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This study uses valence bond (VB) theory to analyze in detail the previously

established finding that alongside the two classical bond families of covalent

and ionic bonds, which describe the electron-pair bond, there exists a

distinct class of charge-shift bonds (CS-bonds) in which the fluctuation of

the electron pair density plays a dominant role. Such bonds are

characterized by weak binding, or even a repulsive, covalent component,

and by a large covalent–ionic resonance energy RECS that is responsible for

the major part, or even for the totality, of the bonding energy. In the

present work, the nature of CS-bonding and its fundamental mechanisms

are analyzed in detail by means of a VB study of some typical homonuclear

bonds (H–H, H3C–CH3, H2N–NH2, HO–OH, F–F, and Cl–Cl), ranging

from classical-covalent to fully charge-shift bonds. It is shown that CS-

bonding is characterized by a covalent dissociation curve with a shallow

minimum situated at long interatomic distances, or even a fully repulsive

covalent curve. As the atoms that are involved in the bond are taken from

left to right or from bottom to top of the periodic table, the weakening

effect of the adjacent bonds or lone pairs increases, while at the same time

the reduced resonance integral, that couples the covalent and ionic forms,

increases. As a consequence, the weakening of the covalent interaction is

gradually compensated by a strengthening of CS-bonding. The large RECS

quantity of CS-bonds is shown to be an outcome of the mechanism

necessary to establish equilibrium and optimum bonding during bond

formation. It is shown that the shrinkage of the orbitals in the covalent

structure lowers the potential energy, V, but excessively raises the kinetic

energy, T, thereby tipping the virial ratio off-balance. Subsequent addition

of the ionic structures lowers T while having a lesser effect on V, thus

restoring the requisite virial ratio (T/�V = 1/2). Generalizing to typically

classical covalent bonds, like H–H or C–C bonds, the mechanism by which

the virial ratio is obeyed during bond formation is primarily orbital

shrinkage, and therefore the charge-shift resonance energy has only a small

corrective effect. On the other hand, for bonds bearing adjacent lone pairs

and/or involving electronegative atoms, like F–F or Cl–Cl, the formation of
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the bond corresponds to a large increase of kinetic energy, which must be

compensated for by a large participation or covalent–ionic mixing.

I Introduction

The first effective formulation of bonding in terms of the covalent–ionic classifica-
tion, which is still being taught today, dates back to the famous 1916 paper of G. N.
Lewis,1 in which the concept of electron-pair bonding is introduced for the first time.
The connection between this concept and quantum mechanics was subsequently
established by Heitler and London,2 who showed that bonding in H2 originates in
the quantum mechanical ‘‘resonance’’ interaction which is contributed as the two
electrons are allowed to exchange their positions between the two atoms, thus
defining the covalent interaction. For more general cases, the definitive quantum
mechanical description of the two-electron bond was achieved when Pauling
extended the Heitler–London description to a superposition of the covalent form
and the two possible ionic forms of the bond, in proportions that vary according to
the polarity of the bond.3 In modern terms (using Slater determinants), the covalent–
ionic superposition takes the form of CVB-3 in eqn (1) and (2), for a two-electron
bond that links together some atomic orbitals wa and wb.

CVB-3 = C1(| . . . j�j . . . wa�wb| � | . . . j�j . . . �wawb|)
+ C2| . . . j�j . . . wb�wb| + C3| . . . j�j . . . wa�wa| (1)

where j represents the set of orbitals, if any, which are not involved in the bond
under study (e.g., adjacent bonds or lone pairs). The first term in the wavefunction
represents the purely covalent interaction, and the two others characterize the ionic
components, so that eqn (1) can be re-expressed as in eqn (2)

CVB-3 = C1CA�–�B + C2CA+B� + C3CA�B+ (2)

It should be noted that, although the concept of covalent–ionic superposition
appears most clearly in valence bond (VB) theory, it is also present, albeit in a
hidden form, in a wavefunction of molecular orbital (MO) type, since it is well
known4 that an MO treatment followed by complete configuration interaction is
equivalent to the VB-based covalent–ionic scheme of Pauling. Moreover, it should
also be noted that the simple wavefunction shown in eqn (1) is in fact an accurate
one, since it accounts for the bonding energy of any two-electron bond, provided an
accurate VB computational method is used.5

