√iew	metadata,	citation	and	similar	papers	at	core.ac.u	ł
------	-----------	----------	-----	---------	--------	----	-----------	---

2004 年第 62 卷

第19期, 1927~1934

化	学	学	报
ACTA (CHIM	IICA	SINICA

Vol. 62, 2004 No. 19, 1927 ~ 1934

瓜环与长链二胺自组装实体结构考察

徐周庆^a 姚晓青^a 薛赛凤^{*,a} 祝黔江^a 陶 朱^a 张建新^b 魏赞斌^c 龙腊生^{c*} (^a贵州大学应用化学研究所 贵阳 550025) (^b中国科学院贵州省天然产物重点实验室 贵阳 550002) (^c厦门大学化学与化工学院 厦门 361005)

摘要 以¹H核磁共振技术和 X射线单晶衍射分析方法考察了 3 种瓜环与长链二胺(1,7-庚二胺与1,8-辛二胺)相互作用的 结构特征.¹H NMR 分析表明瓜环(Q[6]和Q[7])与有机二胺(1,7-庚二胺与1,8-辛二胺)有较强的相互作用,形成自组装类 轮烷结构;Q[8]与1,7-庚二胺与1,8-辛二胺之间相互作用力相对较弱;晶体结构测定结果表明,六元瓜环与辛二胺自组装 形成的类轮烷实体中,辛二胺是以直链状穿过六元瓜环的空腔,两配位氨基留在瓜环两端口之外. 关键词 瓜环,长链二胺,核磁共振,X射线单晶衍射,类轮烷

Investigation of Structures of the Self-assembled Pseudorotaxane of Cucurbiturils with Some Alkyldiamines

XU, Zhou-Qing^a YAO, Xiao-Qing^a XUE, Sai-Feng^{*, a} ZHU, Qian-Jiang^a TAO, Zhu^a ZHANG, Jian-Xin^b WEI, Zhan-Bin^c LONG, La-Sheng^c (^a Institute of Applied Chemistry, Guizhou University, Guiyang 550025)

(^b Key Laboratory of Chemistry for Natural Products of Guizhou Province, Guiyang 550002) (^c Department of Chemistry, Xiamen University, Xiamen 361005)

Abstract The structures of self-assembled pseudorotaxane of cucurbit [n] urils ($n = 6 \sim 8$) with some alkyldiamines have been investigated by ¹H NMR technique and single crystal X-ray diffraction method. The results reveal that the interaction between cucurbit [6] uril or cucurbit [7] uril and 1,7-diaminoheptane or 1,8-diaminooctane is stronger than that between cucurbit [8] uril and 1,7-diaminoheptane or 1,8-diaminooctane, and the pseudorotaxanes of cucurbit [n]urils with the alkyldiamines were observed. Particularly, in the pseudorotaxane of cucurbit [6] uril with 1,8diaminooctane, the amino groups of 1,8-diaminooctane are left outside the ports of cucurbit [6] uril. **Keywords** cucurbit [n] uril alkyldiamine NMR technique single crystal X-ray diffraction pseudorotaxane

Keywords cucurbit [n]uril, alkyldiamine, NMR technique, single crystal X-ray diffraction, pseudorotaxane

瓜环(cucurbit[*n*] uril ($n = 5 \sim 8$,10) 记为 Q[*n*]) 是一类 由 *n* 个甘脲单元和 2*n* 个亚甲基桥联起来的大环化合物^[1]. 1905 年德国化学家 Behrend 等^[2] 首次制备了六元瓜环 (Q [6]),但直到 1981 年才由 Freeman 等^[3]测得其单晶结构,并 以 cucurbituril 命名.由于上世纪末超分子化学的创立和主客 体化学研究的兴起促使人们开始重视瓜环化学的研究,瓜环 主客体化学的研究也受到越来越广泛的关注^[4,5].上世纪 末,以澳大利亚 Day 为首的研究组和南韩 Kim 等的研究组几 乎同时发现了五、七、八、十等其他多元瓜环(分别记为 Q [5],Q[7],Q[8]及 Q[10])^[6~8].这一结果无疑为萌发状瓜 环的理论及应用研究扩展了更广阔的空间和可开拓的领域. 近几年来有关瓜环化学的报道频繁,其中有较多部分都是有 关瓜环在轮烷、类轮烷、索烃以及超分子实体的研究^[9~17].

