

How accurate are ²³⁴Th measurements in seawater based on the MnO₂-impregnated cartridge technique?

Pinghe Cai, Minhan Dai, Dongwei Lv, and Weifang Chen

State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China (mdai@xmu.edu.cn)

[1] In the past decade, a MnO₂-impregnated cartridge technique has been widely used to extract ²³⁴Th from seawater. One of the inherent assumptions associated with this technique is that all Th species in the dissolved phase are subject to extraction by the MnO₂ cartridges. In this study, an intercalibration between the cartridge technique and a small-volume MnO₂ coprecipitation technique was carried out to test this assumption. We demonstrated that the collection efficiency for ²³⁴Th could be substantially overestimated by the MnO₂ cartridge technique. This may be the result of organic complexation of a significant portion of ²³⁴Th in seawater, causing this fraction of Th to pass through the MnO₂ cartridges. The overestimate in collection efficiency may explain the deep-water ²³⁴Th deficit observed in some oceanographic settings (e.g., the Gulf of Mexico, the Middle Atlantic Bight, and the Gulf of Maine). Sensitivity tests show that using the cartridge technique can yield ²³⁴Th-based particulate organic carbon export rates that are overestimated by factors of up to 10. Furthermore, the frequent observed disagreements between Th fluxes recorded by shallow sediment traps and estimated using the cartridge method may be ascribed, at least partially, to this methodological issue.

Components: 6808 words, 3 figures, 3 tables.

Keywords: thorium-234; MnO₂ cartridges; collection efficiency; export flux.

Index Terms: 4899 Oceanography: Biological and Chemical: General or miscellaneous.

Received 5 August 2005; Revised 16 December 2005; Accepted 27 January 2006; Published 31 March 2006.

Cai, P., M. Dai, D. Lv, and W. Chen (2006), How accurate are ²³⁴Th measurements in seawater based on the MnO₂-impregnated cartridge technique?, *Geochem. Geophys. Geosyst.*, 7, Q03020, doi:10.1029/2005GC001104.

1. Introduction

[2] The naturally occurring radionuclide ²³⁴Th is a particle-reactive element with a half-life of 24.1 d. In oceanic waters, ²³⁴Th is continuously produced at a nearly constant rate by the alphadecay of its parent nuclide, ²³⁸U. Because of its strong affinity with particles, ²³⁴Th is generally in deficit with respect to ²³⁸U in the upper ocean. Such disequilibrium has been widely used to quantify the sinking flux of organic carbon [e.g., *Bacon et al.*, 1996; *Buesseler et al.*, 2004; *Cai et al.*, 2002; *Cochran et al.*, 1995a; *Moran et al.*, 1997] and other particlereactive elements/compounds [e.g., *Buesseler et* al., 2001a; Gustafsson et al., 1997] from the upper ocean.

[3] The early determinations of 234 Th in seawater involved the collection of 20–30 L of seawater, followed by iron hydroxide coprecipitation and immediate separation of 234 Th from 238 U via ion-exchange chemistry. Finally, the Th was electroplated onto a stainless disc and counted sequentially on a beta counter and an alpha spectrometer [e.g., *Anderson and Fleer*, 1982; *Bhat et al.*, 1969]. This laborious process greatly limits the number of samples that can be processed during a given cruise.

[4] An alternative approach for determining 234 Th in seawater is based on MnO₂-impregnated cartridges. This technique was developed by *Livingston and Cochran* [1987] and was first applied to the measurement of 234 Th in seawater by *Buesseler et al.* [1992b]. The technique involves stripping Th from seawater by pumping a sample through two MnO₂-impregnated cartridges in series. Thorium-234 activities on cartridges are quantified by using gamma spectroscopy. The collection efficiency for dissolved 234 Th (hereafter referred to as theoretical collection efficiency) is calculated from the pair of MnO₂ cartridges by the equation

$$\mathbf{E} = 1 - \mathbf{B}/\mathbf{A},\tag{1}$$

where A and B are the decay-corrected activities of 234 Th on the first (A) and second (B) cartridges, respectively [*Livingston and Cochran*, 1987]. This approach eliminates the need for ion-exchange chemistry, since 234 Th adsorbs to the MnO₂-impregnated cartridges whereas 238 U is not retained to any significant extent [e.g., *Benitez-Nelson et al.*, 2001]. A further advantage of the MnO₂-impregnated cartridge technique is the ability to obtain 234 Th data at sea by gamma spectrometry of compressed or ashed cartridges. As such, this method was adopted by many researchers and extensively used to collect 234 Th from a wide range of oceanographic settings, especially during the JGOFS era [e.g., *Buesseler*, 1998, and references therein].

[5] Since this method does not use a yield tracer, the accuracy of obtained 234 Th activities depends essentially upon how well equation (1) can be applied. The assumptions inherent to equation (1) are (1) all Th species in the dissolved phase are subject to extraction by the MnO₂ cartridges and (2) cartridges A and B are equally effective at extracting and retaining Th from seawater. However, in the original paper by Livingston and Cochran [1987], neither assumption was verified. In this study, the applicability of this method is assessed through an intercalibration with a newly developed small-volume MnO₂ coprecipitation technique. The latter was developed by Buesseler et al. [2001b] and Benitez-Nelson et al. [2001] on the basis of a 20-L MnO₂ coprecipitation technique by Rutgers van der Loeff and Moore [1999]. With the aid of a yield tracer, the accuracy of ²³⁴Th activities based on this technique has been further improved [Pike et al., 2005; *Cai et al.*, 2006; *Rodriguez y Baena et al.*, 2006].

2. Methods

2.1. Sample Collection

[6] The intercalibration was conducted at a station $(20^{\circ}06.42'\text{N}, 115^{\circ}47.81'\text{E})$ in the oligotrophic northern South China Sea in February 2004. Water depth at this location is ~1500 m. Inorganic nitrogen and phosphorus in the mixed layer are usually below detection limits of conventional analytical methods [e.g., *Gong et al.*, 1992]. At this location, DOC concentration decreases from 75 μ M in surface waters to ~40 μ M at 900 m (M. Dai et al., unpublished data, 2005).

