, 0.6, and 0.8 for 4 × 4, 2 × 2, and 1 × 1 missing-block-sizes, respectively. It is a 

very appealing characteristic that in these stable ranges, the estimation quality is still good and nearly 

independent of the missing rate. This can be explained by Equation (7), which states that when the 

number of samples is large enough, the missing samples can be well recovered with overwhelming 

probability. The stable range shortens as the missing-block-size increases because the increase of 

block-size introduces less randomness to the sensing matrix Φ . When a large block of sensor samples 

are missing, e.g., 8 × 8, the proposed method cannot guarantee a low RMSE. However, 8 × 8  

missing-block is a very extreme case for the 64 × 64 sensor network. Even in this situation, our 

method performs better than KNN in term of the RMSE. 

Figure 6. Effect of missing rate and missing block size on estimation quality with spatially 

smooth sensor data. (a) and (b) shows the RMSE curve of KNN and the proposed 

approach, respectively. Error bar stands for the standard deviation with aspect to the 

repeated 100 times of simulations for the same size of missing blocks and same missing 

rate. This can help eliminating and understanding the influence of randomness of each 

simulation. 
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Figure 7 shows the recovered data by KNN and the proposed approach under different  

missing–block-sizes. The missing rate is fixed at 0.3. We can see that the estimation quality is much 
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better by our sparsity-based recovery method than KNN. For KNN, due to the missing blocks of 

samples, the recovered data suffer from blocking effects, i.e., the edge is not smooth for the  

missing-block. This effect becomes worse when the missing-block-size increases. Conversely, the 

proposed approach recovers the missing data almost equally well under different missing-block-sizes. 

Figure 7. Effect of missing block size on the estimation quality of Figure 5(a) for missing 

rate = 0.3. (a–c) show sensor data with 1 × 1, 2 × 2 and 4 × 4 missing block size, 

respectively; (d–f) Recovered data by KNN under (a–c) respectively; (g–i) Recovered data 

by the proposed approach under (a–c), respectively. 
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Now, we discuss the performance of recovery for fast changes in the sensor data network.  

The 64 × 64 2-D synthetic data, shown in Figure 8(a), is generated from 64 nonzero high frequency 

DCT coefficients as shown in Figure 8(b). In this case, fast oscillations are presented. Figure 9 shows 

the recovery performance of KNN and the proposed approach for oscillating data. In Figure 9(a), KNN 

performs poorly in term of the RMSE. Because KNN has the tendency to smoothen the data, it is not 

suitable for high frequency data. Under different block sizes, the RMSE curves of KNN for high 

frequency data are all much higher than that for low frequency data. On the contrary, our method 

approaches very low RMSE if the block-size is smaller than 8 × 8 and the missing rate is smaller  

than 0.5. This result is very similar to the recovery of smooth data in Figure 6(b). So, if the sparsity is 

satisfied and the block-size is not too large, the sparsity-based recovery is robust to smooth or 

oscillating sensor data. According to the compressive sensing theory, sparsity-based recovery mainly 
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depends on the global sparsity of data but not too much on whether this data is sparse in low or high 

frequencies. 

Meanwhile, the proposed approach can get good estimation results as long as the missing rate is 

lower than a certain value, e.g., 0.3, 0.6, and 0.8 for 4 × 4, 2 × 2, and 1 × 1 missing-block-size, 

respectively. Thus, the proposed approach is robust with different sizes of missing blocks. For 

example, with 4 × 4 missing-blocks, the RMSE is still low if the missing rate is smaller than 0.3. It 

means one quarter of sensors samples can be missed although the block-size is a little large for  

a 64 × 64 sensor network. 

Figure 8. 2-D synthetic high frequency data with size 64 × 64 is generated from 64 

nonzeros coefficients in high frequency domain of DCT. (a) 2-D synthetic data. The color 

bar denotes the sample value of each spatial node. (b) 64 nonzero coefficients in DCT 

dictionary. The size of the DCT dictionary is 64 × 64. The color bar denotes the coefficient 

value of each atom in DCT dictionary. 
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                                                                       (a)                                                         (b) 

Figure 9. Effect of missing rate and missing block size on estimation quality with 

oscillating sensor data. (a) and (b) shows the RMSE curve of KNN and the proposed 

approach, respectively. Error bar stands for the standard deviation with aspect to the 

repeated 100 times of simulations for the same size of missing blocks and same missing rate. 