* E-mail: gzutao @263.net
 Received December 12, 2003; revised and accepted May 26, 2004.
 国家自然科学基金(No. 200261002)、贵州省重点基金(No. 20023004)、贵州省国际合作(No. 200211003)资助项目.

图 1 瓜环结构示意图 Figure 1 Structures of the cucurbit [n]uril (n=5~8,10)

从瓜环结构示意图(图1)可以看出,瓜环在结构上具有 以下特点:瓜环两端分别分布着与构成瓜环单体数相同的氧 原子,以及通过亚甲基桥联甘脲所形成的环型笼体,而不同 聚合度的瓜环具有不同大小的笼体空腔以及端口口径.瓜环 的笼体空腔内部为疏水区,可以包结有机分子,空腔两端的 羰基氧原子又形成了阳离子键位点,可以通过离子偶极作用 或羰基可形成氢键作用来键合客体分子的带电部分,使配位 更为稳定.瓜环的这种特殊结构使得它能够与大小适宜的分 子相互作用形成自组装的分子胶囊、包结化合物或轮烷、类 轮烷等形式.这种作用可以通过多种手段来检测,核磁共振 和 x 射线单晶衍射测定是最有效和最直接的方法.

对于瓜环与长链有机二胺自组装作用的热力学性质,德 国学者 Buschmann 等^[18,19]作了较系统的研究,但对于它们相 互作用结构特征的考察,以及瓜环与长链二胺相互作用形成 的自组装实体晶体结构还未见报道.本文利用 X 射线单晶 衍射和¹H核磁共振分析技术,选择 1,7-庚二胺与 1,8-辛二 胺[记为 C(7), C(8)],分别考察它们与 Q[6], Q[7]和 Q[8] 相互作用的结构特征,为进一步合成多聚轮烷提供可行性依 据.

1 实验部分

1.1 实验试剂

Q[6], Q[7]和 Q[8]系本实验室制备分离^[20],C(7)与 C(8)均购自北京百灵威公司,分析纯.

1.2 ¹H核磁共振谱的测定

¹H NMR 谱在 20 下用 VARIAN INOVA-400 M 核磁共振 仪测定, 氘代水为溶剂.

1.3 晶体的制备及结构测定

将 Q[n]与 C(7) 或 C(8) 按等摩尔数溶于一定量的水并

制成饱和溶液,过滤后将滤液置于离心管,静置至单晶出现, 时间 2 周至半年不等.选取合适的单晶在 Smart APEX CCD 衍射仪收集数据.石墨单色化 Mo K 射线, =0.071073 nm. 扫描方式为 /2 ,于 293 K进行测定,收集到总的有效衍射 点为 17705 个,其中独立衍射点为 7097 个.进行了 LP 校正、 经验吸收校正、线性校正.结构解析为直接方法(SHELXS-97),氢原子坐标由差值 Fourier 合成法得到.最后一轮最小 二乘用 5810 个可观察点,修正 470 个可变参数.最后偏离因 子分别为 R_1 = 0.0690 [I > 2 (I)], Rw = 0.2135 (all data).

2 结果与讨论

2.1 Q[n]与C(n)相互作用的¹H核磁共振谱

为讨论方便,把与直链二胺 H₂N --CH₂ --

当长链二胺与瓜环相互作用形成自组装类轮烷时,由于 瓜环笼体的屏蔽作用或端口的去屏蔽作用,导致碳链上各亚 甲基上质子的化学环境发生变化,使长链二胺上各质子较之 游离长链二胺各质子的化学位移有所不同.若碳链上质子向 低场移动,则表明碳链上质子位于瓜环端口,反之,碳链上质 子则位于瓜环笼体内部.采用滴定方法,可确认¹H核磁共振 谱中游离或与瓜环发生作用的长链二胺,因此可根据核磁共 振谱提供的信息,了解因相互作用形成自组装类轮烷的结构 特征,以便为下一步合成轮烷提供可靠的结构信息.

