2005年 10月

1003-7713/2005/05-654-3

快报

MP-C₆₀ (M = Cu, Co)化合物的

合成、表征及光电性能研究^{*}

杨森根^{**}, 凡素华, 刘见永, 吴振奕, 田 玲, 林永生, 詹梦熊 (厦门大学化学系, 厦门 361005)

关键词: 卟啉; 富勒烯; 光电性能 中图分类号: 0641, 0644, 2 文献标识码: A

Synthesis, Characterization and Photovoltaic Effect of Porphyrin-Fullerene Compounds MP-C₆₀*

Yang Sengen^{***}, Fan Suhua, Liu Jianyong Wu Zhenyi, Tian Ling, Lin Yongsheng, Zhan Mengxiong (Department of Chemistry, Xiam en University, Xiam en 361005)

Abstract The convalently linked porphyrin-fullerene ligand was synthesized by 1, 3 dipolar cycloadd ition reaction The ligand and complexes were characterized by means of FT-IR, Uv-Vis, ¹HNMR, ESIMS and elemental analysis The photoelectricity transform performance of the compounds was studied The result indicated that the photovoltaic effect of (n + n) heterojunction electrode formed by MP-C₆₀ /GaA swas super, especially in the $\frac{1}{2}$ / $\frac{1}{2}$ ⁻ and O₂ /H₂O redox couples and photovoltaic potential was preferable. The photovoltaic performance of a MP-C₆₀ / GaAs electrode at 1 – 2 μ m thick MP-C₆₀ film of appeared peak value. **Key words** Porphyrin, Fullerene, Photovoltaic effect

卟啉和金属卟啉不仅是良好的电子给予体,而 且在紫外可见光区有着非常广泛的吸收,这有利于 太阳能的利用.富勒烯(C₆₀)由于自身独特的结构而 成为较好的电子受体.近年来,大量共价键连卟啉-富勒烯 D-A 化合物被合成与研究^[1-4].通过柔性连 接体形成的卟啉 富勒烯化合物有利于增加给-受体 间电子的流动性,使化合物具有优良的光电转换性 能^[2].

中间体和产物的合成见图 1.1和 2的合成、纯

化参照文献^[2]. **3**的合成:在 N₂下把 37.2 mg对羟 基苯甲醛、75.2 mg **2**过量灼烧的无水碳酸钾加入 30 mL DM F中, 80 °C反应 8 h后,甲苯和蒸馏水分 液,粗产品用硅胶柱层析,甲苯淋洗,收集第二色带, 产率 72%.ESHMS: 793.3(M + H⁺). **4**的合成:把 72.0 mg C₆、39.6 mg **3**.68.5 mg 肌氨酸加入 100 mL甲苯中,通高纯氮 30 m i,回流 12 h,粗产品 用硅胶柱层析,甲苯、石油醚 (体积比 2: h)后改用甲 苯洗脱,收集第二色带,产率 76%.¹HNMR (CDC h,

** Corresponding author Email sgyang@ jingxian xmu edu on Received 1 July 2005, in final form 24 August 2005

^{*} Project supported by the Nature Science Foundation of Fujian province (E0410001) and Self select Program of Xiam en University (0040-Y07008).

500MHz). δ - 2 77(\$ 2H, pyrroleN-H), 2 24(\$ 3H, N-CH₃), 2 30(\$ 1H, pyrrolidineH), 3 92~ 4 07(m, 4H, -OCH₂, CH₂O-), 2 71 (m, 2H, -OCH₂CH₂), 3 77, 4 55(d, d, 2H, pyrrolidineH), 8 75(m, 8H, pyrroleH), 8 28~ 7. 11(m, 23H, benzeneH). 元素分析测试值(%): C 89 86 H 3 23, N 4 21. 理论值(%): C 90. 45, H 2 92, N 4 55 ESIM \$ 1540 6(M + H⁺). 5的合成: 将 Cu(AC)₂• H₂O甲醇饱和溶液加到 4的氯仿溶液中 回流 1 h 浓缩, 粗产品溶于甲苯, 硅胶柱层析, 甲苯 洗脱, 产率 94%.¹HNMR(CDCh, 500 MHz). 2 18(\$ 3H, N-CH₃), 2 28(\$ 1H, pyrrolidineH), 2 61(m, 2H, -OCH₂CH₂), 3. 90~4 09(m, 4H, -OCH₂, CH₂O-), 4 58, 3. 82(CH₂O-), 4. 58, 3 28(d d 2H, pyrrolidineH), 8 85(m, 8H, pyrrole-H), 8. 28~7.06(m, 23H, benzeneH). 元素分析测 试值(%): C 86 54, H 2 97, N 4 12 理论值(%): C 86 95, H 2 69, N 4 37. CoP-C₆₀的合成方法同上.