This can help eliminating and understanding the influence of randomness of each simulation. 
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However, an interesting phenomenon in Figure 9(a) is that larger missing blocks lead to lower 

RMSEs of KNN. Due to the periodic oscillation of the synthetic high frequency data, when missing 

block is larger than one period of cosine wave, at least one missing sample is recovered correctly. 
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While missing block is small, it is hard or even impossible to recover any missing samples, e.g., each 

of them cannot be represented via the linear combination of its nearest neighbors.   

An intuitive explanation is shown in Figure 10 for the 1-D high-frequency component which is 

generated from high-frequency DCT coefficients. For the small missing block, suppose the value of 

point 
1P  is missed, A  and B  are the nearest neighbors of 

1P , then 
1P  is hard to be recovered via linear 

combination of A  and B . However, for the large missing block, suppose the value of point 2P  is 

missed, C  and D  are the nearest neighbors of 2P , then it is possible to recover 2P  via the linear 

combination of C  and D .  This implies large block size may help KNN to recover the missing samples 

for the high-frequency data. This can explain why larger missing blocks lead to lower RMSEs. 

Figure 10. Missing sample estimation of a high frequency component with KNN. The 

solid line represents available samples, where the dash line denotes missing samples. 

Points A, B are nearest neighbors of a small missing block, and C and D are nearest 

neighbors of a large missing block. Points P1, P2 are missing points to be recovered. 

 

 

Figure 11 shows the recovered high frequency data by KNN and the proposed approach under 

different missing-block-sizes. The missing rate is fixed at 0.3. Obviously, the new method outperforms 

KNN since KNN fails to recover the data while our method successfully recovers the missing data for 

different missing-block-sizes. 

Figure 11. Effect of the missing block size on the estimation quality of Figure 8(a) for 

missing rate at 0.3. (a), (b) and (c) show sensor data with 1 × 1, 2 × 2 and 4 × 4 missing 

block size, respectively; (d), (e) and (f) are the recovered data by KNN corresponding to 

(a), (b) and (c), respectively; (g), (h) and (i) are the recovered data by the proposed 

approach corresponding to (a), (b) and (c), respectively. 
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Figure 11. Cont. 
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                              (g)                                             (h)                                             (i) 

Meanwhile, the real WSN data always contain both low frequency components and high frequency 

components simultaneously. So a 2-D synthetic data with size 64 × 64 is generated from 32 nonzero 

coefficients in the low frequency DCT domain and 32 nonzero coefficients in the high frequency 

domain, which is shown in Figure 12.  

Figure 12. 2-D mixed data with size 64 × 64 is generated from 32 nonzeros of low 

frequency DCT coefficients and 32 nonzeros of high frequency DCT coefficients.  

(a) Original data. (b) DCT coefficients. The size of the DCT dictionary is 64 × 64. The 

color bar denotes the coefficient value of each atom in DCT dictionary. 
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(a)                                                          (b) 

The recovery RMSE curves of KNN and the proposed approach for the mixed data are shown in 

Figure 13. Meanwhile, fixing the missing rate at 0.3, Figure 14 compares the visual recovered data by 

these two methods under different missing–block-sizes. The result on mixed data is in accordance with 

the simulations on low and high frequency components separately. The only difference is the RMSE 

curves of KNN under different size of missing blocks become closer to each other. The reason is that 

when block size becomes larger, KNN’s RMSE increases for low frequency components, but 

decreases for high frequency components. Now since mixed signal contain both low and high 

frequency components, the two opposite effects cancel out each other. 
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Figure 13. Effect of missing rate and missing block size on estimation quality with mixed 

sensor data. (a) and (b) shows the RMSE curve of KNN and the proposed approach, 

respectively. Error bar stands for the standard deviation with aspect to the repeated  

100 times of simulations for the same size of missing blocks and same missing rate. This 

can help eliminating and understanding the influence of randomness of each simulation. 

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Missing rate

R
o
o
t 
M

e
a
n
 S

q
u
a
re

 E
rr

o
r 

(R
M

S
E

)

 

 

1*1 missing block

2*2 missing block

4*4 missing block

8*8 missing block

 
0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Missing rate

R
o
o
t 
M

e
a
n
 S

q
u
a
re

 E
rr

o
r 

(R
M

S
E

)
 

 

1*1 missing block

2*2 missing block

4*4 missing block

8*8 missing block

 

(a)                                                                      (b) 

Figure 14. Effect of the missing-block-size on the estimation quality of Figure 11(a) for 

missing rate=0.3. (a), (b) and (c) show sensor data with 1 × 1, 2 × 2 and 4 × 4 missing 

block size, respectively;  (d), (e) and (f) are the recovered data by KNN corresponding to 

(a), (b) and (c), respectively; (g), (h) and (i) are the recovered data by the proposed 

approach corresponding to (a), (b) and (c), respectively. 
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From the above simulations on recovering the missing samples of smooth, oscillating and mixed 

sensor data, it is clear that the proposed method can successfully recover the missing samples if the 

sensor data can be sparsely represented in a transform domain and the number of available samples is 

enough. Specifically, the proposed approach is much more robust to both the block-missing-size and 

missing rate than the conventional weighted averaging method such as KNN. And it does not rely on 

locations of nonzero DCT coefficients since the l1 norm is separable. 