¹H核磁共振谱图中瓜环H_b,及H_a,H_c分别表示瓜环结 构中甘脲腰上的质子、以及连接甘脲的亚甲基质子(见图 2).为了便于比较,图3给出了C(7)与C(8)的¹H核磁共振 谱,从六元瓜环与二胺作用的谱图(图 4a)可看出,在 C(7)的 H,H,H/H(游离二胺亚甲基上的质子峰)与H,H, H/H(与瓜环有相互作用的二胺亚甲基上的质子峰)中, H 移向低场(0.4), 而 H, H / H 分别向高场移动了 0.8. 这表明所选用的二胺的直链部分—CH2— 0.3和 CH2 — CH2 ... CH2 — CH2 — CH2 — 位于瓜环空腔内部, 而靠 近二胺两端氨基的— CH_2 —则留在 Q[6]的两端口. 图 4(b) 中C(8)的情况与C(7)相似,H移向低场(0.4),而H, H / H 分别向高场移动了。 0.1 和 0.7. 也就是说,所 用长链二胺穿瓜环而过形成了自组装类轮烷结构.

图 2 瓜环的单元结构 Figure 2 Unit structure of cucurbit[n]uril

仔细比较与瓜环作用的 C(7) 和 C(8) 各质子发现:C(7)

上各质子的化学位移均略高于 C(8) 上相应各质子的化学位 移. 根据所用长链二胺上各质子受到瓜环屏蔽与去屏蔽作用 结果 容易理解,长链二胺—CH₂—CH₂—CH₂…CH₂— CH₂—CH₂—部分与瓜环发生疏水性笼体作用,而两端口的 偶极化羰基可能分别与二胺两端的氨基通过水分子键桥的 氢键作用,发生亲水性的端口作用.由于 C(7) 上只有一个 —CH₂—,而 C(8) 上有两个—CH₂—,形成的两类轮烷实体 相比,C(7) 上 CH₂ 质子比 C(8) 上相应 CH₂ 质子更靠近瓜环 的中心位置,因而受到的屏蔽作用也较强,C(7) 上各质子的 化学位移也略高于 C(8) 上各质子.

另外,由于进入瓜环内部,各质子的化学环境亦发生改 变,本来几乎是重叠在一起的 CH₂, CH₂ 质子共振峰发生 变化,CH₂ 更靠近瓜环的中心位置,其化学位移位于最高场 处,CH₂ 质子共振峰则位于靠近其的低场区.

比较图 5(a),(b)还可发现,其它质子情况基本相同,但 类轮烷 Q[7]-C(8)中 C(8) H 质子受到的是 Q[7]端口的亲 水性去屏蔽作用,而 Q[7]-C(7)中 C(7) H 质子受到的却是 Q[7]笼体疏水性屏蔽作用.因此,Q[7]-C(8)中 H 质子的化 学位移向低场移动了 0.2 (H),而 Q[7]-C(7)中 H 质子 的化学位移向高场移动了 0.1 (H).从结构模式来看, Q[7]-C(7)中 C(7)可能被包结在 Q[7]的空腔内,这样的结构 是不适宜于进一步合成轮烷化合物的;而 Q[7]-C(8)中 C(8) 的两键合链端是外露在 Q[7]端口,与 Q[6]-C(7), Q[6]-C(8)一样,可用于进一步的轮烷合成.

2

与Q[6]与长链二胺作用相比,在Q[7]与C(7)及与 C(8)相互作用的图谱中(图 5), H 的化学位移变化较小,分 0.2; H 则较明显地向高场移动 别向高场或低场移动 (分别为 0.5. 0.4); 而 H 中的 H 和 H 则略向低场 移动了 0.2. 从这些实验结果可知,Q[7]与所选二胺亦可 形成类轮烷结构.由于 Q[7]的端口直径、以及笼体空腔较 大,长链二胺进入时,有一定空间活动的余地,如可与瓜环端 口平面成一定交角,以便使长链二胺疏水碳链尽可能多地与 瓜环内腔发生笼体作用.因此,H 受到较小的屏蔽或去屏蔽 作用;H 更接近瓜环中心而受到较强的屏蔽作用.另外,由 于较大的空间,与Q[6]比较,中心位置的 H 和 H 与瓜环的 作用可能较弱,因此,相应化学位移向高场移动的幅度也较 小.

