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We show by means of density functional calculations that the

previously synthesized metallofullerene Ti2C80 does not take the

form of Ti2@C80, but is a titanium carbide endohedral

metallofullerene, Ti2C2@C78, that has a C78
62(D3h) cage which

follows faithfully the stable closed-shell electronic rule.

Endohedral metallofullerenes that encapsulate a metal atom or

cluster inside hollow carbon cages have received extensive attention

in the past two decades owing to their fascinating structural and

electronic properties.1 Electron transfer occurs from the encapsu-

lated metal or clusters to the fullerene cages, resulting in negatively

charged carbon cages adopting preferentially stable closed-shell

electronic configurations.2,3 As such, the number of electrons

transferred is a key factor that controls the stability of the

otherwise unstable fullerene cages. This is exemplified by

Sc2@C66,
4 Sc3N@C68

5 and La2@C72,
6 where the carbon cages

even violate the well-known isolated pentagon rule (IPR)3 and are

certainly unstable in their empty neutral forms. However,

exceptions7 to the aforementioned stable closed-shell electronic

rule seem available, e.g., the recently synthesized Ti2C80.
8 In

Ti2C80, the two Ti atoms were believed to be encapsulated in a C80

(D5h) or C80 (Ih) cage with a total of four electrons transferred to

the carbon cages,8 although clear cut evidence is available that

both C80 cages prefer to accept six electrons to attain a closed-shell

electronic configuration.9 Here we show by means of density

functional calculations that the Ti2C80 is not in the form of

Ti2@C80 (Fig. 1), but that it is actually a titanium carbide

endohedral metallofullerene, Ti2C2@C78 (Fig. 2), that has a

C78
62(D3h) cage9,10 that follows faithfully the stable closed-shell

electronic rule.

All calculations were carried out with the hybrid density

functional theory at the B3LYP level11 using the Gaussian 98

program.12 Two basis set–RECP (relativistic effective core

potential) combinations were used. The first, denoted DZ, is the

combination of the split-valence 3-21G basis set13 for C with the

small core RECP, plus the valence double-f basis set (denoted

LanL2DZ)14 for Ti. The second, denoted DZP, combines the split-

valence d-polarized 6-31G* basis set15 for C with the LanL2DZ set

for Ti. The geometries of all Ti2C80 isomers concerned were first

optimized at the B3LYP/DZ level; the geometries of key structures

were reoptimized at the B3LYP/DZP level. Similar combinations

of theoretical method and basis sets have been shown to be

reasonable at predicting the geometries of metallofullerenes such as

La2@C72,
6 La2@C80

9 and Sc3N@C80.
16 NMR chemical shielding

tensors were evaluated by employing the gauge-independent

atomic orbital (GIAO) method.17 Based on the computed chemical

shielding tensors, theoretical 13C NMR chemical shifts were

calculated relative to C60 and converted to the TMS (tetramethyl-

silane) scale using the experimental value for C60 (142.5 ppm).18

The GIAO-B3LYP/DZP theory proved to be sufficiently accurate

at reproducing 13C NMR chemical shifts of fullerenes such as C60,

C70, C76 and C78,
19 and metallofullerenes such as Sc3N@C80

16 and

Sc2@C66.
20
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Fig. 1 (a) Top view and (b) side view of the B3LYP/DZP-optimized

D2h-symmetric geometry of singlet state Ti2@C80, in which the carbon

cage is the Ih(7 : 7) IPR isomer of C80. The shortest C–Ti distances are

2.20 s.

Fig. 2 (a) Top view and (b) side view of the B3LYP/DZP-optimized

static C2v-symmetric geometry of singlet state Ti2C2@C78, in which the

carbon cage is the D3h(5 : 5) IPR isomer of C78. The average Ti–C1 and

Ti–C9 distances are 2.20 and 2.38 s, respectively. The optimal C–C bond

length for the central acetylide C2
22 group is 1.27 s.
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In the experimental 13C NMR characterization of pure Ti2C80,
8

Cao et al. found a total of eight 13C NMR chemical shifts ranging

from 130 to 145 ppm, and proposed that their sample was a

mixture of two Ti2@C80 isomers of Ih and D5h symmetric C80

cages in a ratio of 1 : 3. Hence, we chose the Ih (7 : 7) IPR isomer

of C80 to investigate the structures of Ti2@C80. The encapsulation

of two equivalent metal atoms in the C80 (Ih) cage leads to several

highly symmetric structures, including those of D5d, D2h and D3d

symmetries.9 Geometry optimizations of these high symmetry

isomers in a singlet state were performed at the B3LYP/DZ level.