5.2. Experiment with Real 2-D Data 

To validate the performance of the sparsity-based missing data recovery in a sensor network, a 

mean monthly surface climate over global land areas, excluding Antarctica [2] is employed as the data 

set for simulation. The climatology data includes eight climate elements—precipitation, wet-day 

frequency, temperature, diurnal temperature range, relative humidity, sunshine duration, ground frost 

frequency and wind speed—and was interpolated from a data set covering the period from 1961 to 

1990. The data are available through the International Water Management Institute World Water and 

Climate Atlas (http://www.iwmi.org) and the Climatic Research Unit (http://www.cru.uea.ac.uk). This 

data set consists of the monthly averaging surface sunshine duration in June over global land areas 

from 1961 to 1990. The final measurement points in the data set formed a regular grid of 10’ 

latitude/longitude over the region under study. We select a subset of 64 × 64 data that has no missing 

values, shown in Figure 15, as the original data without missing samples.  

Figure 15. A snapshot of mean monthly surface sunshine duration in June over global land 

areas, excluding Antarctica. 
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Since the data are the average values from 1961 to 1990, it is very smooth and should be highly 

compressible in the DCT domain. When applying the real data set to simulate the sparsity-based signal 

processing, Luo et al. [27] suggest preserving the S  largest coefficients in a transform domain. Let 

1 2[ ]T

N  α  be a vector to represent the DCT coefficient of the real data, we define Sα  as the 

vector of coefficients ( i ) with all but the largest S set to zero. By calculating the normalized energy 

loss that is smaller than 510 : 
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2
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2

2

10
S 

α -α

α
 

(16)  

S = 240 is achieved for the selected subset dataset. Equation (16) shows that keeping largest 240 

coefficients leads to little loss of energy and preserves most information of α . Figure 16 shows the 

smoothed real data by keeping 240 largest coefficients and set remaining ones zero. This makes sense 

since most real signals can be represented with a few coefficients in a transform domain without losing 

much information [28,29]. 

Figure 16. A 64 × 64 2-D smoothed real dataset and its DCT coefficients, which keeps 

more than 99.99% energy of raw data. (a) 2-D real dataset. (b) DCT coefficient vector 

contains 240 nonzeros. The size of the DCT dictionary is 64 × 64. The color bar denotes 

the coefficient value of each atom in DCT dictionary. 
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The RMSE performance of this data set is evaluated in terms of missing block size and missing rate 

in Figure 17.  

Figure 17. Effect of missing rate and missing block size on estimation quality with real 

sensor data. (a) and (b) show the RMSE curve of KNN and the proposed approach, 

respectively. Error bar stands for the standard deviation with aspect to the repeated  

100 times of simulations for the same size of missing blocks and same missing rate. This 

can help eliminating and understanding the influence of randomness of each simulation. 
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Our proposed method results in very small RMSE when the missing rate is smaller than 0.5 for  

1 × 1 and 2 × 2 missing-blocks. The improvement over KNN holds for 1 × 1, 2 × 2 and 4 × 4 blocks 

until too many sensor samples are missing, i.e., when the missing rate is larger than 0.8. Both  

our proposed method and KNN have very large RMSE for 8 × 8 missing-blocks because the  

missing-block-size is too large for the 64 × 64 sensor network. 

Figure 18 shows the recovered sensor network data with a missing rate 0.4. Compared with the  

non-missing data in Figure 16(a), KNN failed to recover some features and introduce the blocking 

artifacts when the missing block becomes large. As shown in Figure 18(d–f), this disadvantage of 

KNN becomes serious when the missing-block-size increases. In contrast, our method shows the 

ability to recover the data without significant information loss. In addition, the change of  

missing-block-size nearly does not affect the recovered data. Thus, the proposed method is robust to 

missing block sizes. 