[7] A large volume (300–500 L) of seawater was sampled at 10, 60, 100, 150, 200, 250, 300, 400, and 500 m with an in situ pump (McLane Lab) equipped with 142 mm diameter filtration holders. Seawater was pumped sequentially through a 53 µm Nitex screen, a 10 µm Nitex screen, a 0.7 µm GF/F filter and two 5-inch MnO₂-impregnated cartridges (hereafter referred to as Mn-A and Mn-B). The pump flow rates were $4-7 \text{ Lmin}^{-1}$. The MnO₂ cartridges were prepared by soaking polypropylene cartridge filters (pore size $\sim 5 \,\mu m$) in hot (>95°C) 0.5 M potassium permanganate solution for > 6 h until a thick layer of MnO₂ crystal was uniformly adhered. Our experiment shows that >7-8 g of MnO₂ crystal was adhered to each cartridge in this cartridge preparation process, which suggests that each cartridge pair (Mn-A + Mn-B) contained >15 g of MnO₂. Within 3-5 hours of the in situ pumping, small-volume samples for bottle ²³⁴Th analyses were collected at the same depths using Go-Flo bottles attached on a CTD rosette sampler. A volume of 4 L of seawater was used to determine total ²³⁴Th activities. For the measurement of bottle particulate ²³⁴Th, 8 L of seawater was filtered using a 25 mm diameter, 1 µm pore size quartz fiber filter (QMA, Whatman). To achieve a higher resolution for total ²³⁴Th distribution in the upper 100 m, extra 4-L samples were collected at 1, 30 and 50 m.

2.2. Thorium-234 Analyses

[8] Analysis for total 234 Th in 4-L samples was based on the small volume MnO₂ coprecipitation (MnO₂ ppt hereafter) technique following the procedure described by *Buesseler et al.* [2001b] and *Cai et al.* [2006]. Briefly, within 1 h of collection,

unfiltered 4-L samples were acidified to $pH \approx 2$ with 6 ml of concentrated HNO₃. Approximately 10 dpm of ²³⁰Th were added as a yield tracer. The samples were mixed thoroughly and allowed to equilibrate for >12 h. Upon equilibration, pH was adjusted to 8.0-8.15 with concentrated NH₄OH. Then, 0.25 ml of KMnO₄ solution (3.0 g L^{-1}) and 0.25 ml of MnCl₂ solution (8.0 g MnCl₂· $4H_2OL^{-1}$) were added to form a suspension of MnO₂. After the samples were heated in a water bath ($>80^{\circ}C$) for 2 h and allowed to cool, the suspension was filtered onto a 25 mm diameter, 1 μ m pore size quartz fiber filter (QMA, Whatman). It has been demonstrated that the heating step dramatically reduces the filtration time for MnO₂ precipitates [*Cai et al.*, 2006]. Finally, the filtered MnO₂ precipitates were dried and mounted under one layer of Mylar film and two layers of aluminum foil for beta counting.

Geochemistry

Geophysics Geosystems

[9] Particles collected on the 53 and 10 μ m pore size Nitex screens were resuspended by ultrasonication in filtered seawater and recollected on 25-mm 1.0 μ m QMA filters. The QMA filters were dried overnight at 60°C and prepared for beta counting with Mylar and aluminum covers identical to those used for total ²³⁴Th samples. The 142-mm GF/F filters were dried overnight, and two 25-mm subsamples were cut and prepared as replicates for beta counting. Samples for the analysis of bottle particulate ²³⁴Th were also dried and prepared for beta counting. Analyses of particulate and total ²³⁴Th activities were performed at sea with gas-flow proportional beta counters (RisØ GM-5-25) following the methods described by *Buesseler et al.* [2001b].

[10] The MnO₂-impregnated cartridges were brought back to our land-based laboratory, where they were transferred to 5-L glass beakers. Approximately 10 dpm of ²³⁰Th, >2 L of 2 M HNO₃ and 60 ml of 30% H₂O₂ were added to each cartridge. The cartridges were boiled in the solution on a hot plate until they became completely white. After the cartridges were allowed to cool and removed from the leachate, another 2 L of 2 M HNO₃ and 1 L of deionized water were pumped sequentially through them using a cartridge holder. To test the efficiency of our leaching process, we ashed cartridges that had been leached in a parallel experiment. Our results showed that >99% of Th (99.6 \pm 0.1%, n = 7) on the intact cartridges was leached out.

[11] All of the leachates were combined and evaporated to \sim 200 ml, transferred to a 250.0 ml flask

and the volume was brought up to 250.0 ml using deionized water. Twenty percent of this solution was removed from the flask and 1.0 mg Fe^{3+} was added. The remaining solution was used for the determination of natural ²²⁸Th in seawater. The Th nuclides were coprecipitated with Fe hydroxide by adjusting the pH of the solution to \sim 7.0 with the addition of NH_4OH . Under such pH conditions, Mn^{2+} remained in the supernatant. This step avoided the formation of great amounts of MnO₂ precipitate, which could lead to significant reduction in beta counting efficiency due to the self-absorption effect. The Fe(OH)₃ precipitates were collected on 25-mm 1.0 µm pore size QMA filters. The precipitates were dried and prepared for beta counting in a same manner as described above for the total ²³⁴Th in seawater.

[12] Each sample was beta-counted 5 times over a period of >150 days in order to follow the decay of ²³⁴Th. A two-component fitting technique was applied to find the best fit of gross-counting data to an exponential curve with a half-life of 24.1 days. Each time point was further weighed by the individual counting uncertainty (SigmaPLOT^M). The net count rate of ²³⁴Th at the midpoint of sample filtration, as well as the background count rate, was estimated. After counting, the precipitates were disassembled and placed in 100 ml Teflon beakers for recovery assessment. Recovery assessment was possible because 10 dpm of ²²⁸Th and 2 dpm of ²²⁹Th internal standards were added to the MnO₂ and Fe(OH)₃ precipitates respectively prior to radiochemical purification for recovery determi-nation. In the latter case, ²²⁹Th was selected over ²²⁸Th because there could be a significant amount of natural ²²⁸Th in the MnO₂ cartridge samples, given the fact that up to 300-500 L of seawater was processed through each cartridge. The subsequent procedure for the isolation of Th isotopes was according to Cai et al. [2006]. Finally, Th was extracted into a 0.25 M TTA/benzene solution, and evaporated onto a stainless steel disc. The discs were counted by alpha spectrometry in ultra ionplanted detectors (Octête[™] PC) until the uncertainty of ²³⁰Th/²²⁸Th (and/or ²³⁰Th/²²⁹Th) ratio was lower than 3%. Corrections were applied to ²³⁴Th activity calculations on the basis of ²³⁰Th recoveries. All data were decay corrected to the time of collection and reported with a propagated uncertainty that includes the standard uncertainty associated with the ²³⁴Th fitting curve and 1 sigma counting uncertainty from the recovery measurements. Uranium-238 activities were estimated from salinity measurements using a calibrated CTD and