The singlet D2h structure (Fig. 1) appears to be the most stable by

20.1 kcal mol21, compared to the singlet D5d structure. The

shortest C–Ti bond length in the singlet D2h structure (2.24 s) is

much shorter than that (2.35 s) in titanocenes,21 implying stronger

Ti–cage covalent bonding in Ti2@C80. Even shorter C–Ti bond

lengths (y2.20 s) were predicted by the more sophisticated

B3LYP/DZP optimizations. A detailed analysis of its molecular

orbitals (Fig. S1, ESI{) indicates that the Ti2@C80 can be described

as Ti2
6+@C80

62, but that the presence of strong covalent dative

bonding between Ti3+ and C80
62 results in back-donation of

charge from the negatively charged cage to the cations. The

relatively strong Ti–cage covalent bonding should prohibit free

rotation of the Ti2 unit in the carbon cage at room temperature,

and consequently Ti2@C80 with a C80 (Ih) cage would show

thirteen 13C NMR signals, not the expected two lines.8 In addition,

single-point B3LYP/DZP calculations revealed that the triplet state

of D2h symmetric Ti2@C80 is 14.0 kcal mol21 lower in energy than

its singlet state, with one spin-unpaired electron localized on each

Ti atom. Hence Ti2@C80, preferentially adopting an open-shell

electronic configuration, should be paramagnetic in nature and

consequently should not have detectable signals in its NMR

spectrum at all. Instead, the other structural model, which is

diamagnetic, should be proposed to account for the experimental
13C NMR spectrum of Ti2C80.

We then inferred that the synthesized Ti2C80 should adopt a

different structure model, i.e. Ti2C2@C78, with a C78 cage of D3h

symmetry (Fig. 2). This structural model is based on the following

considerations. Firstly, a D3h-symmetric C78 cage would show

eight 13C NMR signals.10 Secondly, the C78 cage can accept up to

six electrons,10 whereas the encapsulated Ti2C2 cluster can be

hexavalent consisting of two Ti4+ cations and a C2
22 group; the

whole structure would thus have a diamagnetic closed-shell

electronic configuration.

Fig. 2 depicts the static C2v-symmetric geometry of Ti2C2@C78,

optimized at the B3LYP/DZP level. The averaged Ti–C1 and

Ti–C9 distances are 2.20 and 2.38 s respectively, indicating that

the Ti–cage bonding is much stronger than the Ti–acetylide

bonding. The Ti2C2@C78 can be viewed as Ti2
8+C2

22@C78
62 with

covalent dative bonding between the Ti4+ cations and the C78
62

cage, as well as ionic Ti4+–acetylide interactions (Fig. S2, ESI{).

The weaker ionic Ti–acetylide interaction allows rapid (free)

rotation of the acetylide group around the C3 axis of the C78 cage

with a small rotation barrier of about 0.1 kcal mol21, estimated at

the B3LYP/DZ level. Thus at room temperature, the C78 cage in

Ti2C2@C78 should maintain a D3h symmetry over a long timescale

due to the constant rotation of the encapsulated acetylide group.

Table 1 lists the 13C NMR chemical shifts of Ti2C2@C78,

predicted by GIAO-B3LYP/DZP calculations, along with the

experimental data8 for Ti2C80. The good agreement between the

theoretical 13C NMR chemical shifts and the experimental data

convinces us that the metallofullerene Ti2C80, synthesized by

Cao et al., is not Ti2@C80, but is most likely in the form

Ti2C2@C78. For the acetylide carbon atoms in Ti2C2@C78, the

calculated 13C NMR chemical shift is 288.5 ppm, much higher

than that (92 ppm) observed for Sc2C2@C84.
22 Unfortunately, this

signal was not observed experimentally,8 due probably to the spin–

rotation interaction9,23 at room temperature.

In summary, we have shown theoretically that the previously

synthesized metallofullerene Ti2C80 does not take the form of

Ti2@C80, but is most likely a titanium carbide endohedral

metallofullerene, Ti2C2@C78. Hence, Ti2C80 is the smallest metal

carbide endohedral fullerene disclosed so far; other metal carbide

endohedral fullerenes including Sc2C2@C84
22 and Y2C2@C82.

23

The present work shows that care should be taken during the

structural determination of metallofullerenes with large carbon

cages, especially such dimetallofullerenes as Sc2C82,
24 Sc2C84,

24,25

Ti2C84
26 and Hf2C80,

27 in that their simple endohedral forms,

M2@Cn, may not fulfil the stable closed-shell electronic rule. To

attain stable closed-shell electronic configurations, it is likely that

some of these dimetallofullerenes will form M2C2@Cn–2 cages, as

implied by high-resolution ion mobility measurements on Sc

metallofullerenes.24
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