图 1 合成路线 Fig 1 The route of synthesis

参照文献 [6,7] 的方法对 3, 4,5的特征红外 吸收谱带进行了归属,5与4红外光谱进行比较, 3317 m⁻¹处的峰消失,由于卟啉环上 N-H 键的氢 被金属离子取代,这是卟啉配体生成卟啉配合物的 红外光谱的主要证据之一^[8].与3比较,4和5中出 现了526 m⁻¹强吸收峰(C₆₀骨架振动的特征吸收 峰^[9]),表明富勒烯-卟啉化合物的形成.紫外可见 吸收光谱数据见表 1,卟啉4有一个 Soret带和四个 Q带,形成配合物后,Q、Q 带消失,这是自由卟 啉形成金属配合物的光谱特征^[11].同时在紫外区 出现了256,308 m⁻¹两个谱带,这两个谱带为C₆₀ 在紫外区的特征吸收带^[10].从元素分析和质谱数据 可以看出,新合成化合物的理论值和实验值基本吻合,表明所合成的是目标产物.核磁共振数据表明, 卟啉环穴中 N-H 上 H 的化学位移为 – 2 77,生成配 合物后,由于 N-H 上 的氢 被 金属 离子 取 代, - 2 77消失,其它氢配位前后化学位移变化不大.

光电转换性能测试: 介质溶液为 0 1 mol/L 的 KC l溶液, 1 mmol/L 的 $\frac{1}{6}$ /0 1 mol/L 的 ſ 溶液, 0 1 mol/L 的 Fe (CN)₆³⁻ /Fe (CN)₆⁴⁻ 溶液和 0 01 mol/L 的 BQ(苯醌) /H₂Q(氢醌)溶液; 研究电 极为 H₂P(MP)-C₆₀ /GaAs,制备方法是 GaAs单晶片 背面以金属铟作欧姆接触,正面用"311"处理液(体 积比 H₂SO₄:H₂O₂:H₂O = 3:1:1)进行化学抛光处

表 1	H_2P	·С ₆₀ 、	CoP-C ₆₀	CuP-C ₆₀	的紫外-可!	见光谱数据
Та	ble 1	Uv-v	vis data of	H ₂ P-C ₆₀ ,	CoP-C ₆₀ ,	CuP-C ₆₀

C an pouds			Soret	Q	Q	Q	Q
$H_2 P-C_{60}$	256	306	419	517	552	591	649
C oP-C ₆₀	256	309	419		551		
CuP-C ₆₀	256	308	417		540		

理, 然后以溶剂挥发法在 GaA s电极表面沉积一层 均匀的卟啉-富勒烯化合物薄膜, 厚度可由 d = cVAS计算得到, c为镀液浓度 (g/L), V为镀液体 积 (mL), ρ 为配合物的密度 (g/cm³), S为 GaA s电 极面积 (m²), 辅助电极为铂片电极, 参比电极为饱 和甘汞电极; 检测装置见文献 [5]; 测定方法是在暗 态和光照条件下分别测定研究电极和参比电极之间 的开路暗电位 V_a 和开路光电位 V_{os} 研究电极和辅 助电极之间短路暗电流 I_a 和短路光电流 I_{so} 求出光 生电压 ΔV , 光生电流 ΔI

从表 2光伏效应测定结果看出, 卟啉 (金属卟啉)--富勒烯化合物与砷化镓组成的复合光电极具 有较显著的光伏效应. 光伏效应数值大小与介质电 对、化合物镀层厚度有关. 物质在四种介质电对中光 伏效应值都有一定的差别, 电极与介质溶液接触达 到平衡时的费米能级 $E_f(O/R)$ 在不同的介质电对 中的大小是不同的, 差值越大, 测得的 ΔV 数值也越