Table 1.	Thorium-234 Activi	ities at the Station in	n the Northern Sout	h China Sea Based	on Different Techn	iques		
	Particulate ²³	^{.4} Th, dpm L ⁻¹	Di	ssolved ²³⁴ Th, dpm L	-1	Total ²³⁴ Th	1, dpm L ⁻¹	
Depth, m	Pump	Bottle	Mn-A	Mn-B	DTh/Cart. ^a	Cartridge	MnO ₂ ppt	238 U dpm L ⁻¹
1							1.643 ± 0.074	2.41
10	0.348 ± 0.011	0.292 ± 0.029	0.661 ± 0.015	0.053 ± 0.011	0.718 ± 0.020	1.066 ± 0.023	1.631 ± 0.057	2.41
30							1.773 ± 0.057	2.41
50							1.919 ± 0.088	2.42
60	0.355 ± 0.012	0.422 ± 0.021	0.654 ± 0.015	0.031 ± 0.005	0.686 ± 0.016	1.041 ± 0.020	1.894 ± 0.050	2.42
100	0.290 ± 0.009	0.294 ± 0.027	1.218 ± 0.052	0.177 ± 0.009	1.425 ± 0.063	1.715 ± 0.063	2.429 ± 0.093	2.43
150	0.332 ± 0.005	0.269 ± 0.009	0.927 ± 0.020	0.312 ± 0.015	1.399 ± 0.047	1.731 ± 0.047	2.353 ± 0.068	2.44
200	0.300 ± 0.007	0.338 ± 0.013	1.069 ± 0.021	0.097 ± 0.004	1.176 ± 0.024	1.477 ± 0.025	2.121 ± 0.055	2.43
250	0.330 ± 0.011	0.349 ± 0.013	0.950 ± 0.020	0.502 ± 0.024	2.015 ± 0.124	2.345 ± 0.124	2.446 ± 0.065	2.43
300	0.306 ± 0.004	0.379 ± 0.012	1.345 ± 0.029	0.097 ± 0.003	1.449 ± 0.031	1.756 ± 0.031	2.417 ± 0.078	2.42
400	0.302 ± 0.016	0.312 ± 0.016	0.838 ± 0.039	1.427 ± 0.040			2.509 ± 0.113	2.42
500	0.314 ± 0.009	0.312 ± 0.016	0.766 ± 0.025	0.359 ± 0.010	1.443 ± 0.072	1.757 ± 0.073	2.383 ± 0.076	2.42
^a Based o	n the cartridge technique (TCE = $1 - B/A$). See te	xt for details.					

Geochemistry

Geophysics Geosystems

the relationship of 238 U (dpm L⁻¹) = 0.0686 × salinity (‰) $\times \rho$ [*Chen et al.*, 1986].

[13] The detection efficiency of our beta counters was estimated using open ocean seawater with salinity >34, which was filtered and acidified upon collection, and stored for >5 months to ensure secular equilibrium between 234 Th and 238 U. The average counting efficiency for the MnO₂ precipitate covered with one layer of Mylar film and two layers of aluminum foil (with a density of 3.6 mg cm^{-2}) was 0.50 ± 0.01 and varied by <2% among detectors. In this study, the filter loading of the actual particle samples varied in a relatively narrow range of 0.13–1.31 mg. Note that the filter loading was not directly determined, but estimated from POC measurements using a conversion factor of 2.5. This particle loading is similar to the MnO_2 load of the calibration and small compared to the load on the MnO₂ filters. As such, we believe that self-absorption did not significantly interfere during beta counting of the particle samples. Thus the same detection efficiency was applied to the Fe(OH)₃ precipitate samples and the particle samples.

3. Results and Discussion

[14] Thorium-234 activities as estimated using the MnO₂ cartridge technique and the MnO₂ ppt technique are summarized in Table 1. Particulate ²³⁴Th activities based on in situ pumping were calculated as the sum of the activities in the size-fractionated samples. As shown in Table 1, there is no significant difference in pump versus. bottle particulate 234 Th activities (pump 234 Th/bottle 234 Th = 0.986 ± 0.062, n = 9). This observation is in contrast to the recent study by Liu et al. [2005], which suggested systematical undercollection of POC by in situ pump compared to bottle sampling. Their conclusion is that marine sampling bottles preferentially capture motile zooplankton relative to most current pumping systems. If this were the case, our observation would not contradict that by Liu et al. [2005], as previous studies have suggested little²³⁴Th in living zooplankton [e.g., Buesseler et al., 1994].

[15] The theoretical collection efficiency (TCE) for the MnO₂ cartridge (Table 2) is obtained by using equation (1). The derived collection efficiency (DCE) can be calculated from