从图 6 可看出,在 Q[8]与 C(7) 或 C(8)的混合体系中, 溶有相当数量溶解度非常小的 Q[8],这表明 Q[8]可以与 C(7)或 C(8)发生相互作用^[20].但从图 6 仅观察到一组较钝 的长链二胺的质子峰,由于 Q[8]的端口、笼体空腔较 Q[6] 以及 Q[7]都大,长链二胺与 Q[8]间的相互作用较弱或长链 二胺进出瓜环的频率大于核磁共振谱仪的工作时间频率.因 此,Q[8]与 C(7) 或 C(8)作用产物的不稳定性可能不适宜于 进一步轮烷的合成.

根据相互作用时,长链二胺上各亚甲基质子受瓜环的屏 蔽或去屏蔽作用,可用¹H NMR 技术研究所形成的类轮烷的 结构特征.对于进入瓜环的长链二胺的详细结构还可通过它 们晶体结构的测定进行考察.

2.2 晶体结构描述

在所制备的若干类轮烷实体晶体中,只测定得到Q[6] 与C(8)形成的晶体结构.图7(a)和(b)给出了Q[6]-C(8)自 组装类轮烷结构及其晶胞图.该晶体属于三斜晶系,空间群 为P1, a=1.1180(3) nm, b=1.2491(3) nm, c=1.2586(3)nm; =104.822(4)°, =97.048(4)°, =110.339(4)°; V=1.5490(6) nm³. $D_c = 1.566$ g/ cm³, Z = 2, F(000) = 758, $R_1 = 0.0690$ [I > 2 (I)], $R_W = 0.2135$ (all data);非氢原子坐 标及热参数、部分键长和键角分别列于表 1~3.

由图 7(a) 和(b) 可以看出谱图只给出了单晶分子的一 半和晶包的一半.为能够更直观的看出瓜环和辛二氨的结合 状态,可以在应用程序上对分子的晶体结构进行修复,并进 行一定角度的旋转,可得到完整的 Q[6]-C(8) 自组装类轮烷 结构图[图 7(c) 及(d)].由该晶体结构图可以看出:六元瓜 环与辛二氨自组装成类轮烷,辛二氨呈直链状穿过瓜环空 腔,辛二氨两端的氨基处在瓜环空腔外.

通过核磁共振分析及 X 射线单晶衍射分析方法,证明 瓜环(Q[6]和 Q[7]) 与有机二胺[C(7) 与 C(8)]之间有较强 的相互作用,Q[8] 与各有机二胺[C(7) 与 C(8)]之间相互作 用力相对较弱;C(8) 是以直链状穿过六元瓜环而形成自组 装类轮烷.实验结果还表明,C(7) 或 C(8) 与 Q[6];C(8) 与 Q [7]形成自组装类轮烷时链端的两键合氨基仍然留在瓜环的 两端口之外,因此有可能进一步与诸如过渡金属等离子形成 配合物,进而形成轮烷或多聚轮烷以及分子项链等自组装超 分子结构.

Figure 6 ¹H NMR spectra of interaction of Q[8] with C(7) (a) or C(8) (b)

2

图 7 Q[6]-C(8) 自组装类轮烷结构(a,c,d)及其晶胞图(b) Figure 7 Structure (a,c,d) and unit cell (b) of the self-assembled pseudorotaxane of Q[6]-C(8)