Since the covalent–ionic superposition (eqn (1) and (2)) scheme accounts for the
totality of the bonding energy while the purely covalent interaction does not, it is
clear that adding the ionic terms corresponds to a covalent–ionic resonance energy
(RE) component of the bonding. Just how large is this resonance energy is the
question that concerns us here.
In Pauling’s days, for lack of accurate ab initio VB methods, some simplifying

assumptions were made, namely that (i) the covalent–ionic RE is proportional to the
electronegativity difference between the bonded atoms, and (ii) the covalent–ionic
RE is negligible in homopolar bonds.6 Curiously enough, the latter assumption
maintained the status of an unverified working hypothesis over several decades. This
lack of verification/falsification of the hypothesis is attributed to the inability of MO-
based methods, or of VB methods dealing with semi-delocalized orbitals (e.g.
generalized valence bond or spin-coupled methods) to quantify covalent-ionic
REs. The first verifications came with the advent of accurate VB methods dealing
with strictly localized atomic orbitals.7–9 They revealed that alongside the traditional
category of homopolar bonds in which the ionic component plays a minor role (e.g.
H–H, C–H, C–C bonds . . . ), there exists a specific category of bonds in which the
major phenomenon responsible for the bonding energy is neither the covalent
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interaction nor the ionic electrostatic stabilization, but rather the resonance stabi-
lization brought by the covalent–ionic mixing. As this covalent–ionic resonance is
characterized by a fluctuation of the electronic density, such bonds have been termed
‘‘charge-shift bonds’’ (CS bonds).
Charge-shift bonding has been characterized in some homopolar bonds (e.g. F–F,

HO–OH, etc.) as well as in some polar bonds (e.g. Si–Cl, C–Cl, H–F, etc.).7–9 Atoms
or fragments that are prone to CS bonding are compact electronegative and/or lone-
pair-rich species, albeit with significant electronegativity. It has been characterized
not only via ab initio VB calculations, but also through ELF/DFT calculations; the
latter calculations demonstrated that such bonds manifest themselves by a depleted
population with a large variance and negative covariance.8 Far from being merely an
academic concept, CS bonding has some experimental manifestations, among which
negative or weakly positive bonding electron densities8 and, more importantly, some
effects on reactivity. Thus, the reason why the halogen exchange reactions, H +
XH0 - HX + H0 (X = halogen), have systematically larger barriers than the
hydrogen exchange reactions, X + HX0 - XH + X0, was shown to be due to the
increasing CS character of the H–X bond in the series X = I, Br, Cl, F. The barrier
difference culminates for X = F, with a hefty barrier of 42 kcal mol�1 for the
fluorine transfer reaction, compared with only 18 kcal mol�1 for the hydrogen
abstraction reaction. This difference was shown to derive from the CS character of
the H–F bond.9

Now that the CS-bonding concept is firmly established, by means of accurate VB
calculations and by independent ELF/DFT calculations, it is timely to try to
understand the nature of the fundamental mechanism by which this type of bond
can be established in some molecules and not in others. For this purpose, this paper
is aimed at studying in detail all the aspects of bond formation in a series of
molecules that each display a range of bonding features: H2, and C2H6 as members
of the classical family of covalent bonds, Cl2 as a bond exhibiting significant CS
character, and the series N2H4, H2O2 and F2 as molecules exhibiting increasing CS
character from left to right of the periodic table.

II Theoretical

The wavefunction that describes the bond between atomic orbitals wa and wb is
expressed in eqn (1), which can also be rewritten as eqn (2). While some VB methods
allow for the use of semi-delocalized orbitals, here all the orbitals are kept strictly
localized on a single atom or fragment, so as to keep the distinction between covalent
and ionic bonds perfectly clear. The j orbitals that are adjacent to the wa–wb bond,
e.g. the lone pairs in F2 or the orbitals of the C–H bonds in C2H6, are kept doubly
occupied in the three VB structures. The valence bond calculations are performed at
two levels: valence-bond-self consistent field (VBSCF)10 and breathing-orbital
valence bond (BOVB).5,11

At the VBSCF level, the coefficients C1–C3 of eqn (1) and (2) and all the orbitals
are optimized simultaneously. This computational level ensures left–right correlation
in the wa–wb bond, but lacks dynamic correlation. In the BOVB method, the
structural coefficients and orbitals of the VB structures are also optimized simulta-
neously, but now dynamic correlation is introduced by allowing the orbitals to
assume sizes and shapes that are different for the different structures. This specific
feature has rendered the method capable of yielding realistic bonding energies while
keeping the compactness and interpretability of the simple VBSCF wavefunction.5