$$DCE\text{-}A = ThA/(Th_T - Th_P), \qquad (2)$$

$$DCE-B = ThB/[(Th_T - Th_P) - ThA], \qquad (3)$$

		ved Collection Effic	iency			Coprecipitation
Depth, m	DCE-A	DCE-B	DCE-A&B	TCE 1-B/A	DCE-A/TCE	MnO_2 ppt
10	0.515 ± 0.026	0.085 ± 0.019	0.556 ± 0.027	0.920 ± 0.016	0.560	0.912 ± 0.023
60	0.425 ± 0.017	0.035 ± 0.006	0.445 ± 0.017	0.953 ± 0.007	0.446	0.969 ± 0.024
100	0.569 ± 0.035	0.192 ± 0.024	0.652 ± 0.035	0.854 ± 0.010	0.666	0.943 ± 0.021
150	0.459 ± 0.018	0.286 ± 0.023	0.614 ± 0.020	0.663 ± 0.017	0.692	0.854 ± 0.019
200	0.587 ± 0.021	0.130 ± 0.011	0.641 ± 0.022	0.909 ± 0.004	0.646	0.874 ± 0.020
250	0.449 ± 0.017	0.430 ± 0.033	0.686 ± 0.022	0.471 ± 0.027	0.952	0.853 ± 0.020
300	0.637 ± 0.027	0.127 ± 0.014	0.683 ± 0.027	0.928 ± 0.003	0.687	0.810 ± 0.023
400	0.380 ± 0.026	1.042 ± 0.097	1.026 ± 0.046	-0.703 ± 0.092	-0.540	0.865 ± 0.027
500	0.370 ± 0.018	0.276 ± 0.019	0.544 ± 0.020	0.531 ± 0.020	0.697	0.861 ± 0.022

Table 2. Derived Collection Efficiency and the Theoretical Collection Efficiency as Well as the Coprecipitation Efficiency for MnO_2 ppts^a

^aDCE, derived collection efficiency; TCE, theoretical collection efficiency. DCE-A&B refers to the derived collection efficiency for the cartridge pairs.

where DCE-A and -B are the derived collection efficiencies for Mn-A and -B; ThA and ThB are 234 Th activities determined in Mn-A and -B; Th_T is the total 234 Th activity based on the MnO₂ ppt technique; and Th_P is the particulate 234 Th activity in seawater based on in situ pumping.

Geochemistry

Geophysics Geosystems

[16] The theoretical collection efficiency and the derived collection efficiency are listed in Table 2 and shown in Figure 1. Also listed in Table 2 are the derived collection efficiencies for each MnO_2 cartridge pair (DCE-A&B = (ThA + ThB)/(Th_T - Th_P)), and the coprecipitation efficiency for MnO_2 ppt. It is striking to notice how the derived collection efficiency is substantially lower than the theoretical collection efficiency throughout the water column, except at 400 m. As can be seen

from Figure 1, the theoretical collection efficiency varies from 0.471 to 0.953 (mean: 0.779 ± 0.194 , with data at 400 m excluded). In contrast, the derived collection efficiency ranges from 0.37 to 0.637 (0.488 \pm 0.094, 1 SD). Thus ²³⁴Th collection efficiency has been substantially overestimated by the MnO₂ cartridge technique using equation (1). While it remains an open question what caused this overestimation, it must be related to the interaction between ²³⁴Th and the MnO₂ cartridge. We suggest that this may be due to the organic complexation of a significant portion of ²³⁴Th in seawater, rendering it less able to adsorb to the MnO₂ cartridge.

[17] Moreover, there are substantial differences between the derived collection efficiency of Mn-A and Mn-B (Table 2 and Figure 1). The DCE-B

Figure 1. Comparison between the derived collection efficiency (DCE) and the theoretical collection efficiency (TCE). DCE-A and -B represent the derived collection efficiencies for Mn-A and Mn-B. Note that DCE-A and DCE-B were assumed to be identical and equal to TCE in the traditional technique.

Location	Flow Rate, min L ⁻¹	Sample Volume, L	Sample Number	Theoretical Collection Efficiency	References
North Atlantic	2 - 7	4000	12	0.827 ± 0.075	Livingston and Cochran [1987]
North Atlantic	4 - 8	3450	40	0.87 ± 0.08	Buesseler et al. [1992a]; Cochran et al. [1993]
Equatorial Pacific	3 - 5	300 - 600	103	0.79 ± 0.09	Buesseler et al. [1995]
Greenland Shelf	5 - 16	1000 - 1600	62	0.80 ± 0.08	Cochran et al. [1995a]
Arctic	$\rm NR^a$	$\rm NR^a$	28	0.74 ± 0.17	Cochran et al. [1995b]
Equatorial Pacific	1 - 8.5	1000 - 2000	72	0.905 ± 0.127	Bacon et al. [1996]
Gulf of Mexico	10 - 35	1000 - 4000	36	$ m NR^{a}$	Baskaran et al. [1996]
Arctic	2^{-3}	200 - 600	30	0.896 ± 0.073	<i>Moran et al.</i> [1997]
Arabian Sea	5 - 7	>250	56	0.87 ± 0.07	Buesseler et al. [1998]
NE Pacific	5-7	2500 - 3500	161	0.82 ± 0.12	Charette et al. [1999]
Atlantic	4.8 - 13	750 - 2000	23	0.79 ± 0.083	Charette and Moran [1999]
Middle Atlantic Bight	10 - 35	2000 - 4000	64	NR^{a}	Santschi et al. [1999]
Beaufort Sea	$\rm NR^a$	200 - 600	24	0.89 ± 0.07	Moran and Smith [2000]
Ross Sea	4 - 8	100 - 1000	72	$^{1/4}$ samples <0.50	Cochran et al. [2000]
Gulf of Maine	$\rm NR^a$	200 - 400	99	0.86 ± 0.08	Benitez-Nelson et al. [2000]
Southern Ocean	4 - 8	300 - 500	196	0.85	Buesseler et al. [2001a]
Gulf of Maine	5 - 8	100 - 1500	149	0.75 ± 0.12	Charette et al. [2001]
Gulf of Mexico	>10	1000 - 4000	32	0.84 ± 0.07	Guo et al. [2002]
North Water	$\rm NR^a$	100 - 1000	30	0.88 ± 0.07	Amiel et al. $[2002]$
Labrador Sea	$ m NR^{a}$	200 - 1200	12	NR^{a}	<i>Moran et al.</i> [2003]
Arctic	10 - 15	351 - 1185	27	2 samples <0.65	Baskaran et al. [2003]
Baltic Sea	5 - 8	500 - 800	28	0.75 ± 0.12	Gustafsson et al. [2004]
Gulf of Mexico	>10	1000 - 4000	25	$ m NR^{a}$	Hung et al. [2004]
Arctic	10 - 15	300 - 2000	31	0.776	Trimble and Baskaran [2005]
South China Sea	4-7	300 - 500	6	0.779 ± 0.194	this study
^a NR, not reported.					