	Table 1 Non-hydrogen atomic coordinates ($\times 10^4$) and equivalent isotropic thermal parameters ($\times 10 \text{ nm}^2$)								
Atom	x	у	z	$U_{(eq)}$	Atom	x	у	z	$U_{(m eq)}$
O(1)	4001.3(17)	5413.7(17)	8684.2(15)	45.2(4)	C(5)	1089(2)	1030(2)	4416(2)	38.3(5)
O(2)	1778.5(17)	2803.7(16)	6599.2(16)	45.1(4)	C(6)	1014.7(19)	2404.8(19)	3333.5(18)	32.8(4)
O(3)	4737(16)	2926.1(16)	3914.7(14)	42.9(4)	C(7)	936(2)	3324(2)	1822(2)	40.3(5)
O(4)	8447.5(18)	4269.1(17)	6808.5(16)	47.2(4)	C(8)	7221(2)	5564(2)	8994.6(18)	36.2(5)
O(5)	6258.6(17)	1662.4(17)	4873.2(16)	46.0(4)	C(9)	6395(2)	4202(2)	8700.0(18)	36.1(5)
O(6)	5041.5(17)	1928.2(17)	2175.8(16)	47.3(4)	C(10)	3960(2)	1373(2)	6553(2)	36.4(5)
O(7)	- 2238(5)	662(4)	2010(5)	161 (2)	C(11)	3079(2)	755(2)	5343.7(19)	36.5(5)
N(1)	6239.3(19)	6064.1(18)	8916.7(17)	39.1(4)	C(12)	1856(2)	9779(19)	2605.9(19)	35.1(4)
N(2)	5062.2(19)	4123.4(18)	8507.0(17)	38.8(4)	C(13)	1788(2)	1682(2)	1773.4(18)	35.2(4)
N(3)	3555.6(18)	2342.5(17)	7009.2(16)	36.5(4)	C(14)	7807(2)	4494(2)	7483.8(19)	36.6(5)
N(4)	2199.3(19)	1371.9(18)	5334.4(16)	38.2(4)	C(15)	6444(2)	2386(2)	7265(2)	39.8(5)
N(5)	1413.7(18)	1542.3(17)	3536.1(16)	35.8(4)	C(16)	5282(2)	1501.7(19)	5256(2)	36.6(5)
N(6)	1330.7(19)	2564.4(17)	2353.9(16)	37.3(4)	C(17)	3680(3)	477(2)	3433(2)	40.1(5)
N(7)	7981.1(19)	5608.4(18)	8140.4(17)	38.8(4)	C(18)	3921(2)	1770.4(19)	2227.8(18)	35.1(4)
N(8)	6783(2)	3666.7(18)	7713.8(17)	39.9(4)	C(19)	- 1641(3)	50(3)	1779(3)	62.6(8)
N(9)	5272.8(19)	1754.1(18)	6370.6(17)	39.4(4)	C(20)	- 1630(2)	4178(3)	4093(2)	50.5(6)

表1 非氢原子的坐标(x10⁴)和热参数(x10 nm²)

2

									续表
Atom	x	у	z	$U_{(eq)}$	Atom	x	у	z	$U_{(eq)}$
N(10)	4022.5(19)	9945. (18)	4645.4(16)	38.3(4)	C(21)	- 2652(3)	4678(2)	3961(2)	51.8(6)
N(11)	3218.1(19)	1166.2(17)	2859.4(16)	37.0(4)	C(22)	- 3620(3)	4449(3)	4687(2)	49.5(6)
N(12)	3118.0(19)	2153.2(18)	1652.9(16)	37.4(4)	C(23)	- 4530(3)	5091(3)	4617(3)	55.3(7)
N(13)	- 1436(4)	- 510(5)	2371 (5)	134(2)	O(1W)	- 883(3)	2133(3)	6248(4)	109.8(12)
N(14)	- 1218(3)	12(3)	930(3)	871. (10)	O(2W)	4949(4)	- 919(4)	942(3)	110.9(11)
N(15)	2169(2)	2858(2)	3590(2)	578. (6)	O(3W)	2444(4)	6861(4)	8736(3)	123.3(14)
C(1)	6537(2)	7338(2)	9226.4(19)	39.5(5)	O(4W)	2256(4)	- 1145(4)	454(3)	124.8(12)
C(2)	4998(2)	5220(2)	8687.3(17)	35.6(5)	O(5W)	1045(8)	4584(9)	8463(7)	23.2(3)
C(3)	3933(2)	3017(2)	8204.9(19)	39.5(5)	O(6W)	- 110(8)	- 2174(6)	1208(5)	22.6(4)
C(4)	2443(2)	2230.2(19)	6337.6(19)	34.8(4)	O(7W)	646(17)	548(3)	99999(19)	30.8(14)