The BOVB method has a few levels, which differ in sophistication hierarchy. At
the most basic level, referred to as L-BOVB, all the orbitals, including the inactive set
j, are kept strictly localized, and the ionic components CA+B� and CA�B+ are
described as simple closed-shell VB functions. This simple level, which makes
repetitive calculations an easy task, is sufficient for yielding reasonable dissociation
curves in the series H2, C2H6, N2H4, H2O2. We emphasize that this simple level, that
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has been chosen here for the sake of simplicity, yields less accurate bonding energies
and equilibrium bond lengths than higher BOVB levels,5,8 but provides the same
trends for the resonance energies. For F2 and Cl2, which are the sites of strong
repulsions between lone pairs and for which calculations of virial ratios are
performed, a more sophisticated level has been deemed necessary. This level is
characterized by two improvements relative to the basic level: (i) the active doubly
occupied orbitals of an ionic structures are split into two singlet-coupled singly-
occupied orbitals, so as to bring some radial correlation to the active electrons; (ii)
the p lone pairs are allowed to be delocalized on the three fragments. This does not
change the physical meaning of the VB structures, but allows some flexibility in the
interactions between lone pairs. We refer to this level as p-SD-BOVB. This level is
slightly different from the full SD-BOVB level (more complicated to use5), in which
the s lone pairs are also allowed to be delocalized. For comparative purposes, F2 has
been calculated at both the L-BOVB and p-SD-BOVB levels. On the other hand, Cl2
has been calculated at the p-SD-BOVB level alone. Previous calculations performed
at the full SD-BOVB level8 may differ slightly from those reported here.
All calculations were performed in the standard 6-31G(d) basis set, with the

exception of the H2 molecule which is calculated in the 6-31G(d,p) basis set, so that
all the active orbitals wa and wb are calculated in basis sets of double-zeta +
polarization quality. In the H2 case, VB structures corresponding to the p bonding
of H2 are added. Previous experience has shown us that such VB structures are not
negligible in diatomic molecules such as H2, Li2, etc., in which s2 - p2 transitions
are possible (of course this should not be considered as p-bonding but as angular
correlation correction). The geometry optimizations were performed at the Møller–
Plesset perturbational level (MP2) in the MO framework. In order to generate entire
dissociation energy curves, a series of geometry optimizations was carried out at
fixed inter-fragment distances for all molecules.
The weights of the VB structures are determined by use of the Coulson–

Chirgwin12 formula, eqn (3), which is the equivalent of a Mulliken population
analysis in VB theory:

Wi ¼ C2
i þ

X

j 6¼i
CiCjhCijCji; ðCi;Cj : covalent or ionic structures; eqn ð2ÞÞ ð3Þ

The charge-shift resonance energy, RECS, is defined in eqn (4) as the energy
difference between the covalent structure CA�–�B and the full wavefunction CVB-3

of eqn (2), at the equilibrium geometry of the latter (RVB-3
eq ):

RECS = E(CA�–�B) � E(CVB-3) (4)

Here both E(CA�–�B) and E(CVB-3) are both determined variationally within their
respective spaces of VB structures, and as such, the RECS quantity is a quasi-
variational quantity.
Another quantity of interest, to be needed later, is the degree of compactness of

the wa and wb orbitals that are involved in the bond. The index of compactness, Ic, is
defined as follows:

Ic = [(cso
2 + cpo

2)/(csi
2 + cpi

2)]1/2 (5)

Here cso and csi are the coefficients of the outer and inner basis functions of s type in
the atomic orbital wa (wb) while cpo and cpi are analogous coefficients for the p basis
functions. Since outer basis functions are more diffuse than inner ones, Ic will vary
like the size of the orbital: the larger the Ic index, the more diffuse the orbital.
The Gaussian 98 series of programs13 was employed for Møller–Plesset calcula-

tions. The ab initio valence bond calculations were performed with the XMVB
program.14
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III Purely covalent vs. real dissociation energy curves