Summary of Published Collection Efficiency and Sampling Parameters in Applying the MnO₂ Cartridge Technique Table 3.

Geochemistry Geophysics Geosystems 3

]]

Figure 2. Depth profiles of total 234 Th activities based on the MnO₂ cartridge technique and on the MnO₂ coprecipitation technique. The solid line represents depth distribution of 238 U.

ranges from 0.035 to 0.43 (0.195 \pm 0.129, with data at 400 m excluded), lower than DCE-A by more than a factor of 2. This suggests that Mn-A retains most of the absorbable Th and Mn-B extracts Th to a much less extent. Given the fact that the derived collection efficiencies for the cartridge pairs (DCE-A&B, Table 2 with data at 400 m excluded) is always lower than 0.70, it can be inferred that there is a fraction of dissolved Th not retained by the MnO₂ cartridges. Therefore we may hypothesize that Th occurs in the dissolved phase as different chemical species, e.g., Th^E, Th^H and Th^C. Th^E represents the easily absorbable Th species, and Th^{H} is less able to be retained by the cartridges. Th^{C} , which is not collected by the MnO₂ cartridges, may be considered to be colloid-bound. From this study, it appears that under typical sampling conditions, Mn-A is "skimming the cream" by getting most of the Th^E and some of the Th^H. Then, the Mn-B has mostly Th^H to adsorb, leading to a substantially lower derived collection efficiency for Mn-B than for Mn-A.

[18] The different retention of Th on Mn-A and Mn-B is not that surprising. *Rutgers van der Loeff et al.* [2006] found that in coastal settings, the theoretical collection efficiency based on the MnO₂ cartridge technique decreases with increasing total organic carbon loads. These authors ascribed the decrease in collection efficiency to the complexation of a fraction of 234 Th with organic ligands.

Meanwhile, several investigators have observed a decrease in the ²³⁴Th collection efficiency with an increase in flow rate [*Charette and Moran*, 1999; *Cochran et al.*, 1995a], suggesting that adsorption of ²³⁴Th on the MnO₂ cartridge is kinetically limited. Compared to the MnO₂ cartridge technique, the much longer exposure time involved in the MnO₂ ppt technique favors the exchange of ²³⁴Th between organic compounds and MnO₂ sites. Also, the acidification step required when a Th spike is added prior to MnO₂ coprecipitation may enhance the H⁺-triggered displacement of some ²³⁴Th from organic complexes.

[19] Overall, one would expect substantially higher collection efficiency for 234 Th by using the MnO₂ ppt technique because of the longer exposure time and the acidification step. Indeed, as shown in Table 2, the collection efficiency by using the MnO₂ ppt technique varies between 0.81 and 0.969 $(0.882 \pm 0.05, 1$ SD), which is substantially higher than the derived collection efficiency by using the MnO₂ cartridge pair (DCE-A&B = 0.603 ± 0.083 , with data at 400 m excluded). It is noteworthy that even by using the MnO₂ ppt technique, we found a collection efficiency for 234 Th lower than 1, which is in good agreement with Pike et al. [2005]. During the Southern Ocean Fe Experiment (SOFeX), these authors derived a mean collection efficiency of 0.913 for ²³⁴Th (n = 103; 19 samples with collection efficiency <0.85 were not included) by using the MnO₂ ppt technique coupled with the addition of a yield tracer.

[20] Both this study and that by *Pike et al.* [2005] have shown that $\sim 10\%$ of total ²³⁴Th was "missing" during the sample processing. As it has been demonstrated that physical losses of the MnO₂ ppt due to bottle-wall adherence and filter breakthrough can only account for <2-3% of the total ²³⁴Th in seawater [*Buesseler et al.*, 2001b], we deduce that even in open ocean conditions, up to >7-10% of dissolved ²³⁴Th, i.e., Th^C, is not subject to collection by MnO₂ precipitates. This is supported by previous studies on colloidal ²³⁴Th, which was shown to account for $\sim 10\%$ of total ²³⁴Th in open ocean water [e.g., Baskaran et al., 2003; Huh and Prahl, 1995]. In coastal sea settings, this fraction could be even higher [e.g., Dai and Benitez-Nelson, 2001]. Quigley et al. [2001] further demonstrated that the Th-COM (colloidal organic matter) complex is tightly bound, and even EDTA is unable to displace the ²³⁴Th from its association with COM. Thus it is conceivable that a larger portion of ²³⁴Th would pass through the

Figure 3. Sensitivity of the collection efficiency (for MnO_2 cartridges) in the calculation of ²³⁴Th flux at 100 m. Calculations refer to theoretical ²³⁴Th activities of 0.6, 0.8, 1.0, and 1.1 dpm L⁻¹.

 MnO_2 -impregnated cartridge pair, given the much shorter exposure time for the exchange of ²³⁴Th.

[21] Table 3 summarizes the theoretical collection efficiency, as well as some relevant sample processing information in previous studies. It is noticeable that our procedure for cartridge preparation and sample processing, as well as sampling regime are typical for the application of the MnO₂ cartridge technique. Moreover, the theoretical collection efficiency in this study is similar to those derived by other researchers. The reason for the apparently negative collection efficiency (i.e., ThB > ThA) at 400 m (Table 2) is unclear. However, it is not unusual to observe a negative collection efficiency. Similar scenario has also been observed in previous studies (e.g., K. O. Buesseler, personal communication, 2005), and could be attributable to water bypassing a poorly sealed Mn-A.

[22] To demonstrate how this overestimate in collection efficiency may affect our interpretation of ²³⁴Th/²³⁸U disequilibrium in the water column, the depth profiles of total ²³⁴Th activities based on the two techniques are compared (Figure 2). For the depth profile based on the MnO₂ ppt technique, ²³⁴Th activities are lower than equilibrium in the upper 100 m, indicating that significant particulate export is occurring. Below 100 m, a secular equilibrium is reached between ²³⁴Th and ²³⁸U except at 200 m. This structure is in good agreement with relatively modest particle scavenging below the euphotic zone. The reason for ²³⁴Th deficit at 200 m is unclear. One possible explanation is the subduction of ²³⁴Th–deficit surface water into this depth. Alternatively, it could be due to the repackage of small, nonsinking particles into large, fast-sinking particles at this depth.