大,在介质电对 I_{2}/I_{1} 和 $O_{2}/H_{2}O$ 中,光伏效应数值 相对较大.配合物镀层厚度对光伏效应有显著的影 响,当镀层厚度从0开始逐渐增大时,光伏效应值迅 速增大,各配合物在厚度为 1~2 µm 达到一个峰 值,当镀层厚度继续增加时,光伏效应值又逐渐减 小,这可能是因为随着 GaAs电极上配合物薄膜厚 度的增加,产生光生载流子的配合物分子数增多,复 合电极内电子和空穴的浓度上升,光伏效应值增大, 而电子和空穴浓度增大将导致电子-空穴复合几率 增大,使电子空穴浓度保持在一稳定值,但随着镀膜 厚度的进一步增大,薄膜电阻也迅速增加,这将导致 光电流的下降和光伏效应数值的减小.所以,当厚度 从 0逐渐增大到 1~ 2 µm 时,有利于光伏效应的因 素起主要作用,光伏效应值逐渐增大,当镀层厚度继 续增加时,不利因素将起主要作用,使光伏效应值随 着镀层厚度的增加而逐渐减小^[12].

表 2 H_2 PC₆₀、 CdP-C₆₀、 CuP-C₆₀ ~ GaAs复合光电极的光伏效应 Table 2 Photovoltaic effect data of H_2 P-C₆₀ CoP-C₆₀ CuP-C₆₀ ~ GaAs electrod

Dalar comba	PVE -	Fihn thickness δ /μm						
R edox coup les		0. 0	0. 5	1 0	2.0	3. 0	4 0	
BQ /H 2Q	$\Delta V h W$	48	61 /71 / 71	76/95/79	74/69/78	69 /74 / 72	57/55/63	
	△ <i>I I</i> mA	0.3	2 0 /2 8/2 7	2.9/5 1/3 0	2 7/2 6/2 9	2.5/3.3/27	1 7/1 5/2 0	
O_2/H_2O	$\Delta V h W$	93	139 /163 / 159	164/186/176	146/157/152	137 /143 / 133	126/101/108	
	△ <i>I I</i> mA	2. 2	5. 1 /8. 7 / 8 1	7. 2/11 6/10. 2	5 7/8.1/7.3	4.9/6.8/55	4 1/4 3/4.1	
I ₃ - / I ₂	$\Delta V h W$	72	96/103/96	113/129/124	92/125/129	76 /84 / 98	69/72/77	
	$\triangle I / \mathbf{mA}$	2.4	7.9/8.9/8 1	10. 5/13 5/12. 3	7. 2/13. 0/13 0	4.8/6.6/84	2 2/3 3/3.3	
$\operatorname{Fe}(\operatorname{CN})_{6}^{3-}/\operatorname{Fe}(\operatorname{CN})_{6}^{4}$	$\Delta V h W$	63	78 /86 / 81	89/106/99	90/118/87	81 /95 / 75	74/71/69	
	△ <i>I I</i> mA	3. 5	7.3/9.0/85	8. 6/12 8/12. 4	8 9/14.3/9.6	7.5/10 2/6 9	6 9/6 2/5.3	

参考文献

- [1] Imahori H, Sakata Y. J. Org. Chem., 1999, 10. 2445
- [2] D' Souza F, Deviprasad G R, E HK hou ly M E, et al. J. Am. Chem. Soc., 2001, 123 5277
- [3] Straight S D, Andresson J Kodis G, et al J. Am. Chem. Soc., 2005, 27: 2717
- [4] In ahoriH, HagiwaraK, AokiM, et al J. Am. Chem. Soc, 1996, 118 11771
- [5] Chen ZH (陈再鸿), Zheng BL (郑标练), Zhan MX (詹梦熊). Journal of X immen University Natural Science (厦门大学学报自然科学版), 1987, 26 599
- [6] ShiTS(师同顺), LiuW (柳巍). Chem. J. Chin. Univ. (高等学校化学学报), 2001, 22 16

- [7] ShiTS (师同顺), ZhangYF (张元福). Chan. J. Chin. Univ. (高等学校化学学报), 1992, 18 1375
- [8] Oshio H, Ama T, Watanabe T. Spectrochin ica A cta., 1984, 40, 863
- [9] Cox D M, Behal S, D isko M, et al J. Am. Chem. Soc, 1991, 113 2940
- [10] Da Ros T, Proto M, Guldi D M, et al Chem. Eur. J., 2001, 7: 816
- [11] N iC L (倪春林), Xu JL (徐吉林), W ang JQ (王静秋), et al Chemical World (化学世界), 2001 8 423
- [12] Wu ZY (吴振奕), Yang SG (杨森根), Lin Y S (林永 生), et al Chin J. Chem. Phys (化学物理学报), 2004, 17: 741