Fig. 1 shows some dissociation energy curves for the six molecules: H2, C2H6, N2H4,
H2O2, F2 and Cl2. The curves in dotted lines are the dissociation curves of the purely
covalent VB structure (CA�–�B in eqn (2)), while the curves in solid lines represent the
VB-3 three-structure ground state (CVB-3 in eqn (2)). The ground state curves are
calculated with the BOVB method, and the purely covalent states are calculated
separately as a 1-structure VB calculation (in this case the VBSCF and BOVB
methods become equivalent).
As can be seen in Fig. 1a, the simplifying assumption of Pauling, that the

covalent–ionic resonance energy is small for homonuclear bonds, appears as fully
justified as in the H2 case. The covalent and VB-3 curves remain very close to each
other at all distances, and the equilibrium bond lengths are practically similar. As a

Fig. 1 Dissociation energy curves for the H2 (a), C2H6 (b), N2H4 (c), H2O2 (d), F2 (e) and Cl2
(f) molecules. The dotted lines represent the purely covalent wavefunction (Ccov). The ground
state dissociation curves (CVB-3) are calculated at the L-BOVB level for the H2 (a), C2H6 (b),
N2H4 (c) and H2O2 (d) molecules, and at the p-SD-BOVB level for the F2 (e) and Cl2 (f)
molecules.
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consequence, the RECS quantity is quite weak, 7.1 kcal mol�1, and accounts for a
small part of the total bonding energy. Note that the potential well is deeper, and
closer to the experimental value (105.4 kcal mol�1 vs. 109.6 experimentally) at
higher, but less simple, BOVB levels.8 The latter calculation, however, still yields a
small RECS energy (11.7 kcal mol�1).
The covalent and VB-3 dissociation curves for C2H6, shown in Fig. 1b, exhibit

their minima at practically the same C–C distance (which, we recall, is slightly larger
than the experimental value, owing to our use of the simplest level of the BOVB
method). In the ground state curve (BOVB level), the covalent–ionic resonance
energy accounts for only 29% of the total bonding energy, thus putting the C–C
bond of ethane in the category of classical homopolar bonds in Pauling’s sense, i.e. a
bond that is mainly covalent, and marginally stabilized by further admixture of ionic
components.
The characteristics of homonuclear bonding gradually become different as we

move from left to right of the periodic table. In N2H4 (Fig. 1c), the covalent
minimum is right-shifted by some 0.20 Å relative to the true minimum of the ground
state. Moreover, the covalent dissociation curve exhibits a potential well of only 14
kcal mol�1, much smaller than the VB-3 bonding energy of 54.6 kcal mol�1. Clearly
then, the N–N bonding energy in N2H4 cannot be considered as arising mainly from
the covalent interaction, and the RECS term becomes the major contributor to the
bond energy. The charge-shift character of the homonuclear bond is even more
evident in H2O2, whose covalent curve exhibits a tiny minimum of 6 kcal mol�1, at
an interatomic distance that is 0.50 Å larger than the ground state equilibrium
distance. Lastly, the F2 molecule (Fig. 1e) represents an extreme case, in which the
covalent curve does not display any minimum, and is repulsive at all distances. Thus,
in this molecule, the repulsive covalent interaction is more than compensated by the
very large covalent–ionic resonance energy, which becomes the only cause of
bonding.
The Cl2 case is interesting, as it allows a comparison to be made between two

isoelectronic compounds, F2 and Cl2, differing by their row in the periodic table.
Unlike the F2 case, the covalent curve of Cl2 (Fig. 1f) is not entirely repulsive, but
exhibits a small potential well of 2.4 kcal mol�1, at a distance some 0.53 Å longer
than the ground state equilibrium distance. Thus, Cl2 is clearly a CS-bond, however,
less so than F2.
Table 1 displays the ground state bonding energies (CVB-3 calculated at the BOVB

level) of the six molecules, and the RECS energies at the ground state equilibrium
geometries RMP2

eq , as optimized at the MP2 level. These values confirm that H2 and
C2H6 are classical homonuclear bonds, i.e. mainly covalent, while the remaining
molecules are all nonclassical and bonded by CS-bonding. Some clear tendencies are
apparent: as we move from left to right or from bottom to top of the periodic table,
and for molecules taken at their RMP2

eq equilibrium distances, the covalent–ionic
resonance energy increases, while at the same time the covalent bonding energy