[23] In contrast, the depth profile based on the MnO_2 cartridge technique shows ²³⁴Th deficit relative to ²³⁸U throughout the 0–500 m water column. Similar structure has been observed in the Gulf of Mexico and in the Middle Atlantic Bight [e.g., *Baskaran et al.*, 1996; *Hung et al.*, 2004; *Santschi et al.*, 1999], and was ascribed to benthic nepheloid layer exchange processes over the continental slope.

[24] Since 234 Th/ 238 U disequilibrium is commonly used to quantify the particulate organic carbon (POC) export rate from the upper ocean, we performed a sensitivity analysis of the calculated 234 Th flux (and hence POC export rate) based on the difference between the theoretical collection efficiency and the derived collection efficiency for 234 Th (Figure 3). The basis of our analysis is as follows. First, a typical 238 U activity of 2.48 dpm ${}^{-1}$ and a particulate 234 Th activity of 0.20 dpm ${}^{-1}$ are assigned to the upper 0–100 m water column. The 234 Th flux at 100 m can then be calculated on the basis of the equation

$$F = \lambda [U - (Th_d + Th_P)] \times 100 = 2876 \times (2.28 - ThA/E), \eqno(4)$$

where *F* is ²³⁴Th flux (dpm m⁻² d⁻¹); λ is the decay constant of ²³⁴Th (0.02876 d⁻¹); Th_d, Th_P

CAI ET AL.: MNO₂-IMPREGNATED CARTRIDGE TECHNIQUE 10.1029/2005GC001104

are the dissolved and particulate ²³⁴Th activities, respectively; ThA is the ²³⁴Th activity measured on the Mn-A; and E is the collection efficiency applied to Mn-A. Second, the curved lines in Figure 3 represent various decay-corrected ²³⁴Th activities measured on Mn-A. For a given collection efficiency on the x axis, the 234 Th flux can be calculated by locating the intersection with the appropriate ThA activity. For example, taking an efficiency of 0.50 and a ThA activity of 0.8 dpm L^{-1} , the ²³⁴Th flux would be 1956 dpm $m^{-2} d^{-1}$. Taking the same initial activity of ²³⁴Th and an overestimate in the collection efficiency by 0.30, the ²³⁴Th flux would be 3681 dpm m⁻² d⁻¹. Meanwhile, for an initial ThA activity of 1.1 dpm L^{-1} , a same overestimate in the collection efficiency, i.e., 0.50 versus 0.80, would lead to an overestimate in ²³⁴Th flux, and hence ²³⁴Th-based POC export rate by as much as an order of magnitude (i.e., 230 versus 2602 dpm m⁻² d⁻¹). If the cartridge technique used by Santschi et al. [1999] had suffered from a similar overestimate in collection efficiencies, this sensitivity analysis would explain the discrepancy between ²³⁴Th fluxes expected from the ²³⁴Th deficit in the water column and from the sediment trap deployed in the Middle Atlantic Bight, where the water column deficit below 200 m amounted to 8300-13,000 dpm $m^{-2} d^{-1}$, while in the sediment trap at 800 m, on average, only 1000–3000 dpm m^{-2} d⁻¹ were collected [Santschi et al., 1999]. Similarly, it is possible that the under-collection of ²³⁴Th by shallow sediment trap as observed in some studies [e.g., Gustafsson et al., 2004; Hung et al., 2004] can be ascribed, at least partially, to this collection efficiency issue.

Geochemistry

Geophysics Geosystems

[25] Many researchers used deep water to calibrate their gamma detectors [e.g., Buesseler et al., 1992b; Moran et al., 1997]. This would serve to constrain the combined collection efficiency and detector efficiency by comparing net count rates to ²³⁴Th activity concentration in deep water, which is assumed to be in equilibrium with ²³⁸U [Coale and Bruland, 1987]. In the absence of accurate knowledge of cartridge or precipitation efficiency, this standardization is critically important, and some examples of deep-water ²³⁴Th deficiency may be the result of not employing this approach. The inherent assumption behind this calibration for MnO₂ cartridges, however, is that the collection efficiencies in surface and deep water samples are similar. As the DOC concentration, the nutrient level and the temperature in deep water are, in general, dramatically different from surface water,

this standardization could introduce significant error to the ²³⁴Th activities. Indeed, as shown in Table 2, the average ratio of the derived collection efficiency to the theoretical collection efficiency is 0.668 ± 0.143 (1 SD). In this case, if one used deep water for calibration, the error associated with the derived ²³⁴Th activities should be no better than $\pm 20\%$ (0.143/0.668 = 0.21). To understand the behavior of ²³⁴Th on the MnO₂ cartridges, future studies on the in situ speciation of Th isotopes in seawater are needed. At present, it is recommendable to adopt the small volume MnO₂ coprecipitation technique for the determination of total ²³⁴Th in seawater, given that it has offered advantages over the MnO₂ cartridge technique [Buesseler et al., 2001b]. In particular, we recommend the small volume MnO₂ ppt technique with the addition of a vield monitor, since all losses of ²³⁴Th due to colloidal complexation and physical loss of MnO₂ ppt can be corrected by Th recoveries [Cai et al., 2006; Pike et al., 2005; Rodriguez y Baena et al., 2006]. However, it should be pointed out that the MnO₂ ppt technique has a major disadvantage of its inability for the determination of particulate ²³⁴Th in seawater. Selection of different Th sampling techniques in order to suit different research objectives has been recommended by Rutgers van der Loeff et al. [2006].

Acknowledgments

[26] The authors would like to thank K. O. Buesseler, M. Rutgers van der Loeff, and three anonymous reviewers for their constructive comments on this manuscript. We are also grateful to C. Lamborg for his comments and his help with English. Support for this work came primarily from the Natural Science Foundation of China (NSFC) through grants 40206011, 90211020, 40490264, and 40521003. This study was also supported by Program for Changjiang Scholars and Innovative Research Team in University.