表2 Q[6]-C(8) 自组装类轮烷结构的键长(nm) **Table 2** Bond lengths of the self-assembled pseudorotaxane of Q[6]-C(8) (nm)

		8		I I I I I I I I I I I I I I I I I I I		· ·	
O(1) – C(2)	0.1219(3)	N(3) –C(10)	0.1446(3)	N(8) –C(14)	0.1369(3)	N(12) — C(13)	0.1440(3)
O(2) — C(4)	0.1218(3)	N(3) –C(3)	0.1449(3)	N(8) –C(15)	0.1444(3)	N(13) – C(19)	0.1197(6)
O(3) –C(6)	0.1210(3)	N(4) - C(4)	0.1356(3)	N(8) – C(9)	0.1444(3)	N(14) – C(19)	0.1218(4)
O(4) — C(14)	0.1217(3)	N(4) –C(5)	0.1445(3)	N(9) –C(16)	0.1359(3)	N(15) –C(20)	0.1471(4)
O(5) –C(16)	0.1221(3)	N(4) –C(11)	0.1445(3)	N(9) –C(15)	0.1439(3)	C(1) –N(12)	0.1439(3)
O(6) –C(18)	0.1211(3)	N(5) –C(6)	0.1368(3)	N(9) –C(10)	0.1444(3)	C(7) –N(7)	0.1441(3)
O(7) –C(19)	0.1184(6)	N(5) –C(5)	0.1437(3)	N(10) – C(16)	0.1356(3)	C(8) –C(9)	0.1544(3)
N(1) –C(2)	0.1360(3)	N(5) –C(12)	0.1440(3)	N(10) – C(17)	0.1439(3)	C(10) –C(11)	0.1544(3)
N(1) - C(1)	0.1442(3)	N(6) –C(6)	0.1367(3)	N(10) – C(11)	0.1455(3)	C(12) — C(13)	0.1541(3)
N(1) –C(8)	0.1445(3)	N(6) –C(13)	0.1443(3)	N(11) – C(18)	0.1366(3)	C(20) — C(21)	0.1491(4)
N(2) — C(2)	0.1359(3)	N(6) –C(7)	0.1445(3)	N(11) –C(17)	0.1437(3)	C(21) — C(22)	0.1500(4)
N(2) — C(3)	0.1431(3)	N(7) –C(14)	0.1357(3)	N(11) – C(12)	0.1438(3)	C(22) — C(23)	0.1505(4)
N(2) — C(9)	0.1445(3)	N(7) —C(7)	0.1441(3)	N(12) – C(18)	0.1369(3)	C(23) — C(23)	0.1510(6)
N(3) - C(4)	0.1357(3)	N(7) –C(8)	0.1450(3)	N(12) - C(1)	0.1439(3)	O(7W) — O(7W)	0.153(4)

表3 Q[6]-C(8) 自组装类轮烷结构的键角(9

hle 3	Bond angles of	self-assembled	nseudomtavane of	016	1-C(8)	(9	
Die 5	bond angles of	sell-assembled	pseudolotaxalle of			()	