Table 1 Bond dissociation energies (BDE), covalent–ionic resonance energies (RECS) and

covalent weights of the molecules taken in their MP2-calculated equilibrium geometries. All

energies in kcal mol�1

H2 H3C–CH3 H2N–NH2 HO–OH F–Fa F–Fb Cl–Clb

BDEc 100.8 84.1 54.6 41.7 29.1 35.2 37.5

RECS
d 7.1 24.4 43.0 51.7 59.9 60.6 48.1

Wcov
e 0.76 0.63 0.63 0.66 0.70 0.73 0.69

a Calculations at the L-BOVB level. b Calculations at the p-SD-BOVB level. c Bonding energy

of theCVB-3 ground state, as calculated by the BOVBmethod. d According to eqn (4). e Weight

of the covalent function CA�–�B, according to eqn (3).
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decreases or becomes negative. On the other hand, the weight of the covalent
component (Table 1, entry 3) remains rather constant for all molecules, in sharp
contrast with the variations of RECS. These tendencies will be analyzed and
explained in the next section.

IV Tendencies in the matrix elements in the periodic table

The previous section has put forward some computational results that yield very
different values of the covalent–ionic resonance energies, according to the bond that
is considered. It is now important to understand the reasons behind the computed
facts, and to rationalize the observed tendencies in the periodic table. Accordingly,
this section is aimed at answering the three following questions: (i) why does the
bonding energy of the covalent component decrease in a series of molecules taken
from left to right or from bottom to top of the periodic table? (ii) Why does the
covalent–ionic resonance energy RECS increase, in the same series, while the covalent
bonding energy decreases? (iii) Why are the covalent vs. ionic weights quasi-constant
in a series whereas RECS widely varies?
The answer to the first question can be related to the known repulsive role of the

lone pairs that are adjacent to the considered bond. This repulsive effect, which has
been called ‘‘lone-pair bond weakening effect’’ (LPBWE) by Sanderson,15 is propor-
tional to the number of lone pairs, and increases therefore in the series C–C, N–N,
O–O, and F–F. It arises primarily from the repulsion between the bonding electrons
and the lone pairs that have the same symmetry as the bond, while the repulsion
between the lone pairs themselves makes a lesser contribution. This repulsive effect
has been quantified by means of VB calculations, and has been shown to amount to
about 53, 70 and 75 kcal mol�1 for the N–N, O–O and F–F bonds, respectively.16 It
is therefore a significant effect, which increases from left to right of the periodic table,
and which explains very well the concomitant decrease of covalent bonding. The
LPBWE has also been shown to increase from bottom to top of the periodic table,
thus explaining why the covalent curve still has a tiny potential well in Cl2 but not
in F2.
The answers to questions (ii) and (iii) will require considerations of the Hamilto-

nian matrix elements in the VB calculations. Let us consider the ground state
wavefunction (CVB-3) as the result of a 2 � 2 configuration interaction between the
covalent component Ccov (CA�–�B in eqn (2)) and the symmetry-adapted combina-
tion of the two ionic structures, Cion:

CVB-3 = CcovCcov + CionCion (6a)

Cion = N (CA+ B� + CA�B+) (6b)

A key quantity in our reasoning will be the reduced resonance integral b between
Ccov and Cion, that is related to the Hamiltonian matrix elements through the
following transformation:

b = hCcov 7H 7Cioni � S hCcov 7H 7Ccovi (7)

where S is the overlap between Ccov and Cion. Another useful quantity is DE, the
energy gap between Ccov and Cion in the Hamiltonian matrix:

DE = hCion 7H 7Cioni � hCcov 7H 7Ccovi (8)

Table 2 displays the calculated values of b, DE and the coefficients Ccov and Cion, as
they appear in BOVB calculations at the MP2 equilibrium geometries, in the series of
molecules C2H6, N2H4, H2O2 and F2, which exhibits homonuclear bonds between
atoms taken from left to right of the periodic table. By reasoning in terms of
perturbation theory, one would predict that the coefficient Cion should vary like
b/DE, while the covalent–ionic resonance energy, RECS, varies like b