References

- Amiel, D., J. K. Cochran, and D. J. Hirschberg (2002), ²³⁴Th/²³⁸U disequilibrium as an indicator of the seasonal export flux of particulate organic carbon in the North Water, *Deep Sea Res.*, *Part II*, 49, 5191–5209.
- Anderson, R. F., and A. P. Fleer (1982), Determination of natural actinides and plutonium in marine particulate material, *Anal. Chem.*, *54*, 1142–1147.
- Bacon, M. P., J. K. Cochran, D. Hirschberg, T. R. Hammar, and A. P. Fleer (1996), Export flux of carbon at the equator during the EqPac time-series cruises estimated from ²³⁴Th measurements, *Deep Sea Res.*, *Part II*, 43, 1133–1153.
- Baskaran, M., P. H. Santschi, L. D. Guo, T. S. Bianchi, and C. Lambert (1996), ²³⁴Th:²³⁸U disequilibria in the Gulf of Mexico: The importance of organic matter and particle concentration, *Cont. Shelf Res.*, *16*, 353–380.

Baskaran, M., P. W. Swarzenski, and D. Porcelli (2003), Role of colloidal material in the removal of ²³⁴Th in the Canada basin of the Arctic Ocean, *Deep Sea Res., Part I*, *50*, 1353–1373.

Geochemistry

Geophysics Geosystems

- Benitez-Nelson, C. R., K. O. Buesseler, and G. Crossin (2000), Upper ocean carbon export, horizontal transport, and vertical eddy diffusivity in the southwestern Gulf of Maine, *Cont. Shelf Res.*, 20, 707–736.
- Benitez-Nelson, C. R., K. O. Buesseler, M. M. Rutgers van der Loeff, J. A. Andrews, L. Ball, G. Crossin, and M. A. Charette (2001), Testing a new small-volume technique for determining thorium-234 in seawater, *J. Radioanal. Nucl. Chem.*, 248, 795–799.
- Bhat, S. G., S. Krishnaswamy, D. Lal, D. Rama, and W. S. Moore (1969), ²³⁴Th/²³⁸U ratios in the ocean, *Earth Planet. Sci. Lett.*, *5*, 483–491.
- Buesseler, K. O. (1998), The decoupling of production and particulate export in the surface ocean, *Global Biogeochem*. *Cycles*, *12*, 297–310.
- Buesseler, K. O., M. P. Bacon, J. K. Cochran, and H. D. Livingston (1992a), Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from ²³⁴Th:²³⁸U disequilibria, *Deep Sea Res., Part I, 39*, 1115– 1137.
- Buesseler, K. O., J. K. Cochran, M. P. Bacon, H. D. Livingston, S. A. Casso, D. Hirschberg, M. C. Hartman, and A. P. Fleer (1992b), Determination of thorium isotopes in seawater by non-destructive and radiochemical procedures, *Deep Sea Res.*, *Part I*, 39, 1103–1114.
- Buesseler, K. O., A. F. Michaels, D. A. Siegel, and A. H. Knap (1994), A three-dimensional time-dependent approach to calibrating sediment trap fluxes, *Global Biogeochem*. *Cycles*, *8*, 179–193.
- Buesseler, K. O., J. A. Andrews, M. C. Hartman, R. Belastock, and F. Chai (1995), Regional estimates of the export flux of particulate organic carbon derived from Th-234 during the JGOFS Eqpac program, *Deep Sea Res.*, *Part II*, 42, 777– 804.
- Buesseler, K. O., L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao (1998), Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234, *Deep Sea Res.*, *Part II*, 45, 2461–2487.
- Buesseler, K. O., L. Ball, J. Andrews, J. K. Cochran, D. J. Hirschberg, M. P. Bacon, A. Fleer, and M. Brzezinski (2001a), Upper ocean export of particulate organic carbon and biogenic silica in the Southern Ocean along 170°W, *Deep Sea Res.*, *Part II*, 48, 2461–2487.
- Buesseler, K. O., C. Benitez-Nelson, M. Rutgers van der Loeff, J. Andrews, L. Ball, G. Crossin, and M. A. Charette (2001b), An intercomparison of small- and large-volume techniques for thorium-234 in seawater, *Mar. Chem.*, 74, 15–28.
- Buesseler, K. O., J. E. Andrews, S. M. Pike, and M. A. Charette (2004), The effects of iron fertilization on carbon sequestration in the Southern Ocean, *Science*, 304, 414–417.
- Cai, P., Y. P. Huang, M. Chen, L. D. Guo, G. S. Liu, and Y. S. Qiu (2002), New production based on ²²⁸Ra-derived nutrient budgets and thorium-estimated POC export at the intercalibration station in the South China Sea, *Deep Sea Res., Part I*, 49, 53–66.
- Cai, P., M. Dai, D. Lv, and W. Chen (2006), An improvement in the small-volume technique for determining thorium-234 in seawater, *Mar. Chem.*, in press.
- Charette, M. A., and S. B. Moran (1999), Rates of particle scavenging and particulate organic carbon export estimated using ²³⁴Th as a tracer in the subtropical and

equatorial Atlantic Ocean, Deep Sea Res., Part II, 46, 885-906.