Table 3 Bond angles of self-assembled pseudorotaxane of $Q[6]-C(8)$ (9)						
C(2) - N(1) - C(1)	122.77(19)	C(14) - N(8) - C(9)	112.08(19)	N(5) - C(5) - N(4)	113.78(18)	
C(2) - N(1) - C(8)	112.66(19)	C(15) - N(8) - C(9)	122.76(19)	O(3) - C(6) - N(6)	126.3(2)	
C(1) - N(1) - C(8)	123.8(2)	C(16) – N(9) – C(15)	123.35(19)	O(3) - C(6) - N(5)	126.1(2)	
C(2) - N(2) - C(3)	123.61(19)	C(16) - N(9) - C(10)	112.5(2)	N(6) - C(6) - N(5)	107.63(18)	
C(2) - N(2) - C(9)	112.62(19)	C(15) - N(9) - C(10)	124.07(19)	N(7) - C(7) - N(6)	113.29(18)	
C(3) - N(2) - C(9)	123.72(19)	C(16) - N(10) - C(17)	122.42(19)	N(1) – C(8) – N(7)	115.96(18)	
C(4) - N(3) - C(10)	111.91(19)	C(16) - N(10) - C(11)	112.55(19)	N(1) – C(8) – C(9)	103.11(18)	
C(4) - N(3) - C(3)	121.27(18)	C(17) - N(10) - C(11)	123.2(2)	N(7) – C(8) – C(9)	103.06(17)	
C(10) - N(3) - C(3)	121.96(18)	C(18) - N(11) - C(17)	122.42(19)	N(8) - C(9) - N(2)	115.47(19)	
C(4) - N(4) - C(5)	123.02(19)	C(18) - N(11) - C(12)	112.77(18)	N(8) –C(9) –C(8)	103.35(17)	
C(4) - N(4) - C(11)	112.30(19)	C(17) - N(11) - C(12)	122.11(19)	N(2) –C(9) –C(8)	103.22(17)	
C(5) - N(4) - C(11)	124.32(19)	C(18) - N(12) - C(1)	122.48(19)	N(9) - C(10) - N(3)	114.85(19)	
$C(6) \rightarrow N(5) \rightarrow C(5)$	122.98(18)	C(18) - N(12) - C(13)	112.80(18)	N(9) – C(10) – C(11)	103.51(18)	
C(6) - N(5) - C(12)	112.32(18)	C(1) - N(12) - C(13)	122.35(19)	N(3) –C(10) –C(11)	102.93(17)	
C(5) - N(5) - C(12)	122.58(18)	N(12) - C(1) - N(1)	113.74(18)	N(4) - C(11) - N(10)	115.56(18)	

					续表
C(6) - N(6) - C(13)	112.66(18)	O(1) - C(2) - N(1)	126.2(2)	N(4) - C(11) - C(10)	103.07(17)
C(6) - N(6) - C(7)	122.76(18)	O(1) - C(2) - N(2)	125.6(2)	N(10) - C(11) - C(10)	102.50(18)
C(13) - N(6) - C(7)	122.80(19)	N(1) - C(2) - N(2)	108.16(19)	N(11) - C(12) - N(5)	114.95(18)
C(14) - N(7) - C(7)	121.87(19)	N(2) - C(3) - N(3)	113.58(17)	N(11) - C(12) - C(13)	103.38(17)
C(14) - N(7) - C(8)	112.39(19)	O(2) - C(4) - N(3)	125.5(2)	N(5) –C(12) –C(13)	103.71(17)
C(7) - N(7) - C(8)	123.6(2)	O(2) - C(4) - N(4)	126.1(2)	N(12) - C(13) - N(6)	115.56(19)
C(14) - N(8) - C(15)	122.20(19)	N(3) - C(4) - N(4)	108.45(18)	N(12) - C(13) - C(12)	103.19(17)
N(6) - C(13) - C(12)	103.01(17)	N(10) - C(16) - N(9)	108.35(19)	N(13) - C(19) - N(14)	120.1(5)
O(4) - C(14) - N(7)	126.0(2)	N(11) - C(17) - N(10)	113.59(17)	N(15) -C(20) -C(21)	112.2(2)
O(4) - C(14) - N(8)	126.0(2)	O(6) - C(18) - N(11)	126.5(2)	C(20) - C(21) - C(22)	115.9(2)
N(7) - C(14) - N(8)	108.01(19)	O(6) - C(18) - N(12)	126.3(2)	C(21) - C(22) - C(23)	113.5(2)
N(9) -C(15) -N(8)	114.00(18)	N(11) - C(18) - N(12)	107.25(18)	C(22) - C(23) - C(20)	113.9(3)
O(5) - C(16) - N(10)	126.1(2)	O(7) - C(19) - N(13)	121.3(5)		
O(5) - C(16) - N(9)	125.5(2)	O(7) - C(19) - N(14)	118.6(5)		