2/DE. Perturba-
tion theory, however, is valid only if the b integral is smaller than the energy gap DE,
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which is clearly not the case as can be seen in Table 2. Therefore, our analysis in
terms of perturbation theory will only be qualitative in nature. Thus, it appears from
Table 2 that DE, the covalent–ionic energy gap, regularly increases in the series. In
turn, the b integral, which is responsible for the covalent–ionic coupling, also
increases, in absolute value, in the series. Thus, the coefficient of the ionic component
is proportional to a quantity, 1/DE, that decreases in the series, and proportional to a
quantity, b, that increases. As a consequence, one may expect Cion to vary only
weakly in the series, and indeed this coefficient appears to be remarkably constant in
Table 2, even if this result must be tempered by the slow increase of the coefficient
Ccov.
It is now possible to explain why the covalent–ionic resonance energy RECS

increases in the series, while the ionic weights do not. Indeed, RECS is proportional
to a decreasing factor, 1/DE, and proportional to the square of an increasing factor,
b2. In other words, RECS can be considered as a roughly constant factor (the ratio
Cion/Ccov) multiplied by an increasing factor b. Of course we recall that the above
analysis is only qualitative. Any endeavour to retrieve the quantitative values of
RECS or ionic weights by means of a perturbative theoretical argument whose
conditions of validity are not met would be useless.

V The fundamental mechanism of bond formation: Orbital shrinkage

vs. covalent–ionic resonance

While the occurrence of charge-shift bonding is mathematically understood by
consideration of Hamiltonian matrix elements and energy gaps, the phenomenon
still remains to be understood in a more physical way, and in particular why charge-
shift bonding is associated with lone-pair richness. In order to achieve such an
understanding we discuss the fundamental changes which occur during bond
making,17 based on the virial theorem.17a,18 The diatomic virial theorem is expressed
in eqn (9) and is satisfied for any wavefunction, whatever the computational method
that is used, provided the calculation is performed in a sufficiently flexible basis set:

�RdE/dR = 2T + V (9)

where E is the total energy, V and T are, respectively, the potential and kinetic
components, and R is the interatomic distance. This means that the virial ratio has
the value 1/2, as in eqn (10), for any properly optimized wavefunction provided the
diatomic is taken at the interatomic distance Req that is optimal for this very
wavefunction:

T/�V = 1/2; R = Req (10)

According to eqn (9), the virial ratio is larger (smaller) than 1/2 for interatomic
distances smaller (larger) than Req (Fig. 2).
For a molecule that has no lone pair repulsions, like H2, the primary event that

takes place when one brings the two fragments together, all other things being equal,

Table 2 Reduced resonance integral and energy gaps, between the covalent and symmetrized

ionic structures, and coefficients of these VB structures. All energies are in hartrees

b DE Ccov Cion Cion/Ccov

H3C–CH3
a �0.15462 0.10345 0.642 0.393 0.612

H2N–NH2
a �0.25257 0.16558 0.657 0.414 0.630

HO–OHa �0.27920 0.22845 0.699 0.413 0.591

F–Fa �0.28248 0.30796 0.744 0.391 0.526

F–Fb �0.29199 0.28977 0.732 0.400 0.546

a Calculations at the L-BOVB level. b Calculations at the p-SD-BOVB level.
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is a lowering of the kinetic energy, that puts the virial ratio off-balance (T/�V o
1/2).17 At the purely covalent level, the only degree of freedom for the wavefunction
to restore the virial is to adjust the orbital size. In H2, this is carried out by orbital
shrinkage, which has the effect of increasing the kinetic energy and lowering the
potential energy, in a measure appropriate for lowering the T/�V quantity and re-
establishing the virial ratio (T/�V= 1/2) needed for equilibrium.17 This condition is
reached at the covalent equilibrium distance, Rcov

eq . At shorter distances, further
orbital shrinking is no more able to satisfy the virial ratio, and the covalent
wavefunction has an excess of kinetic energy (T/�V 4 1/2), according to eqn (9)
(see also Fig. 2).
The presence of lone pairs modify the situation somewhat: the Pauli repulsion that

is associated with the LPBWE brings an additional rise in the kinetic energy. In such
a case, orbital shrinkage, which is an appropriate bonding mechanism in the case of
a deficit of kinetic energy, becomes less appropriate, or even not appropriate at all.
As a consequence, owing to the lack of efficiency of the mechanism of orbital
shrinkage by itself, the equilibrium distance Rcov