- Charette, M. A., S. B. Moran, and J. K. B. Bishop (1999), ²³⁴Th as a tracer of particulate organic carbon export in the subarctic northeast Pacific Ocean, *Deep Sea Res., Part II, 46*, 2833–2861.
- Charette, M. A., S. B. Moran, S. M. Pike, and J. N. Smith (2001), Investigating the carbon cycle in the Gulf of Maine using the natural tracer thorium-234, *J. Geophys. Res.*, *106*, 11,553–11,579.
- Chen, J. H., R. L. Edwards, and G. J. Wasserburg (1986), ²³⁸U, ²³⁴U and ²³²Th in seawater, *Earth Planet. Sci. Lett.*, *80*, 241–251.
- Coale, K. H., and K. W. Bruland (1987), Oceanic stratied euphotic zone as elucidated by ²³⁴Th:²³⁸U disequilibria, *Limnol. Oceanogr.*, *32*, 189–200.
- Cochran, J. K., K. O. Buesseler, M. P. Bacon, and H. D. Livingston (1993), Thorium isotopes as indicators of particle dynamics in the upper ocean: Results from the JGOFS North Atlantic Bloom Experiment, *Deep Sea Res., Part I, 40*, 1569–1595.
- Cochran, J. K., C. Barnes, D. Achman, and D. Hirschberg (1995a), Thorium-234/uranium-238 disequilibrium as an indicator of scavenging rates and particulate organic fluxes in the Northeast Water Polynya, Greenland, J. Geophys. Res., 100, 4399–4410.
- Cochran, J. K., D. J. Hirschberg, H. D. Livingston, K. O. Buesseler, and R. M. Key (1995b), Natural and anthropogenic radionuclide distributions in the Nansen Basin, Arctic Ocean: Scavenging rates and circulation timescales, *Deep Sea Res.*, *Part II*, 42, 1495–1517.
- Cochran, J. K., K. O. Buesseler, M. P. Bacon, H. W. Wang, D. J. Hirschberg, L. Ball, J. Andrews, G. Crossin, and A. Fleer (2000), Short-lived thorium isotopes (²³⁴Th, ²²⁸Th) as indicators of POC export and particle cycling in the Ross Sea, Southern Ocean, *Deep Sea Res., Part II*, 47, 3451–3490.
- Dai, M. H., and C. R. Benitez-Nelson (2001), Colloidal organic carbon and Th-234 in the Gulf of Maine, *Mar. Chem.*, *74*, 181–196.
- Gong, G., K. K. Liu, C. Liu, and S. Pai (1992), The chemical hydrography of the South China Sea west of Luzon and a comparison with the west Philippine Sea, *Terr. Atmos. Oceanic Sci.*, *3*, 587–602.
- Guo, L. D., C. C. Hung, P. H. Santschi, and I. D. Walsh (2002), ²³⁴Th scavenging and its relationship to acid polysaccharide abundance in the Gulf of Mexico, *Mar. Chem.*, 78, 103–119.
- Gustafsson, O., P. M. Gschwend, and K. O. Buesseler (1997), Settling removal rates of PCBs into the northwestern Atlantic derived from ²³⁸U-²³⁴Th disequilibria, *Environ. Sci. Technol.*, *31*, 3544–3550.
- Gustafsson, O., P. Andersson, P. Roos, Z. Kukulska, D. Broman, U. Larsson, S. Hajdu, and J. Ingri (2004), Evaluation of the collection efficiency of upper ocean sub-photic-layer sediment traps: A 24-month in situ calibration in the open Baltic using ²³⁴Th, *Limnol. Oceanogr: Methods*, 2, 62–74.
- Huh, C. A., and F. G. Prahl (1995), Role of colloids in upper ocean biogeochemistry in the northeast Pacific Ocean elucidated from ²³⁸U-²³⁴Th disequilibria, *Limnol. Oceanogr.*, 40, 528–532.
- Hung, C. C., L. D. Guo, K. A. Roberts, and P. H. Santschi (2004), Upper ocean carbon flux determined by sizefractionated ²³⁴Th data and sediment traps in the Gulf of Mexico, *Geochem. J.*, 38, 601–611.

Liu, Z., G. Stewart, K. J. Cochran, C. Lee, R. A. Armstrong, D. J. Hirschberg, B. Gasser, and J.-C. Miquel (2005), Why do POC concentrations measured using Niskin bottle collections sometimes differ from those using in-situ pumps?, *Deep Sea Res., Part I*, *52*, 1324– 1344.

Geochemistry

Geophysics Geosystems

- Livingston, H. D., and J. K. Cochran (1987), Determination of transuranic and thorium isotopes in ocean water—In solution and in filterable particles, *J. Radioanal. Nucl. Chem.*, *115*, 299–308.
- Moran, S. B., and J. N. Smith (2000), ²³⁴Th as a tracer of scavenging and particle export in the Beaufort Sea, *Cont. Shelf Res.*, 20, 153–167.
- Moran, S. B., K. M. Ellis, and J. N. Smith (1997), ²³⁸U/²³⁴Th disequilibrium in the central Arctic Ocean: Implications for particulate organic carbon export, *Deep Sea Res., Part II*, 44, 1593–1606.
- Moran, S. B., S. E. Weinstein, H. N. Edmonds, J. N. Smith, R. P. Kelly, M. E. Q. Pilson, and W. G. Harrison (2003), Does ²³⁸U/²³⁴Th disequilibrium provide an accurate record of the export flux of particulate organic carbon from the upper ocean?, *Limnol. Oceanogr.*, 48, 1018–1029.
- Pike, S. M., K. O. Buesseler, J. A. Andrews, and N. Savoye (2005), Quantification of ²³⁴Th recovery in small volume sea water samples by inductively coupled plasma mass spectrometry, *J. Radioanal. Nucl. Chem.*, 263, 355–360.

- Quigley, M. S., P. H. Santschi, L. D. Guo, and B. D. Honeyman (2001), Sorption irreversibility and coagulation behavior of Th-234 with marine organic matter, *Mar. Chem.*, *76*, 27–45.
- Rodriguez y Baena, A. M., J.-C. Miquel, P. Masque, P. P. Povinec, and J. L. Rosa (2006), Single vs. double spike approach coupled with alpha-spectrometry to improve accuracy of ²³⁴Th measurements in small volume seawater samples, *Mar. Chem.*, in press.
- Rutgers van der Loeff, M. M., and W. S. Moore (1999), The analysis of natural radionuclides in seawater, in *Methods of Seawater Analysis*, edited by K. Grasshoff, M. Ehrhardt, and K. Kremling, chap. 13, pp. 365–397, Verlag Chemie, Weinheim, Germany.
- Rutgers van der Loeff, M., et al. (2006), A review of present techniques and methodological advances in analyzing ²³⁴Th in aquatic systems, *Mar. Chem.*, in press.
- Santschi, P. H., L. Guo, I. D. Walsh, M. S. Quigley, and M. Baskaran (1999), Boundary exchange and scavenging of radionuclides in continental margin waters of the Middle Atlantic Bight: Implications for organic carbon fluxes, *Cont. Shelf Res.*, 19, 609–636.
- Trimble, S. M., and M. Baskaran (2005), The role of suspended particulate matter in ²³⁴Th scavenging and ²³⁴Th-derived export fluxes of POC in Canada Basin of the Arctic Ocean, *Mar. Chem.*, *96*, 1–19.