Figure 18. Effect of the missing block size on the estimation quality of Figure 16(a) for 

missing rate at 0.4. (a), (b) and (c) show sensor data with 1 × 1, 2 × 2 and 4 × 4 missing 

block size, respectively; (d), (e) and (f) are the recovered data by KNN corresponding to 

(a), (b) and (c), respectively; (g), (h) and (i) are the recovered data by the proposed 

approach corresponding to (a), (b) and (c), respectively. 
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As demonstrated from Figures 5 to 14, the proposed method can give much better performance in 

simulations. However, for the real dataset captured from a snapshot of mean monthly surface sunshine, 
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these advantages are not so evident, as shown in Figures 17 and 18. According to the simulation results 

on both synthetic data and real data, the estimation quality of the proposed method are lowered with 

the increase of the value  M/S, where M denotes missing rate, and S  denotes the number of nonzero 

coefficients. Fixing M  and total number of data N = 64 × 64, a smaller S  will produce better 

performance, or lower RMSE. The three synthetic data sets in Figures 5, 8, 12 all have N = 64 × 64 

and S = 64, and the real data set in Figure 16(a) has N = 64 × 64 and S = 240, which means it has 

more nonzero coefficients. That is why the advantages are not so evident on the real data as on the 

synthetic data. However, one can still observe the proposed method can overcome the obvious blocky 

artifact of KNN in Figure 18. What is more, if sensor data contain fruitful high-frequency components, 

e.g., rapid changes in localized regions, the advantage of the proposed method will become more 

obvious, as demonstrated in the results of synthetic high frequency data. 

5.3. Comparisons of DCT and Wavelets for the Sparsity-Based Interpolation        

Now suppose we choose a 2-D wavelet as the sparsifying transform for the real data, and by 

calculating the normalized energy loss as Equation (16), the largest S = 408 wavelet coefficients are 

kept and the rest wavelet coefficient are set to be zeros. Figure 19 compares the estimation quality of 

the real data by KNN, the proposed method with wavelet or DCT dictionaries.  

Figure 19. Comparisons on the wavelet-based, DCT-based sparsity-interpolation and KNN 

interpolation for the data represented by sparse wavelet coefficients. (a) A  

64 × 64 2-D smoothed real dataset in wavelet domain, which keeps more than 99.99% 

energy of raw data, (b) recovered data by KNN, (c) recovered data by proposed method 

with wavelet, (d) recovered data by proposed method with DCT, (e) available data when 

missing rate is 0.4 and block size is 2 × 2, (f), (g) and (h) are the recovered error of (b), (c) 

and (d), respectively, and the RMSE of three methods are 0.31, 0.99 and 0.18, respectively. 
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                  (e)                                     (f)                                     (g)                                    (h) 

 

Although the data is composed of sparse wavelet coefficients, obvious recovery errors are observed 

for the wavelet-based recovery samples as shown in Figures 19(c,g). As we explained in the Section 2, 
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when the relatively large missing blocks overlaps with the compact support of wavelet basis, most of 

the weights in the underdetermined equations in Equation (8) will be 0. Thus, not enough information 

is taken use of by using the wavelet basis to recover the data. On the contrary, DCT produces the 

lowest RMSE in the three methods. Since DCT do not have the localized support, less entries in the 

underdetermined equations in Equation (8) will be nonzero, this can provide more information than 

wavelet to help recover the missing samples. Therefore, a non compact support basis is preferable for 

the spatial interpolation.  

6. Conclusions and Future Work 

In this paper, we have proposed a sparsity-based method to recover the missing data in wireless 

sensor networks. Instead of investigating the correlation in local neighboring sensors, the proposed 

approach exploits the sparsity of network data by solving the l1 norm minimization problem. Both 

synthetic and real data simulation results demonstrate that the proposed approach can successfully 

recover the missing data and that there exists a flexible range of missing rates where the proposed 

method is robust to missing block size, as long as the network data have the sparsity property. 

Although the sparsity-based interpolation shows advantages over KNN, for some other applications 

and under different assumptions, it could be wed with KNN as well as other interpolation methods to 

make full use of their respective advantages. For example, one limitation of sparsity-based 

interpolation is that the number of available samples should be enough to estimate the DCT 

coefficients. Based on the observation that KNN can recover the missing samples reasonably when the 

data only contains low-frequency components and size of missing blocks is not too large as shown in 

Simulation part, KNN could be utilized to estimate the low-frequency components and sparsity-based 

interpolation is employed to estimate the high-frequency components. This potentially requires less 

available samples for the sparsity-based method since the unknowns for l1 minimization are reduced. 

For the future work, an extension of the proposed method for the irregular grid by dividing the whole 

network field into cells will be further investigated. Also we will extend it to 3-D case where the third 

dimension is time.  
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