eq at which the virial relation is
established is rather long, and the covalent potential well is small. To establish a
stronger bonding in this situation where kinetic energy is in excess, there is the
possibility of using another mechanism of T/V regulation; this mechanism is the
covalent–ionic resonance. By contrast to orbital shrinkage, adding ionic structures
has the effect of lowering the kinetic energy, while having a less important effect on
the potential energy. The larger the excess of kinetic energy, the more important will
be this mechanism. Thus, at an inter-fragment distance RVB-3

eq which can be much
shorter than Rcov

eq (Fig. 2), the virial ratio T/�V is larger than 1/2 in the covalent
wavefunction, but the covalent–ionic mixing has the main effect of lowering T so as
to re-establish the virial.
However attractive the above qualitative explanation may be, it remains to be

verified by quantitative computation. Table 3 displays some quantitative estimations
of orbital shrinkage for the six molecules, as calculated at the covalent, VBSCF and
BOVB levels. For each computational level, the molecules are taken in the
equilibrium geometries that are specific to that level. What is reported in this table
is the Ieqc /INc ratio, where Ieqc is the compactness index, calculated from eqn (5) at the
equilibrium distance, and INc is the same index at infinite interatomic distance. A
ratio smaller than unity means that the orbitals (that are involved in the bond) shrink
in the course of bond formation, whereas a ratio larger than unity means that the
orbitals expand.
Let us consider the covalent level first (Table 3, entry 1). It is apparent that the two

molecules that have no lone pairs (H2, C2H6) display a significant orbital shrinkage

Fig. 2 Typical balance and off-balance situations for the virial ratio at infinite distance and
around the minima of the covalent and ground state dissociation curves.
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effect (Ic gets smaller) from infinite distance to bonding distance. The orbital
shrinkage is still present, but smaller, in N2H4, which is subject to a moderate
LPBWE due to the presence of one lone pair on each nitrogen atom. By contrast, for
all the molecules that have more than one lone pair on each atom (H2O2, F2, Cl2),
the orbitals involved in the bond expand from infinite distance to bonding distance
(although this is not seen in Table 3 since F2 has no covalent minimum, the
calculations show a gradual orbital expansion in the covalent wavefunction as the
distance between the F atoms decreases). This is a consequence of a strong LPBWE
that brings some excess of kinetic energy: while orbital shrinkage is appropriate
when there is a deficit of kinetic energy (as in classical bonds), just the opposite
occurs when this energy component is in excess (CS bonds). At the VBSCF and
BOVB levels, the ionic component is added to the wave function, and orbital
shrinkage takes place, although to a lesser extent than in H2 and C2H6. This is not
surprising: as the covalent–ionic resonance has the effect of lowering T, the kinetic
energy excess is eliminated, so that orbital shrinkage now becomes possible. This
effect is observed at the VBSCF level, and reinforced at the BOVB level which, by
better treatment of the ionic structures, further increases charge-shift bonding
relative to VBSCF. Remarkably, at both the VBSCF and BOVB levels, orbital
shrinkage is less and less important from left to right of the periodic table (C–C -
F–F) and from bottom to top (Cl–Cl - F–F), thus varying in the opposite way to
RECS.
Let us now consider the effect of charge-shift bonding on the kinetic and potential

energies in two typical cases where RECS is important: Cl2 and F2 (Table 4). The two
molecules are considered at the interatomic distance RVB-3

eq , at which the virial
relationship is exactly satisfied (that is, T/�V = 1/2 or 2T + V = 0) in the 3-VB
structure ground state wavefunction, as calculated at the BOVB level (these distances
differ slightly from the ground state minima, because the basis set is not complete).
Let us consider the Cl2 molecule first. At the covalent level, the kinetic energy is in
excess (2T + V = +0.161 au), as predicted by eqn (9) (see also Fig. 2), because the
Cl–Cl bond length, RVB-3

eq , is shorter than the covalent minimum (Rcov in Fig. 2).

Table 4 Kinetic and potential energies of the covalent states (Ccov) and ground states (CVB-3)

at the RVB-3 distance, that exactly satisfies the virial relationship (eqn (10)) in the ground state.