References

- Zhang, G. L.; Xu, Z. Q.; Xue, S. F.; Zhu, Q. J.; Tao, Z. *Chin. J. Inorg. Chem.* 2003, *19*, 655 (in Chinese).
 (张桂玲,徐周庆,薛赛凤,祝黔江,陶朱,无机化学学报, 2003, *19*, 655.)
- 2 Behrend, R.; Meyer, E.; Rusche, F. U. Liebigs. Ann. Chem. 1905, 339, 1.
- 3 Freeman, W. A.; Mock, W. L.; Shih, N. Y. J. Am. Chem. Soc. 1981, 103, 7367.
- 4 Mustapha, H. E.; Young, H. K.; Luhmer, M.; Kim, K.; Bartik, K. J. Chem. Soc., Perkin Trans 2 2001, (11), 2104.
- 5 Neugebauer, R.; Knoche, W. J. Chem. Soc., Perkin Trans 2 1998, (3), 529.
- 6 Day, A. I.; Arnold, A. P. WO 0068232, 2000 [Chem. Abstr. 2000, 133, 362775k].
- 7 Day, A. I.; Blanck, R. J.; Arnold, A. P. Angew. Chem., Int. Ed. 2002, 41, 275.
- 8 Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.;
 Sakamoto, S.; Yamaguchi, K.; Kim, K. J. Am. Chem. Soc.
 2000, 122, 540.
- 9 Sokolov, M. N.; Dybtsev, D. N.; Fedin, V. P. Russ. Chem. Bull. 2003, 52, 1041.
- 10 Zhang, H. Z.; Paulsen, E. S.; Walker, K. A.; Krakowiak, K. E.; Dearden, D. V. J. Am. Chem. Soc. 2003, 125, 9284.
- 11 Kim, K.; Jeon, W. S.; Kang, J. K.; Lee, J. W.; Jon, S.
 Y.; Kim, T.; Kim, K. Angew. Chem., Int. Ed. 2003, 42, 2293.
- 12 Samsonenko, D. G.; Geras 'ko, O. A.; Mit 'kina, T. V.;

Lipkowski, J.; Virovets, A. V.; Fenske, D.; Fedin, V. P. *Russ. J. Coord. Chem.* **2003**, *29*, 166.

- 13 Lee, J. W.; Choi, S. W.; Ko, Y. H.; Kim, S. Y.; Kim, K. Bull. Korean Chem. Soc. 2002, 23, 1347.
- 14 Gerasko, O. A.; Samsonenko, D. G.; Sharonova, A. A.; Virovets, A. V.; Lipkowski, J.; Fedin, V. P. *Russ. Chem. Bull.* 2002, 51, 346.
- 15 Park, K. M.; Roh, S. G.; Lee, E.; Kim, J.; Kim, H. J.; Lee, J. W.; Kim, K. Supramol. Chem. 2002, 14, 153.
- 16 Shen, Y. Q.; Xue, S. F.; Zhao, Y. J.; Zhu, Q. J.; Tao, Z. *Chin. Sci. Bull.* 2004, *48*, 2333 (in Chinese).
 (申永强, 薛赛凤,赵云洁,祝黔江,陶朱,科学通报, 2004, *48*, 2333.)
- 17 Liu, J. X.; Tao, Z.; Xue, S. F.; Zhu, Q. J.; Zhang, J. X. *Chin. J. Inorg. Chem.* 2004, 20, 139.
 (刘静欣,陶朱,薛赛凤,祝黔江,张建新,无机化学学报, 2004, 20, 139.)
- 18 Jansen, K.; Buschmann, H. J.; Ziobaite, E.; Schollmeyer, E. Thermochim. Acta 2002, 385, 177.
- 19 Buschmann, H. J.; Cleve, E.; Jansen, K.; Wego, A.; Schollmeyer, E. J. Inclusion Phenom. Macrocyclic Chem. 2001, 40, 117.
- 20 Dai, L. P.; Yao, X. Q.; Zhang, G. Y.; Xue, S. F.; Zhu, Q. J.; Tao, Z. The 11th National Conference on Macrocyclic Chemistry and the 3th Conference on Supramolecular Chemistry, Northwest University Press, Xi an, 2002, pp. 210 ~ 214 (in Chinese).

(戴丽萍,姚晓青,张广义,薛赛凤,祝黔江,陶朱,全国第 十一届大环化学暨第三届超分子化学研究进展论文集,西 北大学出版社,西安,2002,pp.210~214.)

(A0312124 SONG, J. P.; DONG, H. Z.)