Calculations at the p-SD-BOVB level, all energies in hartrees

Cl2 (RVB-3) F2 (RVB-3)

T(Ccov) 919.04800 198.93680

V(Ccov) �1837.93482 �397.60755
E(Ccov) �918.88683 �198.67075
T(CVB-3) 918.93306 198.77617

V(CVB-3) �1837.86621 �397.55236
E(CVB-3) �918.93315 �198.77618

Table 3 Quantitative characterization of orbital shrinkage as the fragments are brought from

infinite distance to bonding distance. INc is the compactness index for the separate fragments,

according to eqn (5). Ieqc is the compactness index at the respective equilibrium distances of the

covalent, VBSCF and BOVB distances

Ieqc /INc H2 H3C–CH3 H2N–NH2 HO–OH F–F Cl–Cl

Ccov 0.583 0.798 0.940 1.053 — 1.169

CVB-3 (VBSCF) 0.521 0.602 0.806 0.941 0.962 0.878

CVB-3 (BOVB) 0.519a 0.497a 0.697a 0.836a 0.898b 0.823b

a Calculations at the L-BOVB level. b Calculations at the p-SD-BOVB level.
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Allowing the covalent–ionic mixing to take place (Ccov - CVB-3) will lead to some
readjustment of T and V. For the virial ratio to be restored by ionic admixture, it is
necessary that the following condition be fulfilled:

DV o �2DT (11)

As can be seen in Table 4, this condition is largely satisfied in the Cl2 case, since
inclusion of ionic structures causes a large drop of the kinetic energy (DT = �0.115
au) whereas the potential energy is increased by only 0.069 au.
In the F2 case, the LPBWE is so large that there is not even a covalent minimum:

at any distance, the repulsive effect prevents the covalent interaction to be stabilizing
relative to the separate atoms. At the RVB-3

eq distance, the covalent wavefunction
exhibits, as in the preceding case, a large excess of kinetic energy (2T+ V=+0.266
au). Once again, the effect of the covalent–ionic mixing is mainly to lower the kinetic
energy (DT= �0.161 au), while raising the potential energy to a lesser extent (DV=
+0.055 au). Thus, in both Cl2 and F2, the effect of the covalent–ionic mixing is to
lower the ratio T/�V, thus counterbalancing the excess of kinetic energy induced by
the LPBWE.

VI Conclusion

Valence bond (VB) theory and electron-localization function (ELF) calculations of
various single bonds have demonstrated, in some previous work,7,8 that alongside
the two classical bond families of covalent and ionic bonds, there exists a class of
charge-shift bonds (CS-bonds), which involves homopolar as well as heteropolar
bonds, and in which the fluctuation of the electron pair density plays a dominant
role. In the present work, the nature of CS-bonding and its fundamental mechanisms
are analyzed in detail by means of a VB study of some typical homonuclear bonds,
ranging from classically covalent to fully charge-shift bonds.
While classical homonuclear bonds (e.g. H2, C2H6...) are mainly covalent in

nature and display a purely covalent dissociation energy curve that is close to the
exact dissociation curve of the ground state, CS-bonding is characterized by the
following features: (i) a covalent dissociation curve with a shallow minimum situated
at long interatomic distance, or even a fully repulsive covalent curve; (ii) a large
covalent–ionic resonance energy RECS that is responsible for the major part, or even
for the totality, of the bonding energy.
Atoms (fragments) that are prone to CS-bonding are compact electronegative

and/or lone-pair-rich species, albeit with moderate electronegativity; as such, CS
bonding increases as the bonded atoms are taken from left to right and from bottom
to top of the periodic table, and peaks at fluorine. In this series, the weakening effect
of the adjacent lone pairs increases, while at the same time the reduced resonance
integral, that couples the covalent and ionic forms, increases. As a consequence, the
weakening of the covalent interaction is gradually compensated by a strengthening
of CS-bonding.
CS-bonding is shown to be a fundamental mechanism that is necessary to adjust

the kinetic and potential energy to the virial ratio at equilibrium. For classical bonds
that are not weakened too much by lone pair repulsions, covalent bonding induces a
deficit of kinetic energy that is efficiently counterbalanced by shrinkage of the
orbitals involved in the bond. On the other hand, for bonds bearing several adjacent
lone pairs, some extra Pauli repulsion induces an excess of kinetic energy. In such a
case, orbital shrinkage ceases to be an efficient mechanism for restoration of the
virial ratio, and it must be relayed by another mechanism which is the addition of
ionic structures. This latter mechanism has the effect of lowering the kinetic energy
while raising the potential energy to a lesser extent. Thus, the orbital shrinking
mechanism gradually loses some importance as one moves from left to right or from
bottom to top of the periodic table, while CS-bonding gains some importance at the
same time.
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